骨形态形成蛋白4对大鼠远端肺动脉平滑肌细胞内钙离子浓度影响及其机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     探讨骨形态形成蛋白4(BMP4)对大鼠远端肺动脉平滑肌细胞内钙离子浓度的影响及其机制,为进一步探究其在低氧性肺动脉高压(HPH)发病过程的可能作用与机制打下基础。
     研究内容和方法:
     一、BMP4对大鼠远端肺动脉平滑肌细胞内钙离子浓度的影响
     将200-300g雄性Wistar大鼠麻醉后,取出心肺组织,置于显微镜下,用显微镊和显微剪刀于显微镜下小心分离出远端(4-5级)肺动脉,剥离内外膜后,采用胶原酶消化法获得远端肺动脉平滑肌细胞,将细胞种于放置在35mm培养皿内的圆形载玻片上,培养至第三天细胞密度达到50%,将细胞随机分为三个组:(1)未处理组,未给予刺激物; (2)对照组,用等量的BMP4溶解缓冲液处理PASMCs 60h; (3)BMP4组,用BMP4(50ng/ml)处理PASMCs60h。细胞用Fura-2在细胞培养箱内孵育1h,使Fura-2进入细胞内,用荧光显微镜检测,根据标准曲线,推算细胞内Ca~(2+)浓度。
     二、BMP4影响大鼠远端肺动脉平滑肌细胞TRPC1,6 mRNA和蛋白质表达及其机理研究
     1、BMP4对PSMC表达TRPC1、6 mRNA和蛋白质的影响:实验采用原代培养大鼠远端肺动脉平滑肌细胞,培养至第五天细胞密度达到80-90%,将细胞随机分为三个组:(1)未处理组,未给予刺激物;(2)对照组,用等量的BMP4溶解缓冲液处理PASMCs 60h;(3)BMP4组,用BMP4(50ng/ml)处理PASMCs60h。收集细胞,用iQ SYBR Green supermix试剂实时定量细胞中的TRPC1,6 mRNA的表达;用Western Blotting检测TRPC1,6蛋白质的表达。
     2、BMP4对Smad1/5/8 ,ERK1/2, p38MAPK信号通路的影响:原代培养大鼠远端肺动脉平滑肌细胞,培养至第五天细胞密度达到80-90%,将细胞随机分为七个组:(1)对照组,用等量的BMP4溶解缓冲液处理PASMCs15min;(2)BMP4(50ng/ml)处理组:分别用BMP4(50ng/ml)处理PASMCs15min、30min、1h、4h、8h、60h。收集细胞,用Western Blotting检测BMP4对Smad1/5/8 ,ERK1/2, p38MAPK信号通路的影响。
     3、BMPRⅡSiRNA、SB及PD对BMP4/Smad1/5/8 ,ERK1/2, p38MAPK信号通路的影响:用Western Blotting检测BMPRⅡ-SiRNA、PD和SB对BMP4刺激Smad1/5/8、ERK1/2和p38MAPK信号通路的影响。
     4、SB及PD对BMP4促进大鼠远端PSMCs表达TPRC1,6mRNA和蛋白质的干预作用:原代培养大鼠远端肺动脉平滑肌细胞,培养至第五天细胞密度达到80-90%,将细胞随机分为四个组:(1)空白对照组,细胞未给予任何刺激物;(2) DMS0对照组, DMSO预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h; (3)SB组,SB(5μM)预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h;(4)PD组,PD(10μM)预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h;收集细胞,用iQ SYBR Green supermix试剂实时定量细胞中的TRPC1,6 mRNA的表达,用Western Blotting检测TRPC1,6蛋白质的表达。
     5、SB或PD对BMP4增加PSMCs内钙离子浓度的影响的研究:原代培养大鼠远端肺动脉平滑肌细胞,培养至第三天细胞密度达到50%,将细胞随机分为四个组:1)空白对照组,细胞未给予任何刺激物;(2) DMS0对照组, DMSO预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h;(3)SB组,SB(5μM)预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h (4)PD组,PD(10μM)预处理细胞30min, BMP4(50ng/ml)处理PASMCs60h。细胞用Fura-2孵育,使Fura-2进入细胞内,用荧光显微镜检测,根据标准曲线,推算细胞内Ca~(2+)浓度。三、慢性低氧对小鼠肺组织内BMP内源性拮抗蛋白表达的影响
     实验选用雄性的BMP4基因敲除的同种系BMP4+/+ C57BL/6J纯合子小鼠和BMP4+/- C57BL/6J杂合子小鼠,将BMP4+/+ C57BL/6J小鼠随机分为5组(n=3或4):即正常对照组、低氧1天组、低氧3天组、低氧7天组和低氧21天组。6只BMP4+/- C57BL/6J小鼠随机分成低氧1天和对照2组。将低氧小鼠置于低氧装置内,调节箱内氧浓度为10%,每天24小时持续低氧。对照组小鼠除吸入空气外,其它饲养条件与实验组相同。低氧完成后,麻醉小鼠取出心肺组织,左肺储存于-80。C冰箱备用,右肺组织提取总RNA;用实时定量PCR检测BMP内源性拮抗蛋白的mRNA表达水平。
     结果:
     一、BMP4能够增加大鼠远端PASMCs内钙离子浓度,未处理组、仅以溶解液处理对照组和50ng/ml BMP4处理组,[Ca~(2+)]i分别为204.07±1.22nM; 170.64±0.68nM; 415.52±3.94nM,实验组PASMC内钙离子浓度明显高于对照组,P值〈0.05。
     二、BMP4能够促进大鼠远端PASMCs的TRPC1、6mRNA及蛋白的表达,未处理组和对照组比较无差异表达,与对照组比较BMP4组TRPC1,TRPC6mRNA表达量明显升高,分别上升1.69倍,2.08倍(P〈0.05),BMP4组与对照组相比,BMP4分别使TRPC1/β-actin,TRPC6/β-actin的蛋白灰度比值增加1.61倍,1.41倍(P〈0.05),结果具有统计学意义。
     三、BMP4作用于大鼠远端PASMCs,可以迅速激活Smad信号通路(15min),而后随时间的延长逐渐减弱,也可以迅速激活P38MAPK及ERK1/2信号通路(15min),并且在作用4h时出现第二个激活高峰。
     四、BMPRⅡsiRNA转染大鼠远端PASMCs,成功地沉默了BMPRⅡ蛋白表达的同时,减弱了BMP4对Smad磷酸化水平。
     五、P38MAPK信号通路的特异性抑制剂SB及ERK1/2信号通路的特异性抑制剂PD能够降低BMP4刺激所引起的TRPC1、6mRNA的表达,用ERK1/2的抑制剂PD处理组TRPC1和TPC6mRNA的相对表达量分别降低1.6倍和1.7倍(P〈0.05);用P38MAPK的抑制剂SB处理组TRPC1和TPC6mRNA的相对表达量分别降低1.5(P〈0.05)。
     六、P38MAPK信号通路的特异性抑制剂SB及ERK1/2信号通路的特异性抑制剂PD能够降低BMP4刺激所引起的TRPC1、6蛋白表达增加,SB+B4、PD+B4与DMSO+B4组比较TRPC1蛋白表达TRPC1/β-actin的灰度比值分别下降2.3倍(P〈0.05);SB+B4、PD+B4与DMSO+B4组比较TRPC6蛋白表达TRPC6/β-actin的灰度比值分别下降2.7倍(P〈0.05)。
     七、P38MAPK信号通路的特异性抑制剂SB及ERK1/2信号通路的特异性抑制剂PD均能够降低BMP4对大鼠远端PASMCs内基础Ca2+浓度增加的程度,用ERK1/2的抑制剂PD和P38MAPK的抑制剂SB处理的PASMCs内这种BMP4诱导的Ca2+浓度增加分别降低1.9倍和1.6倍(P〈0.05)。
     八、在正常的BMP4+/+ C57BL/6J小鼠肺组织中至少存在8种BMP内源性拮抗剂,分别是chordin、chordin-1、Noggin、Mgp、FSRP、CV-2、Fst和Gremlin。
     九、8种BMP内源性拮抗蛋白的mRNA的表达随小鼠缺氧的时间呈先上升后下降的趋势,低氧第一天表达增加尤其明显,其中FSN的表达趋势较其他几种BMP内源性拮抗蛋白明显,别增加3.64倍、1.23倍、2.0倍、2.0倍、1.9倍、2.8倍、1.4倍、28倍(P〈0.05)。
     十、常氧状态下,BMP4+/+ C57BL/6J纯合子小鼠和BMP4+/- C57BL/6J杂合子小鼠肺组织内大多数BMP内源性拮抗蛋白mRNA的表达无明显差异,两组对照, BMP4+/-杂合子小鼠肺组织内Noggin和CV2 mRNA的表达上升,分别为1.36倍、1.91倍(P〈0.05), chordin mRNA的表达降低,下降0.59倍(P〈0.05)。
     十一、低氧状态下,BMP4+/+ C57BL/6J纯合子小鼠和BMP4+/- C57BL/6J杂合子小鼠肺组织内大多数BMP内源性拮抗蛋白mRNA的表达无明显差异,两组对照,两组对照,BMP4+/+ C57BL/6J纯合子小鼠肺组织内Noggin、Gremlin和FSN的mRNA表达明显高于BMP4+/- C57BL/6J杂合子小鼠,分别为4倍、2.69倍和28倍(P〈0.05)。
     十二、正常氧和低氧一天条件下相比较,BMP4+/- C57BL/6J杂合子小鼠肺组织内大多数BMP内源性拮抗蛋白的mRNA的表达,无明显差异,在低氧状态下BMP4+/-杂合子小鼠肺组织内CV2 mRNA的表达下降2倍(P〈0.05),提示低氧状态下CV-2的下调在BMP4基因突变基础上对HPH的发病起重要作用。
     结论:
     一、BMP4促进细胞内Ca~(2+)浓度增加是低氧性肺动脉高压发病机制中新的观点。BMP4可以激活Smad、P38MAPK和ERK1/2信号通路。BMP4可以通过激活P38MAPK,ERK1/2途径,刺激大鼠远端PASMCs的TRPC1,6mRNA及蛋白的表达增加,通过TRPC1,6组成的Ca~(2+)通道增加细胞内的Ca~(2+)浓度,从而增加血管的紧张度及促进血管平滑肌增殖,最终导致肺动脉高压。
     二、低氧条件下,细胞首先表现出应激反应,增加BMP内源性拮抗蛋白的表达,随后出现与BMP不协调的表达,部分内源性拮抗剂与BMP4存在依赖关系,表明内源性拮抗剂在低氧性肺动脉高压的发生机制上存在一定的作用。
OBJECTIVE:
     To investigate that machenism of [Ca2+] i change in peripheral PASMCs exposed to BMP4 and role of BMPs antagonists in pathogenesis of hypoxic pulmonary arterie hypertension.
     METHODS:
     1 Determine whether there was [Ca2+] i chang in distal PASMCs exposed to BMP4 (50 ng/ml)
     Distal PASMCs were treated with BMP4 (50 ng/ml). Ca~(2+) in PASMCs was measured using fluorescent microscopy and Ca~(2+)sensitive dye-Fura-2.
     2 Signaling Pathway between BMP4 and TRPC1、6 in distal pulmonary artery smooth muscle cells.
     1) BMP4 induced expression of TRPC1, 6 mRNA and Protein
     The PASMCs were treated with BMP4 (50 ng/ml) or vehicle for up to 60 hours. TRPC1, 6 mRNA extracted from treated cells were amplified by a standard PCR protocol using IQ SYBR Green supermix Real-Time PCR. Western Blotting was performed for identification of TRPC1, 6 proteins extracted from cells treated with BMP4 BMP4 (50 ng/ml).
     2) Determine which signaling pathway was involved in BMP4-induced TRPC1, 6 expression up-regulatin.
     BMP4/Smad1/5/8 and ERK1/2, p38MAPK were examined in distal PASMCs treated with BMP4 using Western Blots. (Different time-point treatment) The PASMCs were pre-treated with inhibitor of ERK1/2 (PD098059 10μM), ERK1/2 pathway was detected using Western Blot. The PASMCs were pre-treated with inhibitor of p38MAPK (SB2035805μM), P38MAPK pathway was detected using Western Blot.
     3) Determine whether a kind of the inhibitors decreased [Ca2+]i in PASMCs exposed to BMP4
     The PASMCs exposed to BMP4 were pre-treated (30 min) with inhibitors of ERK1/2 (PD098059 10μM), p38MAPK (SB203580 5μM).
     Ca~(2+)in PASMCs was measured using fluorescent microscopy and Ca~(2+)sensitive dye-Fura-2. 3 Role of BMPs antagonists in pathogenesis of hypoxic pulmonary hypertension
     1) Determine whether there are some BMPs antagonists in lung tissue of mouse and how many kinds are there, so BMPs antagonists were established by polymerase chain reaction (PCR) and confirmed by gene sequencing.
     2) Identificat whether BMPs antagonists are depended-BMP4, and whether they are relative with hypoxia.They were detected by Real-time fluorescence quantitative PCR, the samples were lung tissue isolated from BMP4+/+ or BMP4+/- mice. (Wild-type or HET).
     RESULTS:
     1 [Ca2+] i in peripheral PASMCs treated with BMP4 was increased. 2 BMP4 induces expression of TRPC1, 6 mRNA and Protein
     1) Incubation of peripheral PASMCs with BMP-4 (50ng/mL) led to phosphorylation of Smad1/5/8. Reprobing of blots for total Smad5 confirmed equal loading. Rapid phosphorylation of Smad1/5/8 was seen after 15 minutes of stimulation with BMP4.
     2) Incubation of peripheral PASMCs with BMP-4 (50 ng/mL) led to phosphorylation of p38MAPK and ERK1/2. Reprobing of blots for total p38MAPK and ERK1/2 confirmed equal loading. BMP4 stimulation led to rapid (15 min) transient activation of P38MAPK and ERK1/2, which returned to baseline by 30minuts, then phosphorylation, was evident at 4 hour. 3) The effect of MAPK inhibitors was examined at the 15-min time point. SB203580 and PD09859 can inhibit special signaling pathway compared with BMP4 alone.
     4) Immunoblotting analysis showed that three different concentrations of BMPRⅡsiRNA were silented BMPRⅡprotein expression almost 100% compared to no-targeting siRNA as a negative control. To confirm equal loading, blots were incubated withβ-actin antibody. In next experiments, 50nM concentration of BMPRⅡsiRNA was used.
     5) Real-time PCR demonstrated that induction of TRPC1 mRNA in response to BMP4 (50ng/ml) was decreased by the p38MAPK inhibitor, SB203580 or the ERK1/2 inhibitor, PD98059.
     6) Real-time PCR demonstrted that induction of TRPC6 mRNA in response to BMP4 (50ng/ml) was reduced by the p38MAPK inhibitor SB203580 or the ERK1/2 inhibitor, PD980509.
     7) The PASMCs transfected with no-targeting control siRNA showed no effect on BMP4-mediated P-Smad1/5/8 induction. However, with BMPRⅡsiRNA, P-Smad1/5/8 was reduced comparing with the no-targeting control level.
     8) In the PASMCs the pre-treated (30 min) with inhibitor of ERK1/2 (PD098059 10μM ), p38MAPK (SB203580 5μm), expressions of TRPC1, 6 protein were decreased.
     9) The increase of [Ca2+] i induced by BMP4 was attenuated by SB or PD.
     3 Eight BMPs antagonists were identificated by polymerase chain reaction (PCR) in lung tissue of mouse and confirmed by gene sequencing
     The samples from lung tissue isolated from BMP4+/+ or BMP4+/- mice were detected by Real-time fluorescence quantitative PCR, and they were relative with hypoxia, most of the antagnists mRNA were increased after hypoxic 1 day and reduced with hypoxic time, which returned to basline by hypoxic 21 days.
     CONCLUSIONS:
     1. [Ca~(2+)] i in peripheral PASMCs treated with BMP4 was increased; TRPC1, 6 are an important target of BMP signaling in PASMCs. Inhibition of p38MAPK and ERK1/2 parthway will decrease expression of TRPC1, 6 and represent a novel theory about PAH.
     2. There were eight BMP antagonists in lung tissue of mouse. Most of BMPs antagonists are depended-hypoxia.
引文
[1] Zaiman A , Fijalkowska L , Hassoun PM,et al . One hundred years of research in the pathogenesis of pulmonary hypertension. Am J Respir Cell Mol Biol, 2005, 33:425-429
    [2] Stenmark KR, McMurtry IF. Vascular remodeling verus vasoconstriction in chronic hypoxic pulmonary hypertension: A time for reappraisal? Circ Res, 2005, 97 :95-102
    [3] Mandegar M, Fung YCB, Huang W et al. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvas Res, 2004, 68 -75
    [4] Lane KB, Machado RD, Pauciulo MW, Thomson JR, Philips JA, Loyd JE, Nichols WC, Trembath RC. The International PPH Consortium. Heterozygous germ-line mutations in BMPR2, encoding a TGF-b receptor, Cause familial primary pulmonary hypertension. Nat Genetics, 2000, 26:81–84.
    [5] Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, Kalachikov S, Cayanis E, Fischer SG, Barst RJ, et al. Familial primary pulmonary hypertension (Gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000, 67:737–744.
    [6] Machado RD , Aldred MA , J ames V , et al . Mutations of t he TGF-βtypeⅡreceptor BMPR2 in pulmonary arterial hypertension. Hum Mutat, 2006, 27:121-132.
    [7] Aldred M, Vijayakrishnan J, J ames V , et al . BMPR2 gene rearrangement s account for a sinificant proportion of mutations in familial and idiopat hic pulmonary arterial hypertension. Hum Mutat, 2006, 27:212-213.
    [8] Thomson J R, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated wit h germline mutations of t he gene encoding BMPR-Ⅱ,a receptor member of the TGF-βfamily. J Med Genet, 2000, 37:741-745.
    [9] Xudong Yang, Patty J. Lee, Lu Long, et al. BMP4 Induces HO-1 via a Smad-Independent, p38MAPK-Dependent Pathway in Pulmonary Artery Myocytes. Am J Respir Cell Mol Biol, 2007, 37: 598–605,
    [10] Frank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res, 2005, 97:496-504.
    [11] Joseph L. Genetic clues to t he cause of primary pulmonary hypertension. N Engl J Med, 2001, 345:367-371.
    [12] McCaff rey TA. TGF2βand TGF2βreceptors in at herosclerosis. Cytokine Growth Factor Rev, 2000, 11:103-114.
    [13] Fantozzi I, Huang W, Zhang J, et al. Divergent effect s of BMP-2 on gene expression in pulmonary artery smoot h muscle cells from normal subject s and patient s wit h idiopat hic pulmonary arterial hypertension. Exp Lung Res ,2005 ,31 :783-806.
    [14] Yang X , Long L , Sout hwood M , et al . Dysfunctional Smad signaling contributes to abnormal smoot h muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res ,2005 ,96 :1053-1063.
    [15] Long L ,Scott L ,Stephens R ,et al . Induction of gene expression in human pulmonary artery smoot h muscle cells by bone morphogenetic proteins24. Thorax , 2001 , 56 ( Suple III) : iii76-iii81.
    [16] Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA,Kriett JM, Yung G, Rubin LJ, Yuan JXJ. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L740–L754
    [17] Christian JL ,Nakayama T. Can’t get no SMAD is faction : Smad proteins as positive and negative regulators of TGF family signals. Bio Essays ,1990 , 21 :382-390.
    [18] Avsian-Kretchmer O, Hsueh AJ. Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 2004;18: 1–12.
    [19] Piccolo S, Sasai Y, Lu B, De Robertis EM. Dorsoventral patterning in Xenopus: inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 1997; 86:589–598.
    [20] Moreno M, Munoz R, Aroca F, Labrca M, Brandan M, Larrain J.Biglycan is a new extracellular component of the Chordin-BMP4 signaling pathway. EMBO J 2005;24:1397–1405.
    [21] KiyonoM, ShibuyaM. Bone morphogenetic p rotein 4 mediates ap2 op tosis of cap illary endothelial cells during rat pap illary membrane Regression [J]. MolCell Biol, 2003, 23 (13): 4627 - 4636.
    [22] Bostrom K, Watson KE, Horn S, Wortham C, Herman IM, Demer LL. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Invest. 1993; 91:1800–1809.
    [23] Christine M. Costello Katherine Howell, Edwina Cahill, et al. Lung-selectivegene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008, 295: L272–L284,
    [24] Karaki H, Ozaki H, HoriM, et al. Calcium movements, distribution, and functions in smooth muscle [J]. Pharmacol Rev, 1997, 49 (2): 157 - 230.
    [25] Fantozzi I, Zhang S, Platoshyn O, et al. Hypoxia increases AP-1binding activity by enhancing capacitative Ca2 + entry in human pulmonary artery endothelial cells [ J ]. Am J Physiol Lung Cell M ol Physiol, 2003, 285 (6) : L1233 - 45.
    [26] L inMJ, Leung GP, ZhangWM, et al. Chronic hypoxia -induced up regulation of store - operated and receptor - operated Ca2 + channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension[ J ]. Circ Res, 2004, 95 (5) : 496 - 505.
    [27] RabinovitchM, GambleW,NadasA S, et al. Rat pulmonary circulation after chronic hypoxia: hemodynamic and structural features[ J ]. Am J Physiol, 1979, 236 (6) : H818 - 27.
    [28] Sanders KM. Invited review: mechanisms of calcium handling in smooth muscles[ J ]. J Appl Physiol, 2001, 91 (3) : 1438 - 49.
    [29] Lin MJ, Leung GP, Zhang WM, Yang XR, Yip KP, Tse CM, and Sham JS. Chronic hypoxia-induced upregulation of store-operated and receptor-operated Ca2+ channels in pulmonary arterial smooth muscle cells: a novel mechanism of hypoxic pulmonary hypertension. Circ Res 95: 496-505, 2004.
    [30] Wang J, Weigand L, Lu W, Sylvester JT, Semenza GL, and Shimoda LA. Hypoxia inducible factor 1 mediates hypoxia-induced TRPC expression and elevated intracellular Ca2+ in pulmonary arterial smooth muscle cells. Circ Res 98: 1528-1537, 2006.
    [31] Archer SL , Huang JM , Reeve HL , et al. Differential distribution of electrophsiological distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res , 1996 ,78 (3) :431~442.
    [32] Frank D, Johnson J, and de Caestecker M. Bone morphogenetic protein 4 promotes vascular remodeling in hypoxic pulmonary hypertension. Chest.2005.128: 590S-591S,
    [33] McMurtry IF, Bauer NR, Fagan KA, Nagaoka T, Gebb SA, and Oka M. Hypoxia and Rho/Rho-kinase signaling. Lung development versus hypoxic pulmonary hypertension. Advances in experimental medicine andbiology.2003,543: 127-137,
    [34] Yu Y, Sweeney M, Zhang S, Platoshyn O, Landsberg J, Rothman A, and Yuan JX. PDGF stimulates pulmonary vascular smooth muscle cell proliferation by upregulating TRPC6 expression. American journal of physiology2003. 284: C316-330.
    [35] Ying Yu, Ivana Fantozzi, Carmelle V. Remillard,et al. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension Medical science.2004 ,38,13861–13866
    [36] Oelgeschlager M, Larrain J, Geissert D, De Robertis EM. The evolutionarily conserved BMP-binding protein twisted gastrulation promotes BMP signaling. Nature 2000;405(6788):757–63.
    [37] Ross JJ, Shimmi O, Vilmos P, Petryk A, Kim H, Gaudenz K, et al.Twisted gastrulation is a conserved extracellular BMP antagonist. Nature 2001;410(6827):479–83.
    [38] Scott IC, Blitz IL, Pappano WN, Maas SA, Cho KW, Greenspan DS. Homologues of Twisted gastrulation are extracellular cofactors in antagonism of BMP signaling. Nature 2001;410(6827):475–8.
    [39] Avsian-Kretchmer O, Hsueh AJ. Comparative genomic analysis of the eight-membered ring cystine-knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 2004;18(1):1–12.
    [40] Pearce JJ, Penny G, Rossant J. A mouse Cerberus/Dan-related gene family. Dev Biol 1999;209(1):98–110.
    [41] Topol LZ, Marx M, Laugier D, Bogdanova NN, Boubnov NV, Clausen PA, et al. Identification of drm, a novel gene whose expression is suppressed in transformed cells and which can inhibit growth of normal but not transformed cells in culture. Mol Cell Biol 1997;17(8):4801–10.
    [42] Wagner DS, Mullins MC. Modulation of BMP activity in dorsal–ventral pattern formation by the chordin and ogon antagonists. Dev Biol 2002;245(1):109–23.
    [43] Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM.Neural induction in the absence of mesoderm: b-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 2001;234(1):161–73.
    [44] Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A. Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 2000;28(3):713–26.
    [45] Chang C, Holtzman DA, Chau S, Chickering T,Woolf EA, Holmgren LM, etal. Twisted gastrulation can function as a BMP antagonist. Nature 2001; 410(6827):483–7.
    [46] Dionne MS, Brunet LJ, Eimon PM, Harland RM. Noggin is required for correct guidance of dorsal root ganglion axons. Dev Biol 2002; 251(2):283–93.
    [47] Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides AN, Kwiatkowski W, et al. Structural basis of BMP signaling inhibition by the cystine-knot protein Noggin. Nature 2002;420(6916):636–42.
    [48] Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT. The BMP antagonist noggin regulates cranial suture fusion. Nature 2003; 422(6932):625–9.
    [49] Rusty Kelley , Rongqin Ren , Xinchun Pi , et,al. A concentration-dependent endocytic trap and sink mechanism converts Bmper from an activator to an inhibitor of Bmp signaling .J. Cell Biol.2009,184. 4 597–609
    [50] Serpe , M. , D. Umulis , A. Ralston , J. Chen , et.al. The BMP-binding protein Crossveinless 2 is a short-range, concentration-dependent, biphasic modulator of BMP signaling in Drosophila . Dev. Cell . 2008 . 14 : 940– 953 .
    [51] Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM. The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1998;1(5):673–83.
    [52] Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A. Gremlin-mediated BMPantagonism induces the epithelial–mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 2004;131(14):3401–10.
    [53] Koli K, Myllarniemi M, Vuorinen K, Salmenkivi K, Ryynanen MJ, Kinnula VL, et al. Bone morphogenetic protein-4 inhibitor gremlin is over-expressed in idiopathic pulmonary fibrosis. Am J Pathol 2006;169:61–71.
    [54] M Myll¨arniemi, K Vuorinen, V Pulkkinen,et,al. Gremlin localization and expression levels partially differentiate idiopathic interstitial pneumonia severity and subtype. J Pathol 2008; 214: 456–463
    [55] Christine M. Costello, Katherine Howell, Edwina Cahill, et,al. Lung-selective gene responses to alveolar hypoxia: potential role for the bone morphogenetic antagonist gremlin in pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol, 2008,295: L272–L284
    [56] Smith WC, Harland RM. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell1992;70(5):829–40.
    [57] Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, et al. Neural induction by the secreted polypeptide noggin. Science 1993;262(5134):713–8.
    [1] Massague J, Chen Y-G. Controlling TGF-b signaling. Genes Dev 2000; 14:627–644.
    [2] Miyazono K, Maeda S, Imamura T. BMP receptor signaling: transcriptional targets, regulation of signals, and signaling cross-talk. Cytokine Growth Factor Rev 2005;16:251–263.
    [3] Kawabata M, Imamura T, Miyazano K. Signal transduction by bone morphogenetic proteins. Cytokine Growth Factor Rev 1998;9:49–61.
    [4] Shibuya H, Iwata H, Masuyama N, Gotoh Y, Yamaguchi K, Irie K,Matsumoto K, Nishida E, Ueno N. Role of TAK1 and TAB1 in BMP signaling in early Xenopus development. EMBO J 1998;17:1019–1028.
    [5] Nohe A, Hassel S, Ehrlich M, Neubauer, Sebald W, Henis Y, Knaus P.The mode of BMP receptor oligomerization determines different BMP-2 signaling pathways. J Biol Chem 2002;277:5330–5338.
    [6] Miyazono K,Kusanagi K,Inoue H ,et al . Divergence and convergence of TGF2beta/ BMP signaling. J Cell Phyisol , 2001,187 :265-276.
    [7] Miyazawa K, Shinozaki M, Hara T, Furuya T, Miyazono K. Two major Smad pathways in TGF-b superfamily signaling. Genes Cells 2002;7:1191–1204.
    [8] Celeste AJ , Iannazzi JA , Taylor RC , et al . Identification of transforming growth factor h family members present in bone-inductive protein purified f rombovine bone. Proc Natl Acad Sci USA ,1990 ,87 :9843-9847.
    [9] Imamura T , Takase M , Nishihara A , et al . Smad6 inhibits signalling by the TGF2 superfamily. Nature ,1997 ,389 :622-626.
    [10] Akira Yamaguchi, Toshihisa Komori, Tatsuo Suda. Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, Hedgehogs。[J]. Endocr Rev, 2000, 21 (4): 393-397
    [11] Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips III JA,Loyd JE, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. Nat Genet 2000;26:81–84.
    [12] Deng Z, Morse JH, Slager SL, Cuervo N, Moore KJ, Venetos G, et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am J Hum Genet 2000;67:737–744.
    [13] Howe JR, Bair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, et al. Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 2001;28:184–187.
    [14] Rosenzweig BL, Imamura T, Okadome T, Cox GN, Yamashita H, ten Dijke P, et al. Cloning and characterization of a human type II receptor for bone morphogenetic proteins. Proc Natl Acad Sci USA 1995;92:7632–7636.
    [15] Mun Chun Chan, Peter H. Nguyen,Brandi N. Davis, A Novel Regulatory Mechanism of the Bone Morphogenetic Protein (BMP) Signaling Pathway Involving the Carboxyl-Terminal Tail Domain of BMP Type II Receptor. MOLECULAR AND CELLULAR BIOLOGY, 2007,27:5776–5789
    [16] Foletta VC, Lim MA, Soosairajah J, Kelly AP, Stanley EG, ShannonM, et al. Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 2003;162:1089–1098.
    [17] Machado RD, Rudarakanchana N, Atkinson C, Flanagan JA, Harrison R, Morrell NW, et al. Functional interaction between BMPR-II and Tctex-1, a light chain of Dynein, is isoform-specific and disrupted by mutations underlying primary pulmonary hypertension. Hum Mol Genet 2003;12: 3277–3286.
    [18] Hassel S, Eichner A, Yakymovych M, Hellman U, Knaus P, Souchelnytskyi S. Proteins associated with type II bone morphogenetic protein receptor (BMPR-II) and identified by two-dimensional gel electrophoresis and mass spectrometry. Proteomics 2004;4:1346–1358.
    [19] Visser JA, Olaso R, Verhoef-Post M, Kramer P, Themmen AP,Ingraham HA. The serine/threonine transmembrane receptor ALK2 mediates Mullerian inhibiting substance signaling. Mol Endocrinol 2001;15:936–945.
    [20] Clarke TR, Hoshiya Y, Yi SE, Liu X, Lyons KM, Donahoe PK. Mullerian inhibiting substance signaling uses a bone morphogenetic protein (BMP)-like pathway mediated by ALK2 and induces SMAD6 expression. Mol Endocrinol 2001;15:946–959.
    [21] Jamin SP, Arango NA, Mishina Y, Hanks MC, Behringer RR.Requirement of Bmpr1a for Mullerian duct regression during male sexual development. Nat Genet 2002;32:408–410.
    [22] Xudong Yang, Patty J. Lee, Lu Long, et al. BMP4 Induces HO-1 via a Smad-Independent, p38MAPK-Dependent Pathway in Pulmonary Artery Myocytes. Am J Respir Cell Mol Biol, 2007,37: 598–605
    [23] Derynck R, Akhurst RJ, Balmain A. TGF-b signaling in tumor suppression and cancer progression. Nat Genet 2001;29:117–129.
    [24] Heldin CH, Miyazono K, ten Dijke P. TGF-b signaling from cell membrane to nucleus through SMAD proteins. Nature 1997;390:465–471.
    [25] Aoki H, Fujii M, Imamura T, Yagi K, Takehara K, Kato M, et al. Synergistic effects of different bone morphogenetic protein type I receptors on alkaline phosphatase induction. J Cell Sci 2001;114:1483–1489.
    [26] Cheng KH, Ponte JF, Thiagalingam S. Elucidation of epigenetic inactivation of SMAD8 in cancer using targeted expressed gene display. Cancer Res 2004;64:1639–1646.
    [27] Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana JL. SARA, a FYVE domain protein that recruits Smad2 to the TGFb receptor. Cell 1998;95: 779–791.
    [28] Lin HK, Bergmann S, Pandolfi PP. Cytoplasmic PML function in TGF-b signaling. Nature 2004;431:205–211.
    [29] Peterson RS, Andhare RA, Rousche KT, Knudson W, Wang W, Grossfield JB, et al. CD44 modulates Smad1 activation in the BMP-7 signaling pathway. J Cell Biol 2004;166:1081–1091.
    [30] Miyazono K, ten Dijke P, Heldin CH. TGF-b signaling by Smad proteins. Adv Immunol 2000;75:115–157.
    [31] Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, et al. A RUNX2/PEBP2aA/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleidocranial dysplasia. Proc Natl Acad Sci USA 2000;97:10549–10554.
    [32] Miyazono K, Maeda S, Imamura T. Coordinate regulation of cell growth and differentiation by TGF-b superfamily and Runx proteins. Oncogene 2004;23: 4232–4237.
    [33] Maeda S, Hayashi M, Komiya S, Imamura T, Miyazono K. Endogenous TGF-b signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 2004;23:552–63.
    [34] Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, et al. Runx2 is a common target of transforming growth factor b1 and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol 2000;20: 8783–8792.
    [35] Miyama K, Yamada G, Yamamoto TS, Takagi C, Miyado K, Sakai M, et al. A BMP-inducible gene, Dlx5, regulates osteoblast differentiation and mesoderm induction. Dev Biol 1999;208:123–133.
    [36] Ito Y, Miyazono K. RUNX transcription factors as key targets of TGF-b superfamily signaling. Curr Opin Genet Dev 2003;13:43–47.
    [37] Sowa H, Kaji H, Hendy GN, Canaff L, Komori T, Sugimoto T, et al. Menin is required for bone morphogenetic protein 2- and transforming growth factor b-regulated osteoblastic differentiation through interaction with Smads and Runx2. J Biol Chem 2004;279:40267–40275.
    [38] Liu D, Black BL, Derynck R. TGF-b inhibits muscle differentiation through functional repression of myogenic transcription factors by Smad3. Genes Dev 2001;15:2950–2966.
    [39] Henningfeld KA, Friedle H, Rastegar S, Knochel W. Autoregulation of Xvent-2B; direct interaction and functional cooperation of Xvent-2 and Smad1. J Biol Chem 2002;277:2097–2103.
    [40] Hata A, Seoane J, Lagna G, Montalvo E, Hemmati-Brivanlou A,Massague J. OAZ uses distinct DNA- and protein-binding zinc fingers in separate BMP-Smad and Olf signaling pathways. Cell 2000;100:229–240.
    [41] Shi X, Yang X, Chen D, Chang Z, Cao X. Smad1 interacts with homeobox DNA-binding proteins in bone morphogenetic protein signaling. J Biol Chem 1999;274:13711–13717.
    [42] Yamamoto TS, Takagi C, Ueno N. Requirement of Xmsx-1 in the BMP-triggered ventralization of Xenopus embryos. Mech Dev 2000;91: 131–141
    [43] Verschueren K, Remacle JE, Collart C, Kraft H, Baker BS, Tylzanowski P, et al. SIP1, a novel zinc finger/homeodomain repressor, interacts with Smad proteins and binds to 50-CACCT sequences in candidate target genes. J Biol Chem 1999;274:20489–20498.
    [44] Rodriguez C, Huang LJ, Son JK, McKee A, Xiao Z, Lodish HF. Functional cloning of the proto-oncogene brain factor-1 (BF-1) as a Smad-binding antagonist of transforming growth factor-b signaling.J Biol Chem 2001;276: 30224–30230.
    [45] Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001;7:1267–1278.
    [46] Ogata T, Wozney JM, Benezra R, Noda M. Bone morphogenetic protein 2 transiently enhances expression of a gene, Id (inhibitor of differentiation), encoding a helix-loop-helix molecule in osteoblastlike cells. Proc Natl Acad Sci USA 1993;90:9219–9222.
    [47] Yokota Y, Mori S. Role of Id family proteins in growth control. J Cell Physiol 2002;190:21–8.
    [48] Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-b type I receptors. EMBO J 2002;21:1743–53.
    [49] Vinals F, Ventura F. Myogenin protein stability is decreased by BMP-2 through a mechanism implicating Id1. J Biol Chem 2004;279:45766–45772.
    [50] Candia AF, Watabe T, Hawley SH, Onichtchouk D, Zhang Y, Derynck R, et al. Cellular interpretation of multiple TGF-b signals: intracellular antagonism between activin/BVg1 and BMP-2/4 signaling mediated by Smads. Development 1997;124:4467–4480.
    [51] Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signaling pathways converge on the TGF-b family mediator Smad1.Nature 1997;389: 618–622.
    [52] Mori S, Matsuzaki K, Yoshida K, Furukawa F, Tahashi Y, Yamagata H, et al. TGF-b and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 2004;23:7416–7429.
    [53] Pera EM, Ikeda A, Eivers E, De Robertis EM. Integration of IGF, FGF, and anti-BMP signals via Smad1 phosphorylation in neural induction. Genes Dev 2003;17:3023–3028.
    [54] Aubin J, Davy A, Soriano P. In vivo convergence of BMP and MAPK signaling pathways: impact of differential Smad1 phosphorylation on development and homeostasis. Genes Dev 2004;18:1482–1494.
    [55] de Caestecker MP, Parks WT, Frank CJ, Castagnino P, Bottaro DP, Roberts AB, et al. Smad2 transduces common signals from receptor serine-threonine and tyrosine kinases. Genes Dev 1998;12:1587–1592.
    [56] Suzawa M, Tamura Y, Fukumoto S, Miyazono K, Fujita T, Kato S, et al. Stimulation of Smad1 transcriptional activity by Ras-extracellular signal-regulated kinase pathway: a possible mechanism for collagen- dependent osteoblastic differentiation. J Bone Miner Res 2002;17: 240–248.
    [57] Tamura Y, Takeuchi Y, Suzawa M, Fukumoto S, Kato M, Miyazono K, et al. Focal adhesion kinase activity is required for bone morphogenetic protein-Smad1 signaling and osteoblastic differentiation in murine MC3T3-E1 cells. J Bone Miner Res 2001;16:1772–1779.
    [58] Nakashima K, Yanagisawa M, Arakawa H, Kimura N, Hisatsune T, Kawabata M, et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 1999;284:479–482.
    [59] Ulloa L, Doody J, Massague J. Inhibition of transforming growth factor-b/SMAD signaling by the interferon-gamma/STAT pathway.Nature 1999;397:710–713.
    [60] Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, et al. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev 2003;17:1979–1991.
    [61] Machado RD , Aldred MA , J ames V , et al . Mutations of t he TGF2βtypeⅡreceptor BMPR2 in pulmonary arterial hypertension. Hum Mutat ,2006 ,27 : 121-132.
    [62] Abdalla SA , Gallione CJ , Barst RJ , et al . Primary pulmonary hypertension in families wit h hereditary haemorrhagic telangiectasia. Eur Respir J ,2004 ,23 :373-377.
    [63] Morrell NW, Yang X , Upton PD , et al . Altered growt hresponses of pulmonary artery smoot h muscle cells from patient s wit h primary pulmonary hypertension to t ransforming growth factor-β1 and bone morphogenetic proteins. Circulation , 2001 ,104 :790-795.
    [64] Lu Long, Alexi Crosby, Xudong Yang, et al. Altered Bone Morphogenetic Protein and Transforming Growth Factor Signaling in Rat Models of Pulmonary Hypertension: Potential for Activin Receptor-Like Kinase-5 Inhibition in Prevention and Progression of Disease. Circulation 2009;119; 566-576.
    [65] Yang X , Long L , Sout hwood M , et al . Dysfunctional Smad signaling cont ributes to abnormal smoot h muscle cell proliferation in familial pulmonary arterial hypertension. Circ Res ,2005 ,96 :105321063.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700