可降解速固化骨水泥的研制及相关基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨缺损是现代战争中常见的战伤之一,其治疗一般采用骨移植术。由于战伤的特殊性,要求对战伤所致骨缺损的骨移植材料的选择,除要具有来源广泛,易于携带,使用方便,成骨活性良好的特点外,还必须适应各种各样的战伤骨缺损类型,具有可塑形和粘接功能,这点对于提高现代战争的战伤救治水平,显得尤为重要。目前,骨移植修复材料主要分两大类:生物材料和人工材料,具体材料多种多样,由于每种材料的性能和特点不同,实际应用中各有优缺点,因此联合采用两种以上的材料往往可以取长补短,达到理想效果。脱钙骨基质(DBM)具有成骨良好、易于大量获得、使用简单、便于保存和携带,且有较好的骨传导能力等优点,目前已成功应用于临床替代自体骨移植修复缺损,治疗骨折不连接;磷酸钙骨水泥(calcitun Phosphate cement,CPC)又称羟基磷灰石骨水泥(hydroxyapatite cement,HA),是一种具有生物学活性的新型非陶瓷型羟基磷灰石类人工骨材料;氰基丙烯酸正丁酯(NBCA)是目前已用于临床的组织粘合剂。
     本研究参考有关文献方法自行合成了脱钙骨基质(DBM)颗粒,并根据组织工程学原理,与新型人工骨材料磷酸钙骨水泥(CPC)复合,加入适量氰基丙烯酸正丁酯(NBCA),研制成既具有骨诱导活性,又具有骨传导作用的可降解、速固化、
    
     第四军医大学博士学位论文
     强度高的复合骨水泥(DCN骨水泥);为深讨真临床实际应用的可能性,对这一复
     合材料进行了系列研究,包括理化特性、生物学相容性和成骨活性等,并进行
     了动物节段性骨缺损的修复实验,以期为平、战时骨缺损的修复寻找一种新型、
     理想的骨修复材料。
     一、可降解速固化骨水泥结构特征及力学性能
     扫描电镜观察发现,磷酸钙骨水泥均匀散在分布在脱钙骨基质骨粒间并呈
     规则有序的蜂窝状被覆骨粒表面,上有大量 30飞0 p m孔洞;复合材料内骨粒间
     形成多点状或多点面状结台,有较多不规则相互连通的自然孔隙存在,为新骨
     长入填充,提供了很好的条件;生物力学测试发现,DCN骨水泥的抗压强度达
     43.3MPa,稍低于PMMA骨水泥(P(.of),但明显高于CPC(P<0.01),说明该材
     料有较高的强度;DCN骨水泥的红外光谱,与单纯CPC、DBM、NBCA相比,末见
     新的特征峰出现,表明CPC、DBM与NBCA之间虽发生了相互作用,但作用结果
     井末改变单一材料的特征结构,因此对DBM的生物活性不会产生影晌。
     二、可降解速固化骨水泥的生物相容性研究
     通过体外溶m试验、凝血试验,动物体内毒性试验、热原试验、肌肉埋入
     试验及皿清特异性抗体检测等方法观察DCN骨水泥的生物学相容性和生物学安
     全性。结果表明材料无毒,不含致热原,体外不引起溶血反应,对凝血功能无
     明显影晌。植入兔或小鼠肌袋内刘肌肉无刺激作用,可异伍诱导出新骨形成,
     组织学检查末见组织变性、坏死和免疫排斥反应,血清中末检测出特异性抗体。
     以上结果证明,DCN骨水泥有良好的生物学相容性和生物学安全性。
     三、可降解速固化骨水泥骨诱导活性鉴定
     将 DCN骨水泥和 DC骨水泥(不加 NBCA)分别植入兔背肌肌袋内,于不同时
     间取材,通过组织学切片、ALP g手段观察异位诱导成骨倡况。结果表明:*)
     术后2周,DCN骨水泥组可见间充质细胞增殖、聚集并包绕DBM骨粒。u)术后
     4固,DCN骨水泥组DBM己有部分吸收,并被由间充质细胞分化来的软骨样细胞
     一3一
    
     第四军医大学博士学位论文
     和软骨样组织包裹。(3)木后6周,脱矿骨进一步吸收,软骨细胞和软骨组织
     逐渐成熟,新骨形成,新骨骨细胞核明显,胞体大。新骨组织夫见连接成广。(4)
     术后 12周,DBM吸收并被新骨组织部份或大部份代替且相互连接成片,可见毛
     细血管居于其间。ALP测定结果与组织学观察的新骨形成情况基本一致,术后2
     周后ALP显著升高,6 i达到最高值。以上均证明DCN骨水泥有较强的异位诱
     导成骨能力,诱导新骨的形成伴随着材料的缓慢降解。
     四、可降解速固化骨水泥修复兔挠骨节段性骨缺损
     采用兔挠骨干 15rnTn阶段性骨/骨膜缺损摸型,实验组骨缺损处分别植入 DC\
     或DC骨水泥。术后4、8、16和24 $分别取材,通过组织切片、血清钙、磷和
     ALP检测等方法观察新骨形成。清况,同时用X线检查、骨密度测量、生物力学、
     计算机图像分析等测定手段综合评价材料的骨修复能力和降解谓况。研究发现,
     DCN骨水泥植人4 i大量间充质细胞分化,在材料与骨端之间出现一层软骨细
     胞,软骨细胞继续增生并向编织骨分化;SN材料降解的同时,小梁骨出
Bone defect is the most frequently encountered war injury cases under modern war situation. With respect to the special features of war injury, it's necessary to select the bone graft materials with care to satisfy its need. When meeting this goal, we should take into consideration of a few aspects pertinent to the graft materials, which include easy availability, portability, convenient for use, the best osteogenesis, besides, its suitability for different categories of war injury bone defect, and its plasticity and cohesiveness, the latter is very important for improving the level of war injury cure. Recently, bone graft materials can be roughly grouped into two categories, ie , biomaterials and artificial materials. In practice, many different materials are offered for our selection, which have their own respective advantage and disadvantage, so it is advisable for us to combine over two different materials to make up with some satisfied end-product. Decalcified bone matrix(DBM)boasts of good osteogenesis
    , easily harvested in large quantity, convenient for preservation and portability,aand also the good bone transduction, all the above merits contribute to its successful clinical utilization in treating bone defect and nonunion as a substitute of former autograft practice; Calcium Phosphate cement(CPC), also called hydroxyapatite cement(HA), is a bioactive new-typed non-ceramic hydroxyapatite artificial material; N butyl cyanoacrylate (NBCA) is a bone adhesive current in
    
    
    clinical use.
    In this research, the DBM particles were synthesized by our own on the basis of referring to related published literature; besides, following the principle of tissue engineering, the DBM particles were integrated into Calcium Phosphate cement(CPC) with appropriate addition of NBCA. The end-product of this procedure is a compound bone cement(DCN), with the advantages of good bone induction and transduction, biodegradability, fast solidification and high intensity. For studying its feasibility in clinical practice, a series of research works were undergone , including chemical and physical features, biocompatibility, osteogenesis, and experiment of animal segmental bone defect repair; through the above endeavors, we hope to locate a new-typed and ideal bone repair material for both the peace and war-time bone defect repair.
    1. Constructive and biomechenical properties of material of DCN bone cements
    Under scanning electron microscope(SEM), the CPC was found to be well-distributed between DBM particles and covered the surface of DBM with honeycomb-like state where have a large quality of cave in 30-60 n m size. The DBM particles with irregular gaps existing within interspace were connected with CPC by the multipolar mode in the compound materials, this provide a good condition for newly formed bone fill in; The results of mechanical measurement show the ultimate compressive strengths of DCN bone cements were 43.3Mpa, slightly lower than PMMA (P<0.01) ,but obsviously higher than CPC (PO.01) ,this indicated that the DCN bone cement have a good strengths. Compared with CPC, DBM, NBCA, the FTIR results of DCN bone cements show that no new bond arise, it suggest that there are interaction among CPC, DBM and NBCA, but this did not change the special bond of each material, as a results, did not influence the osteoinduction of DBM.
    2. Biocompatibility and biological safety evaluation of DCN bone cement
    Biocompatibility and biological safety of DCN bone cement were evaluated
    
    by a series of in vitro and in vivo studies including animal experiments, and histochemical detection to test the toxicity, pyrogen, coagulant, hemolysis and immunogen. The bone cement was found to have no toxicity and no pyrogen in animal test, no hemolytic activities and it couldn't influence the blood coagulation in vitro. Implanted the bone cement into the muscle pouches in the thigh of mice or rabbits, it was found no obvious specific antibodies produced in serum and no significant immune reaction of foreign body. All the results indicated tha
引文
1 J. B. Park. Biomaterial Science and Engineering [M]. Pergamon Press, New York, 1984. 48
    2 W. Bonfield. Composites for bone replacement[J]. J Biomed Eng 1988 Nov; 10 (6) :522-6
    3上海第一医学院.《组织学》[M].人民卫生出版社,1981,237-267
    4 Weiss P, Bohic S, Lapkowski M, Daculsi G. Application of FT-IR microspectroscopy to the study of an injectable composite for bone and dental surgery. [J] : J Biomed Mater Res 1998 Jul;41 (1) :167-70
    5 Urist MR, Mikulski AJ. A soluble bone morphogenetic protein extracted from bone matrix with a mixed aqueous and nonaqueous solvent. Proc Soc Exp Biol Med 1979 Oct; 162(1) :48-53
    6 Kawaraura M, Iwata H, Sato K, Miura T. Chondroosteogenetic response to crude bone matrix proteins bound to hydroxyapatite. Clin Orthop 1987 Apr;(217) :281-92
    7 Urist MR. Stimulating associates: the ultimate resource in research. Connect Tissue Res 1989:23(2-3) :107-13 1 989, 6:57
    8 Ripamonti U, Ma SS, van den Heever B, Reddi AH. Osteogenin, a bone morphogenetic protein, adsorbed on porous hydroxyapatite substrata, induces rapid bone differentiation in calvarial defects of adult primates. Plast Reconstr Surg 1992 Sep;90 (3) :382-93
    9 Ripamonti U, Ma SS, Reddi AH. Induction of bone in composites of osteogenin and porous hydroxyapatite in baboons. Plast Reconstr Surg 1992 Apr;89(4) :731-9; discussion 740
    10 Hirota K, Nishihara K, Tanaka H. Pressure sintering of apatite-collagen composite. Biomed Mater Eng 1993 Fall;3(3) :147-51
    11 Okazaki M, Sato M. Computer graphics of hydroxyapatite and beta-tricalcium phosphate. Biomaterials 1990 Oct;11(8) :573-8
    12 Okazaki M, Ohmae H, Takahashi J, Kimura H, Sakuda M. Insolubilized properties of UV-irradiated C03 apatite-collagen composites. Biomaterials 1990 Oct;11(8) :568-72
    13 ShettyV, Niederdellmann H, Katthagen BD. First clinical results with a pyrolized bone substitute .Dtsch Zahnarztl Z 1988 Jan;43(1) :129-31
    14 Wang Rz, Ke Sh, Huang Me. Valence-band offset at AlxGal-xAs/GaAs: Application of average-bond-energy theory in conjunction with the cluster expansion method. PHYSICAL REVIEW. B. CONDENSED MATTER. 1995 Jan 15:51 (3) :1935-1937
    15崔福斋,汪日志,马春林.《94中国秋季材料研讨会:第三卷,第二分册》[R].中国 化工出版社,1995. 537
    16 Ohura K, Bohner M, Hardouin P, Lemaitre J, Pasquier G, Flautre B. Resorption of, and bone formation from, new beta-tricalcium phosphate-monocalcium phosphate cements: an in vivo study. J Biomed Mater Res 1996 Feb;30(2) :193-200
    17 Porter DL, Goldberg MA . Physiology of erythropoietin production. Semin Hematol
    
    1994 Apr;31(2) :112-21
    18 Deb S, Vazquez B, Bonfield W. Effect of crosslinking agents on acrylic bone cements based on poly(methylmethacrylate). J Biomed Mater Res 1997 Dec 15;37(4) :465-73
    19 Rehman I, Hench LL, Bonfield W, Smith R. Analysis of surface layers on bioactive glasses. Biomaterials 1994 Aug;15(10) :865-70
    20 Vashishth D, Behiri JC, Bonfield W. Crack growth resistance in cortical bone: concept of microcrack toughening. J Biomech 1997 Aug;30(8) :763-9
    21 Kobayashi A, Freeman MA, Bonfield W, Kadoya Y, Yamac T, Al-Saffar N, Scott G, Revell PA. Number of polyethylene particles and osteolysis in total joint replacements. A quant itative study using a tissue-digestion method. J Bone Joint Surg Br 1997 Sep;79(5) :844-8
    22 Knowles JC, Gross K, Berndt CC, Bonfield W. Structural changes of thermally sprayed hydroxyapatite investigated by Rietveld analysis. Biomaterials 1996 Mar;17(6) :639-45
    23 Barralet JE, Best SM, Bonfield W. Carbonate hydroxyapatite gel monolith formation and drying. Biomed Mater Eng 1996;6(2) :101-12
    24 Ladiges WC, Raff RF, Storb R. A DLA-associated polymorphic cell surface determinant defined by the murine monoclonal antibody W3G10. Anim Genet 1987;18(2) :149-58
    25 hou P, Akao M. Preparation and characterization of double layered coating composed of hydroxyapatite and perovskite by thermal decomposition. Biomed Mater Eng 1997;7(1) :67-81
    26 Nakanishi K, Kokubo T, Groot K.Induction and morphology of hydroxyapatite, precipitated from metastable simulated body fluids on sol-gel prepared silica. Biomaterials 1993 Oct;14(13) :963-8
    27 Verheyen CC, Dhert WJ, Petit PL, Rozing PM, de Groot K. In vitro study on the integrity of a hydroxylapatite coating when challenged with staphylococci. J Biomed Mater Res 1993 Jun;27 (6) :775-81
    28 Wijs FL, Putter C, Lange GL, Groot K. Local residual ridge augmentation with solid hydroxyapatite blocks: Part I桝n animal experiment. J Prosthet Dent 1993 May;69(5) :510-3
    29 Verheyen CC, Wijn JR, Blitterswijk CA, Groot K, Rozing PM. Hydroxylapatite /poly(L-lactide) composites: an animal study on push-out strengths and interface histology. J Biomed Mater Res 1993 Apr;27(4) :433-44
    30 Yubao L, Klein CP, Zhang X, Groot K. Relationship between the colour change of hydroxyapatite and the trace element manganese. Biomaterials 1993 Oct;14(13) :969-72
    31 Li P, Groot K .Calcium phosphate formation within sol-gel prepared titania in vitro and in vivo. J Biomed Mater Res 1993 Dec;27(12) :1495-500
    32 Hulshoff JE, Dijk K, Waerden JP, Wolke JG, Kalk W, Jansen JA. Evaluation of plasma-spray and magnetron-sputter Ca-P-coated implants: an in vivo experiment using rabbits. J Biomed Mater Res 1996 Jul;31(3) :329-37
    33 Dijk K, Schaeken HG, Wolke JG, Jansen JA. Influence of annealing temperature
    
    on RF magnetron sputtered calcium phosphate coatings. Biomaterials 1996 Feb;17(4) :405-10
    34 Mooney V. Do you just want to feel better or get better? Orthopedics 1999 May;22(5) :479-80
    35 Tencer AF, Mooney V, Brown KL, Silva PA. Compressive properties of polymer coated synthetic hydroxyapatite for bone grafting. J Bioraed Mater Res 1985 Oct;19(8) :957-69
    36 Shimazaki K, Mooney V. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res 1985;3(3) :301-10
    37 Pickus EJ, Lionelli GT, Lawrence WT, Witt PD Late reconstruction of zygomatic complex deformity with hydroxyapatite cement paste. Plast Reconstr Surg 2002 Apr;109(5) :1756-8
    38 Serizawa T, Kawanishi N, Akashi M. Hydroxyapatite deposition by alternating soaking technique on poly(vinyl alcohol)-coated polyethylene films. J Biomater Sci Polym Ed 2001;12(12) :1293-301
    39 Siebrecht MA, De Rooij PP, Arm DM, Olsson ML, Aspenberg P. Platelet concentrate increases bone ingrowth into porous hydroxyapatite. Orthopedics 2002 Feb;25(2) :169-72
    40 Manjubala I, Sivakumar M, Sureshkumar RV, Sastry TP. Bioactivity and osseointegration study of calcium phosphate ceramic of different chemical composition. J Biomed Mater Res 2002;63(2) :200-8
    1 Wolfe SA. Autogenous bone grafts versus alloplastic material in maxillofacial surgery. Clin Plast Surg 1982 Oct;9(4) :539-40
    2 Gonzalez-Avila G, Ginebra M, Hayakawa T, Vadillo-Ortega F, Teran L, Selman M. Collagen metabolism in human aqueous humor from primary open-angle glaucoma. Decreased degradation and increased biosynthesis play a role in its pathogenesis. Arch Ophthalmol 1995 Oct;113(10) :1319-23
    3顾汉卿,徐国风.生物医学材料学,天津:天津科技翻译出版公司.1993
    4 Gupta BL, Dow JA, Hall TA, Harvey WR. Electron probe X-ray microanalysis of the effects of Bacillus thuringiensis var kurstaki crystal protein insecticide on ions in an electrogenic K+-transporting epithelium of the larval midgut in the lepidopteran, Manduca sexta, in vitro. J Cell Sci 1985 Mar;74:137-52
    5 Brown W E, Chow L C. Cem Res Prog, A New Calciump hosphatet Water-setting Cement. In: Brown PW, Cements Research Progress, Westerville. Ohio: American Ceramic Society, 1986. 352
    6刘昌胜.自固化磷酸钙-人体硬组织修复的新希望.世界科学.1998,11:29
    7 Liu C, Shen W, Gu Y, Hu L. Mechanism of the hardening process for a hydroxyapatite cement. J Biomed Mater Res 1997 Apr;35(1) :75-80
    8邵慧芳.自固化磷酸钙的增强研究.[学位论文]上海:华东理工大学.1998. 31
    9 Sugama T, Taylor M. Cement & Concrete Composites, 1994. 16(2) : 93
    
    10 Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res 1995 Dec;29(12) : 1537-43
    9 Miyamoto Y, Ishikawa K, Fukao H, Sawada M, Nagayama M, Kon M, Asaoka K In vivo setting behaviour of fast-setting calcium phosphate cement.. Biomaterials 1995 Jul;16(11) :855-60
    10 Ishikawa K, Miyamoto Y, Kon M, Nagayama M, Asaoka K. Non-decay type fast-setting calcium phosphate cement: composite with sodium alginate. Biomaterials 1995 May;16(7) :527-32
    11 Bermudez O, Boltong MG, Driessens FC, Ginebra MP, Fernandez E, Planell JA. Chloride-and alkali-containing calcium phosphates as basic materials to prepare calcium phosphate cements. Biomaterials 1994 Oct;15 (12) :1019-23
    12 Ginebra MP, Fernandez E, Boltong MG, Bermudez O, Planell JA, Driessens FC .Compliance of an apatitic calcium phosphate cement with the short-term clinical requirements in bone surgery, orthopaedics and dentistry. Clin Mater 1994;17(2) :99-104
    13 Dupraz AM, de Wijn JR, v d Meer SA, de Groot K. Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites. J Biomed Mater Res 1996 Feb;30(2) :231-8
    14 Cherng A, Takagi S, Chow LC. Effects of hydroxypropyl methylcellulose and other gelling agents on the handling properties of calcium phosphate cement. J Biomed Mater Res 1997 Jun 5;35 (3) :273-7
    15 Otsuka M, Matsuda Y, Suwa Y, Fox JL, Higuchi WI. Effect of particle size of metastable calcium phosphates on mechanical strength of a novel self-setting bioactive calcium phosphate cement. J Biomed Mater Res 1995 Jan;29(1) :25-32
    16 Otsuka M, Matsuda Y, Kokubo T, Yoshihara S, Nakamura T, Yamamuro T. Drug release from a novel self-setting bioactive glass bone cement containing cephalexin and its physicochemical properties. J Biomed Mater Res 1995 Jan;29(1) :33-8
    17 BohnerM, Lemaître J, Ring TA. Kinetics of Dissolution of beta-Tricalcium Phosphate .J Colloid Interface Sci 1997 Jun 1;190(1) :37-48
    18 Bohner M, Lemaitre J, Van Landuyt P, Zambelli PY, Merkle HP, Gander B.Gentamicin-loaded hydraulic calcium phosphate bone cement as antibiotic delivery system.. J Pharm Sci 1997 May;86(5) :565-72
    19崔福斋,冯庆玲,生物材料学.北京:科学出版社,1996. 126
    20 Liu C, Wang W, Shen W, Chen T, Hu L, Chen Z. Evaluation of the biocompatibility of a nonceramic hydroxyapatite. J Endod 1997 Aug;23(8) :490-3
    21 IshidaH, Tamai S, YajimaH, Inoue K, Ohgushi H, Dohi Y. Histologic and biochemical analysis of osteogenic capacity of vascularized periosteum. Plast Reconstr Surg 1996 Mar;97(3) :512-8
    22 Fujikawa K, Sugawara A, Murai S, Nishiyama M, Takagi S, Chow LC. Histopathological reaction of calcium phosphate cement in periodontal bone defect. Dent Mater J 1995 Jun;14 (1) :45-57
    23 Ebisawa Y, Miyaji F, Kokubo T, Ohura K, Nakamura T. Bioactivity of ferrimagnetic glass-ceramics in the system FeO-Fe203-CaO-SiO2. Biomaterials 1997 Oct;18(19) :1277-84
    
    
    24 Bohner M. Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury 2000 Dec;31 Suppl 4:37-47
    25 Bohner M, Lemaitre J, Merkle HP, Gander B. Control of gentamicin release from a calcium phosphate cement by admixed poly(acrylic acid). J Pharm Sci 2000 Oct:89(10):1262-70
    26 Rakugi M, Komura T, Ostuchi T, etal. Properties of tetracalcium phosphate-citric acid complex cement. J Dent Res, 1989;68:945-953.
    27 Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC. Polymeric calcium phosphate cements: setting reaction modifiers. Bent Mater 1993 Jan;9(1):46-50
    28 Miyazaki K, Horibe T, Antonucci JM, Takagi S, Chow LC. Polymeric calcium phosphate cements: analysis of reaction products and properties. Bent Mater 1993 Jan;9(1):41-5
    29 陈统一,王文波,李力,李晓东,傅云根,陈中伟.自固化磷酸钙人工骨修复四肢骨缺损的初步临床应用.中华创伤杂志,1999,15(3):184-186.
    1 Pfister WR. Silicone PSAs offer flexibility formedical, pharmaceutical use.Adhesive Age, 1990:33 (13):2
    2 谢贺明.丙烯酸酯及其衍生物在牙科的应用.化学与粘合,1989;3:173
    3 林寿郎.医疗用接着剂动向.日本接着学会言志,1990;26(4):151
    4 村上享.医疗用接着剂现况问题点.日本接着学会言志,1994:30(10):502
    5 卢永顺,田霞.快速医用胶.粘合剂,1991;1:22
    6 曾国蓉,冯地旺,邓德贤,等.新型医用粘合:a—氰基丙烯酸1,2—异丙叉甘油酯的合成.中国胶粘剂,1993;2(1):20
    7 周林斌,姚德成.外科粘合剂的进展.国外医学外科学分册,1994;5:277-280
    8 田霞,卢永顺.21世纪的生物材料.临床外科杂志,1999;7(2):113-114
    9 徐逸敏.新型磁胶根管充填材料的实验研究和临床研究.第四军医大学博士学位论文,1993
    10 丁凤泉.纤维蛋白粘合剂临床应用概况.粘合剂,1986:2:21
    11 陈松龄,王大章.羟基磷灰石+骨形成蛋白+纤维蛋白粘合剂用于增高牙槽嵴的新骨形成反应.中国病理生理杂志.2000;16(7):650-654
    12 田卫东,乔鞠,李声伟等.纤维蛋白粘合剂作为骨形成蛋白载体的实验研究.中国口腔种植学杂志.1999;4(1):17-21
    13 Pavlova M, Braganova. Biocompabible andbiodegradable polyurethane polymers.Bioma-terials, 1993:14(13):1024
    14 Saito M,Maruoka A, Mori T, et al. Experimen-tal studies on a new bioactive bone cement:hy-droxyapatite composite resin. Biomaterials, 1994:15(2):156
    15 Oriessens FCM. Effective formulations for the preparetion of calcium phosphate bone cements. JMater Sci:Mater in Med, 1994:5:164
    16 Andrianjatova H, Jose F, lemaite J. Effect of β- TCP granularity on setting time andstrength of calcium phosphate hydraulic cements. JMater Sci:Mater Med, 1996;7(1):34
    
    
    17 Constanty Br, Ison IC, Fulmer Mt, etal. Skelertal repair by in situ formation of the minerial phase of bone. Science, 1995;2 67:1 796
    18 张建,杨宝贺,秦怀海等.医用胶自体颅骨碎片原位粘合成形术.中华神经外科杂志.1998;14(3):191-192
    19 李建生.医用胶在骨科应用38例体会.临床外科杂志,1999;7(4):208-209
    20 彭应旭,廖工铁,张志荣.柔红霉素聚氰基丙烯酸正丁酯毫微粒体外释药规律研究.华西医科大学学报.1999;30(2):168-170
    21 吴道澄,贺英,席小莉.聚氰基丙烯酸正丁酯-磷脂复合材料脂质体的制备及其稳定性.第四军医大学学报.1999;20(2):175-176
    1 胡蕴玉.把握契机,加快我国组织工程学的应用研究.中华骨科杂志,2000,20:517-518.
    2 Brown WE, Chow LC, Cem Res Prog. A new calcium phosplate, water-setting cement, In:Cements research progress, Brow P W Ed. Westerville, Ohio:American Ceramic Society. 1986,352-379.
    3 王文波,陈中伟,陈统一.自固化磷酸钙人工骨的最新研究进展.生物医学工程学杂志,2000,17(1):80-83.
    4 Costantino PD, Fredman CD, Jones K, etal. Hydroxyapatitc cement 1:Basicchermistry and histologic properties. Arch Otolaryngol Head Neck Surg, 1991,117(40:379-384.
    5 Gerhart TN, Renshaw AA, Miller RL, etal. In vi-vo histologic and biomachnical characterization of a biodegradable particulate composite bone cement. J Biomed Mater Res, 1989,23(1):1-16.
    6 Otsuka M, Matsuda Y, Fox JL, etal. A noval skeletal drag delivery system using self setting calcium phosphate cement 9:Effect of the mixing solution volume on anticaneer drug release from homogeneous drug-load cement. J Pharm Sci, 1995,84(6):733-736.
    7 Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomed Mater Res, 1995,29(12):1537-1543.
    8 Michael AM, Scott DB. Experimental posterolateral lumbar spinal fusion with a demineralized bone matrix gel. spine, 1998,23(2):159-167.
    9 Urist MR. Bone formation by autoinduction. Science, 1965,150:893-899.
    10 林军,王慧明.骨基质蛋白在骨愈合中的作用.中国口腔种植学杂志,2000,5(9):137-140.
    11 Reddi AH, Wientroub S, Muthukumaran N. Biologic priciples of bone induction. Orthop Clin North Am. 1987,18:207-212.
    12 Bergsma JE, Rozema, Ros M, etal. Biocompatibilty study of as-polymerized poly(L-lactide) in rats using a cage implant. J Biomed Mater Res, 1995,29:173-176.
    13 Urist MR, Lietze A,Mizutani H, etal. A bovine low molecular weight bone morphogenetic protein fraction. Clin Orthop, 1982,162:219-223.
    14 张建,杨宝贺,秦怀海等.医用胶自体颅骨碎片原位粘合成形术.中华神经外科杂志.1998;14(3):191-192
    
    
    15 李建生.医用胶在骨科应用38例体会.临床外科杂志,1999;7(4):208-209
    16 Groot KD. Carriers that concentrate native BMPs in vivo. Tissue Engineering, 1998,4:3 37-340
    17 eddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology, 1998,16:247-252.
    1 Cotton A, Deramond H, Cortet B, etal. Preperative percutaneous injection of mythylmethacrylate and N-butyl cyanoacrylate in vertebral hemangiomas. Am J Neuroradiol, 1996,17:137-142
    2 孙明林,胡蕴玉,雷伟,袁志,吴永辉,丛锐.磷酸钙骨水泥/BMP复合人工骨的理化性能及缓释作用.第三军医大学学报,2001;23(7):800-802
    3 Urist MR, Strates BS. Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop, 1970;?l:271-278
    4 Mermelstein LE, Mclain RF, Yerby SA. Reinforcement of thoracolumbar burst fractures with calcium phosphate cement. Spine, 1998,23:664-670
    5 Belkoff SM, Mathis JM, Erbe EM, etal. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine, 2000,25:1061-1064
    6 徐宝山,唐天驷.椎体成形术的现状与发展方向.中华骨科杂志,2001;21(8):502-504
    7 Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomech Mater Res, 1995;29'1537-1543
    8 胡亮,郑昌琼,冉均国.医用粘合剂研究进展.国外医学生物医学工程分册,1998;21(1):26-29
    9 徐逸敏.氰基丙烯酸酯类粘合剂在口腔内科中的应用.牙体牙髓牙周病学杂志,1997;7(2):141-143
    10 Baddielang C B, Berry E E. Spectra structure correlation in hydroxy and fluorapapites [J] . Spectro Chim Acta, 1966,22: 1407.
    11 Gonzalez-diaz P F, Santos M. On the hydroxyl ions in apatites [J] . J Solid State Chem, 1977,22:193.
    1 Cotton A, Deramond H, Cortet B, etal. Preperative percutaneous injection of mythylmethacrylate and N-butyl cyanoacrylate in vertebral hemangiomas. Am J Neuroradiol, 1996,17:137-142
    2 孙明林,胡蕴玉,雷伟,袁志,吴永辉,丛锐.磷酸钙骨水泥/BMP复合人工骨的理化性能及缓释作用.第三军医大学学报,2001;23(7):800-802
    3 Urist MR, Strates BS. Bone formation in implants of partially and wholly demineralized bone matrix. Clin Orthop, 1970;71:271-278
    4 Brown W E, Chow L C.A New Calcium Phosphate, Water-setting Cement, in:Cement Research Progress. Brown P W Ed. American Ceramic Society, 1986. 352-379
    
    
    5 Ishikawa K, Asaoka K. Estimation of ideal mechanical strength and critical porosity of calcium phosphate cement. J Biomech Mater Res, 1995;29:1537-1543
    6 Williams DF. Definitions in biomaterials. New York:Elseriver Science Publ. 1987;66-72
    7 Hench LL. Bioceramics and the origin life. J Biomed Mater Res, 1989;23:685-703.
    8 胡亮,郑昌琼,冉均国.医用粘合剂研究进展.国外医学生物医学工程分册,1998;21(1):26-29
    9 田霞,卢永顺.二十一世纪的生物医学材料——快速医用胶.临床外科杂志,1999;7(2):113
    1. Harakas NK. Demineralized bone-matrix-induced osteogenesis. Clin Orthop 1984 Sep;(188):239-51
    2. Pettis GY, Kaban LB, Glowacki J. Tissue response to composite ceramic hydroxyapatite/demineralized bone implants. J Oral Maxillofac Surg 1990 Oct;48(10):1068-74
    3.马振国.部分胶矿异体骨移植的实验研究.中华口腔医学杂志,1991,26(4):225.
    4.韩祖斌,李承球,孙贤敏等.骨形态形成蛋白与羟基磷灰石.中结骨科杂志,1988,8(4):300.
    5. Reddi AH, Huggins CB. Influence of geometry of transplanted tooth and bone on transformation of fibroblasts. Proc Soc Exp Biol Med 1973 Jul;143(3):634-7
    6. Sakano S, Murata Y, Miura T, Iwata H, Sato K, Matsui N, Seo H. Collagen and alkaline phosphatase gene expression during bone morphogenetic protein (BMP)-induced cartilage and bone differentiation. Clin Orthop 1993 Jul; (292):337-44
    7 林军,王慧明.骨基质蛋白在骨愈合中的作用.中国口腔种植学杂志,2000,5(9)137-140.
    8 Bergsma JE, Rozema, Ros M, etal. Biocompatibilty study of as-polymerized poly(L-lactide) in rats using a cage implant. J Biomed Mater Res, 1995, 29:173-176.
    9 Urist MR, Lietze A, Mizutani H, etal. A bovine low molecular weight bone morphogenetic protein fraction. Clin Orthop, 1982,162:219-223.
    10 eddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology, 1998,16:247-252
    1. Nilsson OS, Urist MR, Dawson EG, Schmalzried TP, Finerman GA. Bone repair induced by bone morphogenetic protein in ulnar defects in dogs. J Bone Joint Surg Br 1986 Aug;68(4):635-42
    2. Summers BN, Eisenstein SM. Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Joint Surg Br 1989 Aug;71(4):677-80
    3. Younger EM, Chapman MW.Morbidity at bone graft donor sites. J Orthop Trauma 1989:3(3):192-5
    4. Hayashi K, Inadome T, Tsumura H, et al. Bone-implam interface mechanics of in
    
    vivobioinert ceramics. Biomed Mater Res, 1993; 14: 1 173-1 179.
    5. Barbon F, Locardi B, Verita M, et al. Biocompatibility and osteogenetic characteristics of new biocompatible glass. Biomaterials, 1991; 12t 565-568.
    6. Satos EM, Radin S, Shenker BJ, et al. Si-CaP xerogels and bone morphogenetic protein act synergistically on Fat stromal marrow cell differentiation in vitro. J Biomed Mater Res, 1998; 41:87-94.
    7. Ijiri S, Nakamura T, Fujisawa Y, etal. Ectopic bone induction in porous apatite-wollastonite-containing glass ceramic combined with bone morphogenetic protein. J Biomed Mater Res, 1997; 35(4) :421-432
    8 Hyun DK, Jonathan G, Smith G et al. BMP-2coated porous PLA scaffolds:Release kineticsand induction of pluripotent C3H10T1/2Cells. Tissue Engineering, 1998,4:35-44.
    9 Klein J,Smeins CM, Mulder JW. Stimulation ofcartilage defferentiation by osteogentic protein-1 in culture of human perichondrium. Tissue Engineering, 1998,4:305-312 .
    10 Mackay AM, Beck SC, Murphy JM. Chondrog-entic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Engineering, 1998,4:41 5-425
    11 Groot KD. Carriers that concentrate native BMPs in vivo. Tissue Engineering, 1998,4:3 3 7-340
    12 Reddi AH. Role of morphogenetic proteins in skeletal tissue engineering and regeneration. Nature Biotechnology,1998, 16:247-252 .
    13林军,王慧明.骨基质蛋白在骨愈合中的作用.中国口腔种植学杂 志,2000,5(9) :137-140.
    14 Ripamonti U. Osteoinduction in porous hydoxyapatite implanted in heterotopics sites of different animal models. Biomaterials, 1996,17:31
    15 Mathai JK, Chandra S, Nair KV, Nambiar KK. Tricalcium phosphate ceramic as immediate root implants for the maintenance of alveolar bone in partially edentulous mandibular jaws. A clinical study. Aust Dent J 1989 Oct;34(5) :421-6
    16 Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan AL Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 1990 Dec;24(12) :1563-70
    17 Shimazaki K, Mooney V. Comparative study of porous hydroxyapatite and tricalcium phosphate as bone substitute. J Orthop Res 1985;3(3) :301-10
    18 Urist MR, Nilsson O, Rasmussen J, Hirota W, Lovell T, Schmalzreid T, Finerman GA. Bone regeneration under the influence of a bone morphogenetic protein (BMP) beta tricalcium phosphate (TCP) composite in skull trephine defects in dogs. Clin Orthop 1987 Jan;(214) :295-304

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700