体外低氧环境对人骨髓间充质干细胞成骨诱导分化影响的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分人骨髓间充质干细胞的体外培养及鉴定
     目的体外分离培养人骨髓间充质干细胞(hMSCs)并进行鉴定,为组织工程提供适宜的种子细胞。
     方法抽取健康成人骨髓,采用人淋巴细胞分离液分离纯化获取hMSCs,观察细胞形态特征、生长状况,从表面抗原表达及成骨分化能力两个方面进行鉴定。
     结果分离细胞贴壁生长,呈集落样增殖,放射状、涡漩状分布排列。免疫细胞化学检测细胞表达CD44和CD71,CD34、CD45呈阴性表达,细胞表面标志表达与间充质干细胞的特征一致。分离的细胞经过成骨条件培养基诱导分化后2周,细胞碱性磷酸酶染色阳性,4周后可以形成钙结节,证明所培养细胞有向成骨细胞分化的潜能。表明分离细胞为间充质干细胞。
     结论采用人淋巴细胞分离液分离细胞,能获得较为纯化的hMSCs,可为培养hMSCs提供稳定的分离方法。
     第二部分低氧环境对人骨髓间充质干细胞生物学行为的影响
     目的建立人骨髓间充质干细胞(human mesenchymal stem cells ,hMSCs)体外低氧培养及向成骨细胞分化的生物模型,研究其生物学特征,为骨组织工程提供实验依据。
     方法采用人淋巴细胞分离液分离健康成人骨髓中的间充质干细胞。取第3代细胞,根据培养氧浓度及培养基类型分为4组:正常氧组(20%O2加DMEM-LG)、低氧组(1%O2加DMEM-LG)、正常氧成骨诱导组(20%O2加条件培养基)及低氧成骨诱导组(1%O2加条件培养基),通过细胞计数、细胞增殖测定(MTT法)、增殖细胞核抗原(PCNA)检测、凋亡蛋白及集落形成检测,观察低氧对hMSCs增殖凋亡的影响;RT-PCR检测、ALP活性检测及茜素红染色,研究低氧环境对hMSCs成骨分化的影响;检测Fibronectin、Laminin和CollagenⅠ蛋白表达,观察低氧对hMSCs细胞外基质分泌的影响。
     结果与正常氧组相比,低氧组中的hMSCs有较高的增殖速度,生长差异显著(P<0.05);低氧组中PCNA染色细胞增多,高于正常氧组(P<0.05);低氧组中凋亡细胞减少,抗凋亡蛋白bcl-2表达增多(P<0.05);低氧组中的hMSCs生成的集落逐渐增多,明显高于正常氧组。低氧成骨诱导组培养的hMSC碱性磷酸酶活性逐渐增高,但明显低于正常氧成骨诱导组,两者有明显的差异(P<0.01);定量RT-PCR检测,正常氧成骨诱导组ALP、OC、COL1A2及BSP mRNA表达量明显增加,ALP、OC、COL1A2及BSP mRNA明显增高(P<0.01);培养4周后,与其它三组相比,正常氧成骨诱导组可见到明显的钙盐沉积和染成红色的钙结节。免疫组织化学和Western blot检测,低氧组中FN和LA分泌增多(P<0.05),CollagenⅠ蛋白表达无显著差异(P<0.05)。
     结论低氧使hMSCs增殖率增加,集落形成能力增强,抑制成骨细胞分化,保持干细胞特征,促进hMSCs分泌细胞外基质。
     第三部分慢性低氧影响HIF-1α、SDF-1及VEGF165在hMSCs中的表达
     目的建立体外hMSCs低氧模型,观察慢性低氧对hMSCs表达HIF-1α(低氧诱导因子-1α)、SDF-1(基质细胞衍生因子-1)及VEGF165(血管内皮细胞生长因子)的影响,为hMSCs治疗缺氧性疾病提供实验依据。通过比较HIF-1α、SDF-1及VEGF165,探讨低氧抑制hMSCs成骨分化的机制。
     方法采用人淋巴细胞分离液分离健康成人骨髓中的间充质干细胞。取第3代细胞,根据培养氧浓度及培养基类型分为4组:正常氧(n组)(20%O2加DMEM-LG)、低氧组(h组)(1%O2加DMEM-LG)、正常氧成骨诱导组(nos组)(20%O2加条件培养基)及低氧成骨诱导组(hos组)(1%O2加条件培养基),运用免疫组织化学检测HIF-1α、SDF-1及VEGF蛋白表达, western blot检测HIF-1α及SDF-1蛋白表达,定量RT-PCR检测HIF-1α、SDF-1及VEGF165 mRNA表达。
     结果n组和nos组hMSCs细胞质内HIF-1α染色阳性,h组和hos组hMSCs胞质及胞核内均强阳性染色。低氧条件下,SDF-1染色细胞数目明显增多,VEGF染色呈阳性。hMSCs在慢性低氧的条件下,h组和hos组HIF-1α、SDF-1及VEGF165 mRNA表达水平明显增高,与n组相比,两者有显著差异(P<0.05) ,而n组和nos组,HIF-1αmRNA表达始终处于较低的水平(P<0.05),nos组SDF-1 mRNA表达量持续增高,14天时达到峰值,随后开始降低(P<0.05),n组、h组、nos组及hos组随着时间的延长,VEGF165 mRNA表达均逐渐增多,但h组及hos组VEGF mRNA表达始终高于n组和nos组,nos组14天时VEGF1165 mRNA表达量快速增加达到峰值,随后开始降低(P<0.05)。western blot检测,h组和hos组可见HIF-1α及SDF-1蛋白表达增多,明显高于n组和nos组(P<0.05),nos组7天后SDF-1蛋白表达量明显增加(P<0.05),14天后减少。
     结论SDF-1和VEGF在正常氧条件下有协同成骨的作用,低氧条件下HIF-1虽然刺激SDF-1和VEGF分泌增多,但抑制SDF-1和VEGF协同成骨的作用,SDF-1和VEGF分泌还存在着除HIF-1调控以外的途径。
Part One Proliferation and identification of human bone marrow mesenchymal stem cells in vitro
     Objective To supply seed cells for tissue engineering, the human bone marrow- derived mesenchymal stem cells (hMSCs) were isolated from adult human whose bone marrow is normal and cultured in vitro.
     Methods Bone marrow was obtained by aspirated in the posterior superior iliac spine from three adult patients whose marrow is normal. Cells were isolated by gradient centrifugation,.the cell morphologic features and growth status were observed by lightmicroscope. The cell surface antigen and osteo-differntiation were used to identify hMSCs.
     Results Isolated cells grow adherence,and the cells exhibited dominant growth of spiral type. Immunocytochemistry analysis demonstrated hMSCs were uniformly positive for CD44 and CD71,while negative for CD34 and CD45,which indicated no contamination of hematopoietic cells,the cell surface marker is consistent with character of mesenchymal stem cells.Isolated cells were induced by bone formation condition medium,2 weeks later cells alkali phosphatase were stained positively,4 weeks later calcium nodule could be found,all of these data showed that isolated cells were human mesenchymal stem cells.
     Conclusion Cells were isolated by human lymphocyte separating medium,could harvest more purity of hMSCs,which supply stable separation method for hMSCs.
     Part Two Effection of hypoxia on biological behavior of human bone marrow mesenchymal stem cells
     Objective To establish a model of hypoxia culture and osteoblast differentiation in vitro, and investigate the biological characteristics of cultured adult mesenchymal stem cells(MSCs) in hypoxia. That will be experimental basis of MSCs used as the functional cells in bone tissue engineering.
     Methods Bone marrow was obtained by aspirated in the posterior superior iliac spine from three adult patients whose marrow is normal. Cells were isolated by gradient centrifugation and grown to confluence.The second passages According to the oxygen concentrations and nutrient mediums, was categorized into four groups: normoxic group ( 20 % O2, DMEM-LG), hypoxic group(1%O2, DMEM-LG), normoxic osteoblast induction group(20%O2 , conditioned medium), hypoxic osteoblast induction group(1%O2, conditioned medium).Proliferations and apoptosis of all the cultured cells were observed by an inverted phase contrast microscope,growth curve,detection of PCNA,apoptosis proteins and Colony forming unit-fibroblast (CFU-F); effection of osteo-differentiation of hMSCs were observed by real-time RT-PCR、activities of alkaline phosphatase and Alizarin red staining;Detected expression of Fibronectin、Laminin and CollagenⅠproteins,was used to view extracellular matrix secretary in low oxygen.
     Results the cells cultured in hypoxic group proliferated continuously throughout the culture period, while maintaining significantly higher colony-forming unit capabilities than hMSC cultured at normoxic oxygen(P<0.05);In low oxygen groups,apoptosis cells decreased,and anti-apoptosis protein bcl-1 increased(P<0.05). Upon induction, hMSCs of hypoxic group expressed less levels of osteoblast than normoxic osteoblast induction (P<0.01); Immunocytochemistry and Western blot detected,expression of FN and LA proteins increased(P<0.05),no signify -cant difference in expression of CollagenⅠ(P>0.05)
     Conclusion hMSCs maintained the ability to thrive in prolonged hypoxic conditions suggesting that hypoxia may be an essential element of the in vivo hMSCs niche.chronic hypoxia is a key parameter that infuences the in vitro biological behavior of hMSCs.
     Part Three Effects of chronic hypoxia on the expression of HIF-1α、SDF-1 and VEGF165 in human bone marrow mesenchymal stem cells
     Objective To establish a model of chronic hypoxia in vitro culture , and observe the epression of HIF-1α、SDF-1 and VEGF165 in cultured adult human bone marrow stromal cells(hMSCs) ,That will be experimental basis of MSCs used as the functional cells for hypoxic disease therapy;by comparision of expression of hypoxia-inducible factor-1α(HIF-1α)、stomal cell- derived factor (SDF-1) and Vascular Endothelial Growth Factor 165(VEGF165 ) proteins,to document mechanism of hMSCs osteo-differentiation.
     Methods Bone marrow was obtained by aspirated in the posterior superior iliac spine from three adult patients whose marrow is normal. Cells were isolated by gradient centrifugation and grown to confluence.The second passages According to the oxygen concentrations and nutrient mediums, was categorized into four groups: normoxic group ( 20 % O2, DMEM-LG), hypoxic group(1%O2, DMEM-LG), normoxic osteoblast induction group(20%O2 , conditioned medium), hypoxic osteoblast induction group(1%O2, conditioned medium ) .HIF-1α、SDF-1 and VEGF proteins were measured by immuocytochemistry,Western-blot was used to detect HIF-1αand SDF-1 protein. HIF-1α、SDF-1 and VEGF165 mRNA were detected by real-time RT-PCR.
     Results cytoplasm of hMSCs of n group and nos group were stained by HIF-1αpositive,and strong positive staining were found in cytoplasm and cell nuclei of hMSCs in h group and hos group. Under chronic hypoxic condition,hMSC expressed mRNA of HIF-1α、SDF-1 and VEGF165 more strongly than that under normal oxygen condition(P<0.05),expression of HIF-1αmRNA in n group and nos group were in low level(P<0.05), Quantity of SDF-1 mRNA and VEGF165 mRNA increased with time,reached the peak maximium value at fourteenth days, then decreaed quickly(P<0.05).Western blot detected that,expression of HIF-1αand SDF-1 proteins in h and hos group were more than proteins in n and nos group(P<0.05),SDF-1 proteins in nos group increased greatly 7 days later(P<0.05),then decresed after 14 days.
     Conclusions in normoxia condition,SDF-1 and VEGF play a role in osteogenic capacity of hMSCs,although HIF-1 stimulate SDF-1 and VEGF secretion, inhibit function of SDF-1 and VEGF in osteo-differentiatio of hMSCs, perhaps it has another pathway for regulation of SDF-1 and VEGF secretion.
引文
[1] Wei G,Schubiger G,Harder F,et al.Stem cell plasticity in mammals and transdetermmation in Drosophica:common themes.Stem Cells,2000,18(6):409-414
    [2] Thomoson JA,ItskonitzEldor J,Shapiro SS,et al.Embryonic stem cell in ES derivd from human blasto-cysts.Science,1998,282:1145-1147
    [3] Maniatopoulos C,Sodek J,Melcher AH. Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats. Cell Tissue Res,1988,254 (2):317-330.
    [4] Treena Livingston Arinzeh, PhD, Susan J. Peter, PhD, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect.J Bone Joint Surg,2003,85A:1927-1935
    [5] Bruder SP,Kurth AA,Shea M,et al.Bone regeneration by implantation of purified, culture-expanded human mesenchymal stem cells. J Orthop Res. 1998;16(2):155-62
    [6] Lennon DP,Edmison JM,Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen osteochondrogenosis. J Cell Physiol,2001;187(3):345-355.
    [7] Friedenstein S J,Gorskaja J F,Kulagina N N.Fibroblast precursors in normal and irradiated mouse hematopoietic organs.Exp Hematol,1976,4:267-274.
    [8] Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells.Science,1999,284:143-147
    [9] Kadiyala S,Young RG,Thede MA,et al.Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vitro and in vive.Cell Transplantation,1997, 6:125-130
    [10] Owen M.Marrow stromal stem cells.J Cell Sci Suppl,1988,10:63-76
    [11] Conget PA,Minguell JJ.Phenotypical and functional properties of human bone marrow mesenchymal progenitor cell.J Cell Physiol,1999,18(1):67-73.
    [12] Chegini N,Rong H,Rennett B,et al.Peritonnal fluid cytokine and eicosunoid levers and their relation to the incidence of peritoneal adhesion.J Soc Gynecol Invest, 1999,6(3):153-56
    [13] Watt FM. Stem cell fate and patterning in the mammalian epidermis.Curr Opin Gen Dev,2001,11: 410– 417
    [14] Heath CA. Cells for Tissue Engineering.TIBTECH ,2000,18: 17-19
    [15] Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues.Science,1997, 276:71-74
    [16] Lisignoli G,Remiddi G,Cattini L,et al. An elevated number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure. Connect Tissue Res,2001,42(1):49-58.
    [17] Jones EA,Kinsey SE,English A,et al. Isolation and characterization of bone marrow multipotentialmesenchymal progenitor cells. Arthritis Rheum.2002;46:3349-3360.
    [18] Majumdar MK,Banks V,Peluso DP,et al. Isolation,characterization,and chondrogenic potential of human bone marrow-derived multipotential stromal cells.Cel physiol.2000;185(1);98-106.
    [19] Mudchler GF,Boehm C,Easley K,et al:Aspeiration to obtain osteoblast prgenytor cells from human bone marrow:the influence of aspiration volume.J Bone Joint Surg(Am).1997;79(11):1699-1709.
    [20] Colter DC, Sekiya I, Prockop DJ. Identification of a subpopulation of rapidly selfrenewing and multipotential adult stem cells in colonies of human marrow stromal cells.Proc Natl Acad Sci,2001,98: 7841 -7845
    [21] Shur I,Marom R,Lokiec F,et al. Identification of cultured progenitor cells from human marrow stroma. J Cell Biochem.2002,87:51-57.
    [22] Bruder SP, Kraus KH, Goldberg VM, Kadiyala S. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects.J Bone Joint Surg ,1998.80: 985– 996
    [23] Hung S, Chen N, Hsieh S,et al. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells,2002,20: 249– 258
    [24] Djouad F,Bony C,Haupl T,et al.Transcriptional profiles discriminate bone marrow-derived and synovium-derived mesenchymal stem cells. Arthritis Res Ther,2005,7(6):R 1304-15.
    [25] Jiang YH, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du JB, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult bone marrow.Nature,2002,418: 41–49
    [26] Reyes M, Verfaillie CM. Characterization of multipotent adult progenitor cells, a subpopulation of mesenchymal stem cells. Ann NY Acad Sci,2001,938: 231– 235
    [27] Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Phys ,2001.189: 54–63
    [28] Bonnet D. Biology of human bone marrow stem cells. Clin Exp Med,2003,3: 140– 149
    [29] Sekiya I, Larson BL, Smith JR, Pochampally R, Cui J, Prockop DJ.. Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality.Stem Cells,2002a,20: 530– 541
    [30] Jaiswal N, Haynesworth SE, Caplan AI,et al. Osteogenic differentiation of purified,culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem,1997;64: 295–312
    [31] Mackay AM, Beck SC, Murphy JM, et al.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow.Tissue Eng,1998,4: 415– 428
    [1] Lash GE, Fitzpatrick TE, Graham CH. Effect of Hypoxia on Cellular Adhesion to Vitronectin and Fibronectin.Biochem Bioph Res Co,2001,287:622-629
    [2] Packer L, Fuehr K. Low Oxygen Concentrations Extends the Lifespan of Cultured Human Diploid Cells.Nature,1977,267: 423-425
    [3] Loike JD, Cao L, Brett J, Ogawa S, et al.Hypoxia induces glucosetransporter expression in endothelial cells.Am J Phys1992,263:C326-C333
    [4] Carmeliet P, Dor Y, Herbert J,et al.Role of HIF-1 in hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis,Nature,1998,394: 485– 490
    [5] Minchenko A, Salceda S, Bauer T, Caro J. Hypoxia Regulatory Elements of the Human Vascular Endothelial Growth Factor Gene.Cell Mol Biol Res,1994,40:35-39
    [6] Horino Y, Takahashi S, Miura T,et al. Prolonged hypoxia accelerates the Posttranscriptional process of collagen synthesis in cultured fibroblasts.Life Sci,2002,71: 3031-3045
    [7] Lennon DP, Edmison JM, and Caplan AI.Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis.J Cell Phys,2001,187:345-355
    [8] Cipolleschi MG, Sbarba PD, Olivotto M. The role of hypoxia in the maintenance of hematopoietic stem cells.Blood,1993,82:2031-2037
    [9] Ivanovic Z, Belloc F, Faucher J,et al. Hypoxia maintains and interleukin-3 reduces the pre-colony forming cell potential of dividing CD34+ murine bone marrow cells. Exp Hematol,2002,30: 67-73
    [10] Annabi B, Lee Y, Turcotte S.et al.Béliveau R.Hypoxia promotes murine bone marrow-derived stromal cell migration and tube formation.Stem Cells,2003,21:337 -347
    [11] Treena Livingston Arinzeh, PhD, Susan J. Peter, PhD, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect.J Bone Joint Surg,2003,85A:1927-1935
    [12] Rozen N, Lewinson D, Bick T, et al. Role of bone regeneration and turnover modulators in control of fracture. Crit Rev Eukaryot Gene Expr. 2007;17(3):197-213.
    [13] Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg Am. 2004; 86 (6):1153-60.
    [14] Cui Q, Xiao Z, Li X, Saleh KJ, Balian G. Use of genetically engineered bone-marrow stem cells to treat femoral defects: an experimental study. J Bone Joint Surg Am. 2006; 88 Suppl 3:167-72.
    [15] Thomas J. O’Neill, IV, Brian R. Wamhoff, Gary K. Owens and Thomas C. Skalak Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without transdifferentiation into endothelial cells. Circ Res. 2005; 97: 1027–1035.
    [16] R Mazhari, JM Hare. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med (2007) 4: S21-S26
    [17] ERNESTINA SCHIPANI.Hypoxia and HIF-1αin Chondrogenesis.Annals of the New York Academy of Sciences,2006,1068 (1): 66–73
    [18] Deren JA, Kaplan F,Brighton CT. Alkaline phosphatase production by periosteai cells at various oxygen tensions in vitro. Clin Orthop,1990,(252):307-312.
    [19] Studer Lorenz. Enhanced proliferation, survival,and dopaminergic differentia -tion of CNS precursors in lowered oxygen. J Neurosciencce,2000,20:7377-7383
    [20] Ivanovic Z, Bartolozzi B, Bernabei PA, Cipolleschi MG, Rovida E, Milenkovic P, Praloran V, Sbarba PD. 2000a. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors, Br J Hemat 108: 424– 429
    [21] Desplat V, Faucher J, Mahon FX, Sbarba PD, Praloran V, Ivanovic Z. 2002. Hypoxia Modifies Proliferation and Differentiation of CD34+ CML Cells, Stem Cells,20:347 -354
    [22] Y. Miura, Z. Gao, M. Miura, et al Mesenchymal Stem Cell-Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor Resource.Stem Cells, 2006, 24(11): 2428 - 2436.
    [23] Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007; 25(9): 2363-70.
    [24] Bruder SP, Jaiswal N, Haynesworth SE.. Growth Kinetics, Self-Renewal, and the Osteogenic Potential of Purified Human Mesenchymal Stem Cells During Extensiv -e Subcultivation and Following Cryopreservation, J Cell Biochem 1997,64: 278-294
    [25] Tremain N, Korkko J, Ibberson D,etal. MicroSAGE analysis of 2,353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages, Stem Cells 2001.,19: 408-418
    [26] Zipori D.. Mesenchymal stem cells; harnessing cell plasticity to tissue and organ repair, Blood Cells, Mol Dis 2004,33: 211-215
    [27] Pittenger MF, Mackay AM, Beck SC,etal Multilineage potential of adult human mesenchymal stem cells, Science 1999,284: 143-147
    [28] Chen L,T Fink,et al.Optimized chondrogenesis of ATCD5 cells through sequential regulation of oxygen conditions.Tissue Eng,2006,12(3):559-567
    [29] Muguruma Y,Yahata T,Miyatake H,et al.Reconstitution of the functional human hematopoietic microenvironment derived from human mesenchymal stem cells in the murine bone marrow compartment.Blood,2006,107(5):1878-1887.
    [30] PARK J H,PARK B H,KIM H K,et al.Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells[J].Mol cell endocrinol,2002,192(1/2):197-203
    [31] GIANLUCA D IPPOLITO,SYLMA DIABIRA,GUY A.Howard Bernard A. Roos ,et al.Low oxygen tension inhibits osteogenic differenti ation and enhances stemness of human MIAMI cells[J].Bone,2006,39(5):513-522.
    [32] GRAYSON W L,ZHAO F,IZADPANH R,et al.Effects of hypoxia on human mesenchymal stem cell expansion and plasticity in 3D constructs[J].J Cell Physiol 2006, 207(2):331-339
    [33] Robins JC, Akeno N, Mukherjee A, et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone,2005,37(3):313–322.
    [34] Schofield KP, Humphries M, de Wynter E, Testa N, Gallagher J. The effect ofα4β1 integrin-binding sequences of fibronectin on growth of cells from human hematopoietic progenitors. Blood. 1998;91:3230-3238.
    [35] Schofield KP, Rushton G, Humphries MJ, Dexter TM, Gallagher JT. Influence of interleukin-3 and other growth factors ofα4β1integrin-mediated adhesion and migration of human hematopoietic progenitor cells. Blood. 1997;90:1858-1866.
    [36] Friedrich C, Cybulsky MI, Gutie′rrez-Ramos JC. Vascular cell adhesion molecule -1 expression by hematopoiesis-supporting stromal cells is not essential for lymphoid or myeloid differentiation in vivo or vitro. Eur J Immunol. 1996;26:2773 -2780.
    [37] Yu-Chen Gu, Jarkko Kortesmaa, Karl Tryggvason,et al.Laminin isoform–specific promotion of adhesion and migration of human bone marrow progenitor cells. blood, 2003,101(2):877-885
    [38] KennethMY.Fibronectin peptides in cell migration and wound repair.J Clini Invest,2000,105 (11):1507-1509
    [1] Iwase T,Nagaya N,Fujii T,et al.Comparison of angiogenic potency between mesenchymal stem cells and mononuclear cells in a rat model of hindlimb ischemia.Cardiovasc Res,2005 ,66:543-551
    [2] Thomas J. O’Neill, IV, Brian R. Wamhoff, Gary K. Owens and Thomas C. Skalak Mobilization of bone marrow-derived cells enhances the angiogenic response to hypoxia without trans- differentiation into endothelial cells. Circ Res. 2005; 97: 1027–1035.
    [3] R Mazhari, JM Hare. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med (2007) 4: S21-S26
    [4] Komatsu D E,Hadjiargyrou M.Activation of the transcription factor HIF-1 and its target genes,VEGF,HO-1,iNOs,during fracture repair.Bone,2004,34(4): 680-688.
    [5] Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, Capla JM, Galiano RD, Levine JP, Gurtner GC. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med. 2004; 10(8):858-64
    [6] Nagasawa T,Hirota S,Tachibana K,et al.Defects of B-cell lymphoposis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Natur,1996,382(6592):635-638.
    [7] Campbell JJ,Hedrick J,Zlotnik A,et al.Chemokine and the arrest of lymphocytes rolling under flow condition. Science, 1998,279(5349):381-383.
    [8] Bleul CC, Fuhlbrigge RC, Casasnovas JM, et al. A highly effi-cacious lymphocyte chemoattractant,stromal cell-derived factor-1 (SDF-1).J Exp Med,1996,184(3): 1101- 1109.
    [9] Kortesidis A, Zannettino A, Isenmann S, Shi S, Lapidot T, Gronthos S. Stromal-derived factor-1 promotes the growth, survival, and development of human bone marrow stromal stem cells. Blood. 2005; 105(10):3793-801.
    [10] Hubert Mayer, Helge Bertram,Werner Lindenmaier,et al.Vascular Endothelial Growth Factor (VEGF-A) Expression in Human Mesenchymal Stem Cells:Autocrine and Paracrine Role on Osteoblastic and Endothelial Differentiation .J Cel Biochem, 2005,95:827–839
    [11] Bunn H, Poyton R. Oxygen sensing and molecular adaptation to hypoxia. Physiol Rev 1996;76:839–85.
    [12] Liu L, Simon M. Regulation of transcription and translation by hypoxia.Cancer Biol Ther 2004;3:492–7.
    [13] Semenza G. Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003;3:721–32.
    [14] Giaccia A, Siim B, Johnson R. HIF-1 as a target for drug development. Nat Rev Drug Discov 2003;2:803–11.
    [15] Kaelin Jr WG. How oxygen makes its presence felt. Genes Dev 2002; 16:1441–5.
    [16] Jaakkola P, Mole D, Tian Y, Wilson M, Gielbert J, Gakell S,et al. Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001;292:468–72.
    [17] Min JH, Yang H, Ivan M, Gertler F, Kaelin Jr WG, Pavletich NP.Structure of an HIF-1alpha-pVHL complex: hydroxyproline recognition in signaling. Science 2002; 296:1886–9.
    [18] Chan DA, Suthphin PD, Denko NC, Giaccia AJ. Role of prolyl hydroxyl -lation in oncogenically stabilized hyoxia-inducible factor1alpha. J Biol Chem 2002;277: 40112–7.
    [19] Ohh M, Kaelin W. The von Hippel–Lindau tumor suppressor protein:new perspectives. Mol Med Today 1999;5:257–63.
    [20] Kallio PJ, Okamoto K, O’Brien S, Carrero P, Makimo Y, Tanaka H,et al. Signal transduction in hypoxic cells: inducible nuclear translocation and recruitment of the CBP/p300 coactivator by the hypoxiaindu cible factor-1alpha. EMBO J 1998;17(22):6573–86.
    [21] Leo C, Giaccia A, Denko N. The hypoxic tumor microenvironment and gene expression. Semin Radiat Oncol 2004;14:207–14.
    [22] Bishop T, Lau K, Epstein A, Kim S, Jiang M, O’Rourke D, et al.Genetic analysis of pathways regulated by the von Hippel–Lindau tumor suppressor in Caenorhabditis elegans. PLoS Biol 2004;2:e289.
    [23] Magda Kucia,Janina Ratajczak,Ryan Reca,Anna Janowska-Wieczorek,and Mariusz Z. Ratajczak.Tissue-specific muscle, neural and liver stem/ progenitor cells reside in the bone marrow, respond to an SDF-1 gradient and are mobilized into peripheral blood during stress and tissue injury.Blood Cells, Molecules, and Diseases 32 (2004) 52-57
    [24] Lataillade, J.J., D. Clay, P. Bourin, F. Herodin, C. Dupuy, C. Jasmin, and M.C.Bousse-Kerdiles. Stromal cell-derived factor 1 regulates primitive hematopoiesis by suppressing apoptosis and by promoting G(0)/G(1) transition in CD34() cells: evidence for an autocrine/paracrine mechanism.blood,2002,99: 1117-11129
    [25] Hernandez-Lopez, C., A. Varas, R. Sacedon, E. Jimenez, J.J. Munoz, A.G. Zapata,and A. Vicente. Stromal cell-derived factor 1/CXCR4 signaling is critical for early human T-cell development. Blood,2002,99:546-554.
    [26] Broxmeyer, H.E., C.H. Kim, S.H. Cooper, G. Hangoc, R. Hromas, and L.M. Pelus. Effects of CC, CXC, C, and CX3C chemokines on proliferation of myeloid progenitor cells, and insights into SDF-1-induced chemotaxis of progenitors. Ann. NY Acad. Sci,1999,872:142-162.
    [27] Hamada T, Mohle R, Hesselgesser J, et al.Transendothelial migration of megakaryocytes in response to stromal cell-derived factor 1(SDF-1).J Exp Med,1998, 188(3):539-548.
    [28] Liu LX,LuH,Luo Y,et al.Stabilization of vascular endothelial growth factor mRNA by hypoxia inducible factor 1[J].Biochem Biophys ReComm un,2002,291(4):908-914.
    [29] Forsythe JA,Jiang BH,Iyer NV,et al.Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol,1996,16(9): 4604-4613.
    [30] Frank Bautz,Shahin Rafii, Lothar Kanz, Robert M?hle Expression and secretion of vascular endothelial growth factor-A by cytokine- stimulated hematopoietic progenitor cells:Possible role in the hematopoietic microenvironment Experimental Hematology 28 (2000) 700–706
    [31] Y eung-Jen Chen a,Tilmann Wurtz b, Ching-Jen Wang c, Yur-Ren Kuo d, Kuender D. Yang e,Hue-Chen Huang e,Feng-Sheng Wang e.Recruitment of mesenchymal stem cells and expression of TGF-b1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats.Journal of Orthopaedic Research,22 (2004):526–534.
    [32] Hung SC, Pochampally RR, Chen SC, Hsu SC, Prockop DJ. Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells. 2007; 25(9):2363-70.
    [1] Prockop DJ. Marrow stromal cells as stem cells for non-hematopoietic tissues. Science 1997;276:71–74.
    [2] Bianco P, Riminucci M, Gronthos S et al. Bone marrow stromal stem cells: Nature,biology, and potential applications. STEM CELLS 2001;19:180–192.
    [3] Phinney DG. Building a consensus regarding the nature and origin of mesenchymal stem cells. J Cell Biochem Suppl 2002;38:7–12.
    [4] Dennis JE, Merriam A, Awadallah A et al. A quadri-potential mesenchymal progenitor cell isolated from the marrow of an adult mouse.J Bone Miner Res 1999;14:700–709.
    [5] Pittenger MF, MacKay AM, Beck SC et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143–147.
    [6] Caplan AI. The mesengenic process. Clin Plast Surg 1994;21:429–435.
    [7] Dominici M, Le Blank K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315–317.
    [8] Williams JT, Southerland SS, Souza J et al. Cells isolated from adult human skeletal musclecapable of differentiating into multiple mesodermal phenotypes. Am Surg 1999;65:22–26.
    [9] Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng 2001;7:211–228
    [10] Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000;109:235–242.
    [11] De Bari C, Dell’Accio F, Tylzanowski P et al. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 2001;44:1928–1942.
    [12] Kuznetsov SA, Mankani MH, Gronthos S et al. Circulating skeletal stem cells. J Cell Biol 2001;153:1133–1140.
    [13] Gronthos S, Mankani M, Brahim J et al. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 2000;97:13625–13630.
    [14] In’t Anker PS, Scherion SA, Kleijburg-van der Keur C et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003;102:1548–1549.
    [15] Noort WA, Kruisselbrink AB, in’t Anker PS et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+cells in NOD/SCID mice. Exp Hematol 2002; 30:870–878.
    [16] Campagnoli C, Roberts IA, Kumar S et al. Identification of mesenchymal stem/ progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396–3402.
    [17] Fan CG, Tang FW, Zhang QJ et al. Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 2005;14:311–321.
    [18] Young HE, Mancini ML, Wright RP et al. Mesenchymal stem cells reside within the connective tissues of many organs. Dev Dyn 1995;202:137–144.
    [19] Kuznetsov SA, Krebsbach PH, Satomura K et al. Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res 1997;12:1335–13457
    [20] Phinney DG, Kopen G, Righter W et al. Donor variation in the growth properties and osteogenic potential of human marrow stromal cells.J Cell Biochem 1999; 75: 424–436.
    [21] Muraglia A, Cancedda R, Quarto R. Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model. J Cell Sci 2000;113:1161–1166.
    [22] Simmons PJ, Levesque JP, Zannettino AC. Adhesion molecules in haemopoiesis. Baillieres Clin Heamatol 1997;10:485–505.
    [23] Majumdar MK, Theide MA, Haynesworth SE et al. Human marrowderived mesenchymal stem cells (MSCs) express hematopoietic cytokines and support long-term hematopoie -sis when differentiated toward stromal and osteogenic lineages. J Hematother Stem Cell Res 2000;9: 841–848.
    [24] Johnson A, Dorshkind K. Stromal cells in myeloid and lymphoid long-term bone marrow culturescan support multiple hemopoietic lineages and modulate their production of hemopoietic growth factors.Blood 1986;68:1348–1354.
    [25] Deryugina EI, Muller-Sieburg CE. Stromal cells in long-term cultures:Keys to the elucidation of hematopoietic development? Crit Rev Immunol 1993;13:115–150.
    [26] Tondreau T, Meuleman N, Delforge A et al. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: Proliferation, Oct4 expression, and plasticity. STEM CELLS 2005;23:1105–1112.
    [27] Anjos-Afonso F, Bonnet D. Nonhematopoietic/endothelial SSEA-1 cells define the most primitive progenitors in the adult murine bone marrow mesenchymal compartment. Blood 2007;109: 1298–1306.
    [28] Gang EJ, Bosnakovski D, Figueiredo CA et al. SSEA-4 identified mesenchymal stem cells from bone marrow. Blood 2007;109:1743–1751.
    [29] Quirici N, Soligo D, Bossolasco P et al. Isolation of bone marrow mesenchymal stem cells by anti-nerve growth factor receptor antibodies.Exp Hematol 2002; 30: 783–791.
    [30] Buhring H-J, Battula VL, Treml S et al. Novel markers for the prospective isolation of human MSC. Ann N Y Acad Sci 2007;1106:262–271.
    [31] Shi S, Gronthos S. Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J Bone Miner Res 2003;18:696–704.
    [32] Horwitz EM, Gordon PL, Koo WK et al. Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc Natl Acad Sci USA 2002; 99:8932– 8937.
    [33] Ortiz LA, Gambelli F, McBride C et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci 2003; 100:8407-8411.
    [34] Ortiz LA, DuTreil M, Fattman C et al. Interleukin 1 receptor antagonist mediates the anti-inflammatory and anti-fibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007;104:11002–11007.
    [35] Lee RH, Seo MJ, Reger RL et al. Multipotent stromal cells from human marrow home to and promote repair of pancreatic islets and renal glomeruli in diabetic pancreatic islets and renal glomeruli in diabetic NOD/scid mice. Proc Natl Acad Sci U S A 2006;103:17438-17443.
    [36] Ringden O, Uzunel M, Rasmusson L et al. Mesenchymal stem cells for the treatment of therapy-resistant graft-versus-host disease. Transplantation 2006;81:1390–1397.
    [37] Minguell JJ, Erices A. Mesenchymal stem cells and the treatment of cardiac disease. Exp Biol Med (Maywood) 2006;231:39–49.
    [38] Phinney DG, Isakova I. Plasticity and therapeutic potential of mesenchymal stem cells in thenervous system. Curr Pharm Des 2005;11:1255–1265.
    [39] Iso Y, Spees JL, Serrano C et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007;354:700–706.
    [40] Prockop DJ.“Stemness”does not explain the repair of many tissues by mesenchymal stem/multipotent stromal cells (MSCs). Clin Pharmacol Ther 2007;82: 241–243.
    [41] Tremain N, Korrko J, Kopen GC et al. MicroSAGE analysis of 2353 expressed genes in a single cell-derived colony of undifferentiated human mesenchymal stem cells reveals mRNAs of multiple cell lineages.STEM CELLS 2001;19:408–418.
    [42] Phinney DG, Hill K, Michelson C et al. Biological activities encoded by the murine mesenchymal stem cell transcriptome provide a basis for their developmental plasticity and broad clinical efficacy. STEM CELLS 2006;24:186–198.
    [43] Hattori K, Dias S, Heissig B et al. Vascular endothelial growth factor and angiopoietin-1 stimulate postnatal hematopoiesis by recruitment of vasculogenic and hematopoietic stem cells. J Exp Med 2001;193:1005–1014.
    [44] Matsuda H, Coughlin MD, Bienestock J et al. Nerve growth factor promotes human hematopoietic colony growth and differentiation. Proc Natl Acad Sci U S A 1988; 85:6508–6512.
    [45] Yang X, Tare RS, Partridge KA et al. Induction of human osteoprogenitor chemota -xis, proliferation, differentiation and bone formation by osteoblast stimulating factor-1/pleiotrophin: Osteoconductive biomimetic scaffolds for tissue engineering. J Bone Miner Res 2003;18:47–57.
    [46] Lorenzo JA, Naprta A, Rao Y et al. Mice lacking the type I interleukin-1 receptor do not lose bone mass after ovariectomy. Endocrinology 1998; 139: 3022 -3025.
    [47] Mahmood A, Lu D, Chopp M. Marrow stromal cell transplantation after traumatic brain injury promotes cellular proliferation within the brain. Neurosurgery 2004; 55:1185–1193.
    [48] Crigler L, Robey RC, Asawachaicham A et al. Human mesenchymal stem cell subpopula -tions express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 2006;198:54–64.
    [49] Munoz JR, Stoutenger BR, Robinson AP et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci U S A 2005;102:18171–18176.
    [50] Shyu KG, Wang BW, Hung HF et al. Mesenchymal stem cells are superior to angiogenic growth factor genes for improving myocardial performance in the mouse model of acute myocardial infarction.J Biomed Sci 2006;13:47–58.
    [51] Tang J, Xie Q, Pan G et al. Mesenchymal stem cells participate in angiogenesis and improve heart function in rat model of myocardial ischemia with reperfusion. Eur J Cardiothorac Surg2006;30:353–361.
    [52] Zwezdaryk KJ, Coffelt SB, Figueroa YG et al. Erythropoietin, a hypoxia-regulated factor, elicits a proangiogenic program in human mesenchymal stem cells. Exp Hematol 2007;35:640–652.
    [53] Zappia E, Casazza S, Pedemonte E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106:1755–1761.
    [54] Inoue Y, Iriyama A, Ueno S et al. Subretinal transplantation of bone marrow mesenchymal stem cells delays retinal degeneration in the RCS rat model of retinal degeneration. Exp Eye Res 2007;85:234–241.
    [55] Hung SC, Pochampally RR, Chen SC et al. Angiogenic effects of human multipotent stromal cells (MSCs). Conditioned medium activates the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogene -sis. STEM CELLS 2007;25: 2363–2370.
    [56] Acker H. PO2 chemoreception in arterial chemoreceptors.Ann. Rev Phys 1989;51: 835-844
    [57] Katz BZ, Zamir E, Bershadsky A,et al. Physical state of the extracellular matrix regulates the structure and molecular composition of cell-matrix adhesions.Mol Bio Cell 2000;11: 1047-1060
    [58] Goldberg MA, Schneider TJ. Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 1994;269: 4355-4359
    [59] Ladoux A, Frelin C. Hypoxia is a strong Inducer of Vascular Endothelial Growth Factor mRNA Expression in the Heart.Biochem Bioph Res Co 1993;195: 1005-1010
    [60] Iyer NV, Kotch LE, Agani F,et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α.Genes Dev 1998;12: 149-162
    [61] Goldberg MA, Dunning SP, Bunn HF. Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme protein.Science.1988;242: 1412– 1414
    [62] Ho VT, Bunn HF. 1996. Effects of transition metals on the expression of the erythr -opoietin gene:further evidence that the oxygen sensor is a heme protein, Biochem Bioph Res Co 223: 175–180
    [63] Wang GL, Semenza GL. Desferrioxamine induces erythropoietin gene expression and hypoxia inducible factor 1 DNA binding activity: implications for models of hypoxia signal Transduction. Blood 1993;82: 3610-3615
    [64] Gleadle JM, Ebert BL, Ratcliffe PJ. Diphenylene iodonium inhibits the induction of erythropoietin and other mammalian genes by hypoxia, Eur J Biochem. 1995b;234: 92-99
    [65] Cadenas E. Biochemistry of Oxygen Toxicity.Ann Rev Biochem 1989;58:79-110
    [66] Acker H. Cellular oxygen sensors.Ann. NY Acad Sci 1994a;718: 3-10
    [67] Acker H. Mechanisms and meaning of cellular oxygen sensing in the organism Resp Phys 1994b;95:1-10
    [68] G?rlach A, Holtermann G, Jelkmann W, et al.Photometric characteristics of haem proteins in erythropoietin-producing hepatoma cells(HepG2), Biochem J 1993;290: 771-776
    [69] Fandrey J, Seydel FP, Siegers CP, Jelkmann W. Role of Cytochrome P450 in the Control of the Production of Erythropoietin.Life Sci 1990;47: 127-134
    [70] Fandrey J, Frede S, Jelkmann W. Role of hydrogen peroxide in hypoxia–induced erythropoietin production, Biochem J 1994;303: 507– 510
    [71] Bunn HF, Poyton RO. Oxygen sensing and molecular adaptation to hypoxia, Phys Rev 1996;76:839 - 885
    [72] Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1.Ann Rev Cell Dev Biol 1999;15: 551–578
    [73] Chandel NS, Maltepe E, Goldwasser E,et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription.Proc Natl Acad Sci 1998;95: 11715-11720
    [74] Agani FH, Pichiule P, Chavez JC, LaManna JC. The role of mitochondria in the regulation of hypoxia-inducible factor 1 expression during hypoxia.J Biol Chem 2000;275:35863-35867
    [75] Wenger RH. Mammalian Oxygen Sensing, Signalling and Gene Regulation.J Exp Biol 2000;203: 1253-1263
    [76] Wang GL, Jiang B, Semenza GL. Effects of Protein Kinase and Phosphatase Inhibitors on Expression of Hypoxia-Inducible Factor-1.Biochem Bioph Res Co 1995b;216: 669 - 675
    [77] Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation.Mol Cell Biol 1992;12:5447-5454
    [78] Wang GL, Jiang B, Rue EA, Semenza GL. Hypoxia-inducible factor-1 is a basic-helixloop-helix-PAS heterodimer regulated by cellular O2 Tension, Proc Natl Acad Sci 1995a;92: 5510-5514
    [79] Semenza GL.Hypoxia-inducible factor 1:master regulator of O2 homeostasis. Curr Opin Gen Dev 1998;8: 88– 594
    [80] Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension.Am J Phys 1996; 271:C1172-C1180
    [81] Weiner CM, Booth G, Semenza GL.In vivo expression of mRNAs encoding hypoxia -inducible factor 1.Biochem Bioph Res Co 1996;225:485-488
    [82] Huang LE, Arany Z, Livingston DM, Bunn HF. Activation of hypoxia inducible transcription factor depends primarily upon redox-sensitive stabilization of itsαsubunit.J BiolChem 1996;271: 32253-32259
    [83] Huang LE, Gu J, Schau M, Bunn HF. Regulation of hypoxia inducible factor 1αis mediated by anO2-dependent degradation domain via the ubiquitin proteasome pathway, Proc Natl Acad Sci 1998;95:7987-7992
    [84] Wenger RH. 2000. Mammalian Oxygen Sensing, Signalling and Gene Regulation, J Exp Biol 203: 1253-1263
    [85] Ivan M, Kondo K, Yang H,et al. HIF-αtargeted for VHL-mediated destruction by proline hydroxylation:Implications for O2 Sensing.Science 2001;292:464-468
    [86] Fedele AO, Whitelaw ML, Peet DJ. Regulation of gene expression by the hypoxia inducible factors.Mol Interven 2002;2:229-243
    [87] Jiang BH, Zheng ZH, Leung SW, Roe R, Semenza GL. Transactivation and inhibitory domains of hypoxia-inducible factor 1 alpha. Modulation of transcriptional activity by oxygentension. J Biol Chem 1997;272: 19253-19260
    [88] Ramirez-Bergeron DL, Simon MC. Hypoxia-inducible factor and the development of stem cells of the cardiovascular system, Stem Cells 2001;19: 279-286
    [89] Desplat V, Faucher J, Mahon FX, et al. Hypoxia Modifies Proliferation and Differentiation of CD34+ CML Cells.Stem Cells 2002;20:347-354
    [90] Lash GE, Fitzpatrick TE, Graham CH. Effect of Hypoxia on Cellular Adhesion to Vitronectin and Fibronectin.Biochem Bioph Res Co 2001;287: 622-629
    [91] Iida T, Mine S, Fujimoto H, et al.Hypoxia-inducible factor-1αinduces cell cycle arrest of endothelial cells.Genes Cells 2002;7: 143-149
    [92] Carmeliet P, Dor Y, Herbert J,et al.Role of HIF-1 in hypoxia-mediated apoptosis, cell proliferation and tumor angiogenesis.Nature 1998;394:485-490
    [93] Iyer NV, Kotch LE, Agani F,et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α.Genes Dev 1998;12:149-162
    [94] Kotch LE, Iyer NV, Laughner E, Semenza GL. Defective vascularization of HIF-1αnull embryos is not associated with VEGF deficiency but with mesenchymal cell death.Dev Biol 1999;209: 254– 267
    [95] Lennon DP, Edmison JM, and Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis, J Cell Phys 2001;187:345-355
    [96] Packer L, Fuehr K. Low Oxygen Concentrations Extends the Lifespan of Cultured Human Diploid Cells.Nature 1977;267:423-425
    [97] Ma T, Yang ST, Kniss DA. Oxygen tension influences proliferation and differentia -tion in a tissue-engineered model of placental trophoblast cells.Tissue Eng 2001; 7:495-506
    [98] Steinbrech DS, Longaker MT, Mehrar BJ,et al. Fibroblast response to hypoxia: the relationshipbetween angiogenesis and matrix regulation.J Surg Res 1999;84: 127-133
    [99] Horino Y, Takahashi S, Miura T, Takahashi Y. Prolonged hypoxia accelerates the posttranscriptional process of collagen synthesis in cultured fibroblasts. Life Sci 2002; 71:3031 -3045
    [100] Kan C, Abe M, Yamanaka M, Ishikawa O. Hypoxia-induced increase of matrixmetallopr -oteinase-1 synthesis is not restored by reoxygenation in a three-dimensional culture of human dermal fibroblasts.J Dermatol Sci 2003;32:75-82
    [101] Bashan N, Burdett E, Hundal HS, Klip A. Regulation of glucose transport and GLUT 1 glucose transporter by O2 in muscle cells in culture.Am J Phys 1992;262:C682-690
    [102] Loike JD, Cao L, Brett J, et al. Hypoxia induces glucose transporter expression in endothelial cells.Am J Phys 1992;263:C326-C333
    [103] Graven KK, Troxler RF, Kornfeld H,et al. Regulation of endothelial cell glycerol -dehydes-3-phosphate dehydrogenase expression by hypoxia.J Biol Chem 1994;269: 24446-24453
    [104] Firth JD, Ebert BL, Pugh CW, Ratcliffe PJ. Oxygen-regulated control elements in the phosphoglycerate kinase 1 and Lactate Dehydrogenase A genes: Similarities with the Erythropoietin 3’Enhancer.Proc Natl Acad Sci 1994;91:6496-6500
    [105] Plas DR, Thompson CB. Cell Metabolism in the Regulation of Programmed Cell Death. Trends Endocrinol Metabol 2002;13: 74–77
    [106] Malhorta R, Lin Z, Vicenz C, Brosius FC. Hypoxia induces apoptosis via two independent pathways in jurkat cells: differential regulation by glucose.Am J Phys 2001;285:C1596-C1603
    [107] Hall PA, Watt FM. Stem cells: the generation and maintenance of cellular diversity,Development 1989;106: 619–633
    [108] Jones PH, Harper S, Watt FM. Stem cell patterning and fate in human epidermis. Cell 1995;80:83-93
    [109] Potten CS, Loeffler M. Stem cells attributes, cycles, spirals, pitfalls and uncertainties, lessons for and from the crypt.Development 1990;110: 1001-1020
    [110] Watt FM, Hogan BLM. Out of Eden: Stem cells and their niches.Science 2000; 287:1427-1430
    [111] Jensen UB, Lowell S, Watt FM. The spatial relationship between stem cells and their progeny in the basal layer of human epidermis: a new view based on whole-mount labeling and lineage analysis.Development 1999;126:2409-2418
    [112] Watt FM. Stem cell fate and patterning in the mammalian epidermis, Curr Opin Gen Dev 2001;11: 410– 417
    [113] Pfander D, Cramer T, Schipan E, Johnson RS. HIF-1αcontrols extracellular matrix synthesis by epiphyseal chondrocytes.J Cell Sci 2003;116: 1819-1826
    [114] Ivanovic Z, Bartolozzi B, Bernabei PA,et al. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committedprogenitors.Br J Hemat 2000a;108: 424-429
    [115] Desplat V, Faucher J, Mahon FX,et al. Hypoxia Modifies Proliferation and Differentiation of CD34+ CML Cells.Stem Cells 2002;20: 347-354
    [116] Caplan AI. Mesenchymal stem cells J Orthopaed Res 1991;9: 641-650
    [117] Baksh D, Davies JR, Zandstra PW. Adult human bone marrow-derived mesenchymal progenitor cells are capable of adhesion-independent survival and expansion, Exp Hematol 2003;31:723-732
    [118] D’Ipploito G, Diabira S, Howard GA,et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential.J Cell Sci 2004;117: 2971 -2981
    [119] Annabi B, Lee Y, Turcotte S,et al. Hypoxia promotes murine bone marrow-derived stromal cell migration and tube formation.Stem Cells 2003;21:337-347
    [120] Robins JC, Akeno N, Mukherjee A, et al. Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone 2005;37:313–22.
    [121]王庆德,杨述华,杨操等成人骨髓间充质干细胞体外低氧培养及生物学特征.中国修复重建外科杂志,2007,10(21):1128-32
    [122] D'Ippolito G, Diabira S, Howard GA,et al. Low oxygen tension inhibits osteogenic different -tiation and enhances stemness of human MIAMI cells. Bone. 2006; 39(3):513-22.
    [123] R Mazhari, JM Hare. Mechanisms of action of mesenchymal stem cells in cardiac repair:potential influences on the cardiac stem cell niche. Nat Clin Pract Cardiovasc Med ,2007,4 Suppl 1(S1): S21-S26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700