不同运动方式对模拟失重大鼠骨密度、骨代谢生化指标及股骨Osterix表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本实验旨在探索纵跳和游泳对于模拟失重大鼠骨代谢所起的作用及其机制,并将这两种运动模式相比较,分析其对骨代谢影响的差异,通过模拟宇航员登入太空前的预防性训练,对大鼠的骨密度、骨代谢、及成骨细胞特异性转录因子Osterix (Osx)进行定量研究,探究其原因,间接的为环境对发育中骨量的影响、骨量丢失过程中各种干预手段的运用以及运动方式的选择等提供必要的理论依据,为宇航员模拟失重、升入太空之前的训练模式提供一些参考。
     【目的】
     1、探讨不同形式的运动对模拟失重大鼠骨密度的影响;
     2、探讨不同形式的运动对模拟失重大鼠骨代谢生化指标(骨钙素,抗酒石酸酸性磷酸酶)的影响;
     3、探讨不同形式的运动对模拟失重大鼠成骨细胞特异性转录因子Osterix的影响;
     4、分析运动对模拟失重是否有预防作用,并探讨哪种运动方式所起的作用更佳,从而为骨质流失过程中运动干预手段的选择以及运动处方的制订提供理论依据。
     【方法】
     建立大鼠纵跳、游泳运动模型,以24只4周龄SD大鼠为实验对象,随机分为3组:安静悬吊组、纵跳悬吊组、游泳悬吊组,每组8只。训练8周后,参照陈杰等改良式大鼠尾部悬吊法,进行2周的尾吊模拟失重,称量体重后将大鼠处死,测骨密度、骨形态结构指标及骨代谢指标。
     1、观察运动期间大鼠的饮食、活动、毛色、体重变化及尾吊期间大鼠的反应,并做记录。
     2、运用HOLOGIC Discover A骨密度仪检测大鼠股骨、腰椎骨的骨密度。
     3、用游标卡尺测量股骨、胫骨的如下形态学指标:长度,中段宽度,中段厚度。
     4、用酶标仪和南京建成生物公司试剂盒检测模拟失重后大鼠血清中抗酒石酸酸性磷酸酶的水平,用上海锐聪公司试剂盒测血清中骨钙素水平。
     5、用实时荧光定量PCR技术测定大鼠股骨软骨组织内Osterix表达水平,并探讨其变化机制。
     【结果】
     1、实验期间大鼠活动自如、进食不受限。实验开始时测量各组大鼠体重,各组之间无显著差异。经过8周训练后,三组大鼠的体重均有增加,其中纵跳悬吊组和游泳悬吊组大鼠体重较安静悬吊组有显著差异(P<0.05)。尾吊2周后三组大鼠体重均比悬吊前有所下降,但各组大鼠体重之间无显著差异(P>0.05)。
     2、股骨、胫骨形态计量学指标方面,总体上各组大鼠没有统计学意义上的差异(P>0.05),但是可以发现纵跳悬吊组的股骨长度、胫骨中段宽度和胫骨中段厚度这三项指标与安静悬吊组相比有一定的增高趋势,其他几项无明显增高趋势。
     3、在股骨的骨密度指标上,纵跳悬吊组明显高于安静悬吊组,二者之间存在极显著性差异(P<0.01);游泳悬吊组与安静悬吊组之间无统计学差异,但有降低的趋势。
     4、在椎骨的骨密度指标上,纵跳悬吊组与安静悬吊组相比具有显著性差异(P<0.05);游泳悬吊组与安静悬吊组相比无显著性差异,有轻微降低的趋势。
     5、反映骨形成的生化指标骨钙素(OT)水平比较显示,在8周训练加2周模拟失重后,纵跳悬吊组的OT水平与安静悬吊组相比显著升高(P<0.05),游泳悬吊组的OT水平有升高趋势,但差异无统计学意义(P>0.05)。
     6、反映骨吸收的生化指标抗酒石酸酸性磷酸酶(StrACP)水平比较显示,与安静悬吊组相比,纵跳悬吊组的StrACP水平与安静悬吊组相比有极显著性下降(P<0.01);游泳悬吊组与安静悬吊组相比有显著性差异(P<0.05)。
     7、实时荧光定量PCR检测Osx mRNA发现,与安静悬吊组相比,纵跳悬吊组的OsxmRNA含量增高,呈显著性趋势(P<0.05),游泳悬吊组大鼠虽有增高趋势,但无统计学意义上的差异(P>0.05)。
     【结论】
     1、研究发现悬吊可以使骨密度、骨形成活动、血清骨代谢生化指标及股骨、胫骨形态学指标降低;悬吊对骨发育的作用机理主要是抑制骨形成,而运动能在很大程度上抑制该过程的发生。
     2、比较了纵跳与游泳两种运动方式之间的差异,发现不同形式的运动对模拟失重大鼠骨流失的预防作用有着明显的不同。8周的运动训练对尾吊大鼠的股骨和腰椎骨密度、骨代谢生化指标以及股骨、胫骨形态计量学指标都有明显的改变,其中纵跳悬吊组在大部分指标上优于游泳悬吊组,说明纵跳运动比游泳运动能有效促进骨形成,可以在较小的强度作用下对骨代谢产生较大的影响。
     3、运动引起的骨代谢变化与局部细胞因子对骨组织的影响有关。初步探索了运动与成骨细胞特异性转录因子Osterix(Osx)之间的联系,分析运动对Osx的影响,以及Osx对骨代谢的影响,认为运动可能通过促进Osx的表达从而促进骨形成,且中等强度的纵跳运动优于游泳运动。
This study was designed to explore the mechanism of vertical jump and swimming for the prevention of simulated weightlessness on bone in rats, and compared these two sports models to analyze their different impacts on bone metabolism. By simulating the preventive training before astronauts landing the space, I conducted quantitative research on rats'bone density, bone mechanism and the osteoblast-specific transcription factor Osterix(Osx), so as to explore the causes, and indirectly provide the necessary theoretical basis for the environmental impact on developing bone mass, the use of various interventions in recovery process, and the choices of different movements, as well as offer some references to the pre-training before the astronauts moving into space.
     [Objective]
     1. Study the effects of different forms of exercise on BMD in simulated weightlessness rats;
     2. Study the effects of different forms of exercise on the biochemical indexes of bone metabolism (BGP, StrACP) in simulated weightlessness rats;
     3. Study the effects of different forms of exercise on the osteoblast-specific transcription factor Osterix(Osx) in simulated weightlessness rats.
     4. Analysed whether exercise have precautionary effects, and which movement pattern is much better, so as to offer a theoretical basis for the choice of movement and the formulation of exercises prescriptions during bone loss.
     [Method]
     Set up the rat vertical jump, swimming exercise model, choose twenty four 4-week-old SD rats as subjects and randomly divide them into 3 groups:Quiet & tail-suspended group, jump & tail-suspended group, and swimming & tail-suspended group. After 8 weeks training, make 2 weeks of tail-suspension according to Chen jie's model of the rat tail-suspension and improved methods. After 2 weeks of tail-suspension, test their body weight, then killing the rats, test their bone mineral density, bone morphology index and bone metabolic markers.
     1. Observe the rats'diet, activity, coat color, weight and their response during exercise and tail-suspension, and take notes.
     2. Using HOLOGIC Discover A to detect the rats'femur bone and lumbar bone's BMD.
     3. Measure the length, mid-width and mid-thickness of femur and tibia by using the vernier callipers.
     4. Use the microplate reader and the kit which bought from Nanjing Jiancheng Biology Company to detect the tartrate-resistant acid phosphatase levels in rats'blood, and use the kit which bought from Shanghai Ruicong Company to detect the osteocalcin levels in blood.
     5. Measure the level of Osterix (Osx) in femur cartilage tissue by the technique of real-time fluorescence quantitative PCR, and explore the mechanism of the variations.
     [Result]
     1. During experiment the rats moved and ate freely. At the outset of the experiment, there are no differences between the three groups on weight. After 8 weeks'training, the weights of them are all increased. The jump & tail-suspended group and swimming & tail-suspended are obviously different from the quiet & tail-suspended group on weight (P<0.05). After 2 weeks tail-suspending the weights of those rats are all decreased, but the difference is not obvious (p>0.05).
     2. Compare the morphological indicators of femur and tibia in the rat:statistically there are no significant differences in general (P>0.05), but we can find that the length of femur, the mid-width and mid-thickness of tibia in jump & tail-suspended group have an increasing tendency.
     3. Compare the BMD of femur in the rat:The jump & tail-suspended group has obvious difference compared with the quiet & tail-suspended group (P<0.01); the swimming group shows the decreased trend on BMD compared with the quiet & tail-suspended group, and the difference is not obvious (P>0.05).
     4. Compare the BMD of tibia in the rat:The jump & tail-suspended group has obvious difference compared with the quiet & tail-suspended group (P<0.05); the swimming group shows the decreased trend on BMD compared with the quiet & tail-suspended group, and the difference is not obvious (P>0.05).
     5. Compare the level of OT in the rat:The jump & tail-suspended group has obvious difference on the level of OT compared with the quiet & tail-suspended group (P<0.05); the swimming & tail-suspended group has no obvious difference on the level of OT compared with the quiet & tail-suspended group (P>0.05).
     6. Compare the level of StrACP in the rat:The jump & tail-suspended group have remarkable difference on the level of StrACP compared with the quiet & tail-suspended group (P<0.01); the swimming & tail-suspended group have obvious difference on the level of StrACP compared with the quiet & tail-suspended group (P<0.05).
     7. Use the real-time fluorescence quantitative PCR to detect the expression of Osterix imRNA. The jump& tail-suspended group has obvious increase on the level of Osx mRNA, compared with the quiet & tail-suspended group (P<0.05); and the swimming & tail-suspended group has an increasing tendency, but has no statistically significant differences(p>0.05).
     [Conclusion]
     1. The study found that tail-suspending can lower the level of bone density, bone forming activities, bone metabolic biochemical indicators, and the morphology index of femur and tibia. The main formation mechanism of tail-suspending is inhibiting the bone absorption, and exercise could curb the occurrence of the process to a great extent.
     2. Compared the difference between vertical jump and swimming, and found that different kinds of movement patterns have different effects on preventing bone loss in simulated weightlessness rats. After 8 weeks of training, the levels of BMD, bone metabolic biochemical indicators, and the morphology index in femur and tibia have obvious changes. The jump & tail-suspended group is better than swimming & tail-suspended group on most indices, thus show that jump can effectively promote the formation of bone, and can make great effects on bone metabolism with smaller strength.
     3. The metabolic change caused by exercise is relevant to the effect of local factor made to the bone tissue. Make a preliminary exploration on the relationship between exercise and osteoblast specific transcription factor Osterix(Osx), analyze the exercise effect on Osx, and the Osx effect on bone metabolism. Think that sports might promote the bone formation by promoting the expression of Osx, and the moderate jump exercise is superior than swimming.
引文
[1]张林,杨锡让.运动与骨代谢生化标志物研究进展[J].中国运动医学杂志,1999,18(3):260-261.
    [2]黄瑶,徐培.运动对女大学生骨密度和骨代谢的影响[J].四川体育科学,2008,3(1),29-32.
    [3]吴久玲,渠川淡.体育运动对青春期少女骨密度的影响[J].中华预防医学杂志,2001,35(3):152.154.
    [4]徐红.运动及控体重对女运动员骨密度的影响[J].中国运动医学杂志,1997,16(1):36-41.
    [5]Bradney M, Pearce G, Naughton G, et al. Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength:a controlled prospective study[J].Bone Miner Res,1998,13(12):1814-1821.
    [6]Bass S, Pearce G, Bradney M, et al. Exercise before puberty may confer residual benefits in bone density in adulthood:studies in active prepubertal and retired female gymnasts[J].Bone Miner Res,1998,13(3):500-507.
    [7]Recker R.R. Bone gain in young adult women [J], JAMA.1992,26(8):2403-2408.
    [8]P Steiger, JE Block, S Steiger, et al. Spinal bone mineral density measured with quantitative CT:effect of region of interest, vertebral level, and technique[J].Radiology, May1990;175:537-540.
    [9]徐莉,陈家琦,王忠山.多年体育运动对老年男性骨代谢的影响[J].天津体育学院学报,1997,12(4):14-18.
    [10]顾丽燕.有氧运动对老年人活体骨矿物质含量影响的研究[J].体育科学.2000,20(6):55-59.
    [11]周勇.运动锻炼防治绝经女性腰椎L2-L4骨质疏松的作用[J].中国运动医学杂志,2003,22(1):72-74.
    [12]耿红梅,郑陆,阎守扶.运动—雌激素—骨代谢关系的研究进展[J]I首都体育学院学报.2008,20(5):57-60.
    [13]马涛.跳跃对生长期大鼠骨组织形态计量学和生物力学指标的影响[D].华东师范大学硕士毕业论文.2007
    [14]赵贤.运动对模拟失重后大鼠骨形态计量学、骨密度及骨生物力学指标的影响[D].华东师范大学硕士毕业论文.2009.
    [15]Nguyen T.,Sambrook P.,et al. Prediction of osteoporotic fractures by postural instability and bone density[J].BMJ 1993:307:1111-1115
    [16]邓树勋,王健.高级运动生理学[M].高等教育出版社,2003,7.
    [17]Fuchs R K, Bauer J J, Snow C M. Jumping improves hip and lumbar spine bone mass in prepubescent children:a randomized controllde trial [J].Bone Miner Res,2001,16(1):148-156.
    [18]赵杰修,张林,张承玉.运动方式对人体骨峰值的影响[J].中国运动医学杂志,2000,19(2):163-165.
    [19]黄何平,王国祥,张林.纵跳和闭目单足站立对跟骨骨密度的影响[J]中国组织工程研究与临床康 复,2007,11(41):8324~8326.
    [20]JT H Huang, S C Lin, F L Chang, et al. Effects of different exercise modes on mineralization, structure, and biomechanical properties of growing bone[J].J Appl Physiol,2003,95:300-307.
    [21]Morel J, Combe B, Francisco J. Bone mineral density of 704 amateur sportsmen involved in different physical activities [J].Osteoporos Int,2001,12 (2):152-159.
    [22]HE Vander Wiel, P Lips, WC Grafamans, et al. Additional weight-bearing during exercise is more important than duration of exercise for anabolic stimulus of bone:a study of running exercise in female rats[J].Bone,1995:16(1):73-80.
    [23]Hatori M, Hasegawa A, Adachi H, et al. The effects of at the anaerobic threshold level on vertebral bone loss in postmemo-pausal women [Z].Calcif Tissue Int,1993,52(6):411-414.
    [24]Hertel K L, Trahiotis M G. Exercise in the prevention and treatment of osteoporosis:the role of physical therapy and nursing[J]. Nurs Clin North Am,2001,36(3):441-453.
    [25]Bourrin S, Genty C, Palle S, et al. Adverse effect of strenuous exercise:adensitometric and histomorphometric study in the rat [J].Appl Physiol,1994,76(5):1999-2005.
    [26]章晓霜,高顺生,李青南,等.不同强度运动对去卵巢大鼠骨量的影响及其机理[J].中国运动医学杂志,2001,20(2):147-150.
    [27]周蓉晖,王小燕,刘夫力.运动对骨代谢的影响[J].现代康复,2001,1(5):5-17.
    [28]修晓雨.不同运动处方对人体骨密度及基本体质指标的影响[J].中国临床康复2005,9(20),174-175.
    [29]王世鹏.不同运动形式对模拟失重后大鼠骨密度、骨代谢生化指标和骨组织计量学指标的影响[D].华东师范大学硕士毕业论文.2009.
    [30]张培珍.不同负荷游泳运动对雄性老龄小鼠骨代谢状况影响的研究[D].北京体育大学硕士研究生毕业论文.2000.
    [31]郜艳.体育运动对老年人骨矿物质含量影响的研究[J].山西农业大学学报(社会科学版)2008,7(2),212-215.
    [32]王洪志.人体内骨的代谢、骨质疏松与钙[J].衡水师专学报.2000,2(3),63-65.
    [33]王宏,李卓朝.冬泳与老年人骨代谢[J].中国骨质疏松杂志.1996:2(3):25-27.
    [34]孟昭亨,沈海.老年长跑运动员的骨代谢[J].中华老年医学杂志.1990:9(3):161-163
    [35]章明放,张乃鑫等.运动对雌性大鼠去势后骨质疏松的作用——骨组织形态计量学观察[J].中华骨科杂志.1994:14(6):365-369
    [36]牛秀荣.不同强度的长期游泳运动对生长期大鼠骨代谢的影响[D].河北师范大学硕士学位论文。2007。
    [37]郑庆云.纵跳对生长期大鼠骨密度、骨代谢生化指标及股骨BMP-2的影响[D].华东师范大学硕士 毕业论文.2007.
    [38]赵玉堂.骨代谢生化标志物在OP诊断中的应用[J].山东医药.1998,38(12),35~37.
    [39]Price P.A, Parthemore J.G., et al. New biochemical marker for bone metabolism[J].Clin Invest.1980:66(5):878-883
    [40]Crofton PM, Wsde JC, et al. Serum concentrations of carboxyl-terminal propeptide of type Ⅰ procollagen, amino-terminal propeptide of type Ⅲ procollagen cross-linked carboxyl-terminal telopeptide of type Ⅰ collagen, and their interrelationship in school children [J].Chem,2000,43(9):1577-1581.
    [41]刘思金,马学军,鉈星飙,等.绝经后女体育教师与非运动老年女性骨密度和骨代谢生化标志物的研究[J].中国运动医学捂忖,2001,20(2):153.
    [42]A Eliakim, LG Raisz, JA Brasel, et al.Evidence for increasdd bone formation Fohlowing a brief en'urance-type training intervention in adolescent males[J].J Bone Res,1997:12(10):1708-1713.
    [43]Danz AM, Zittermann A, Schuedernaier U, et al.The effects of a specific College of Physical Education and Heath strength development exercise on bone density in postmenopausal woman[J].Woman Health,2001:7(6):701-709.
    [44]Woitge H.W., Friedman B., et al. Changes in bond turnover induCed by aerobic and anaerobic exercise il young males[J].Bone Miner Res.1998,13 (12):1797-1804.
    [45]何志鹏,沈广志,邹桂华.游泳运动对老龄雄性小鼠骨量及骨代谢相关激素影响的研突[J]牡丹江医学院学报.2009,1(30):5-7.
    [46]张林.运动队绝经后骨质疏松防止机理的研究[C].北京:北京体育大学博士论文.1998.
    [47]Rong H, Berg U, Torring O. Effect of acute endurance and strength exercise on circulating calcium-regulating hormones and bone markers in young healthy males.Seand J Med Sci Sports 2001:7(3):152-159.
    [48]陈一冰等.运动对大鼠骨细胞凋亡及IGF-I表达的影响[J].中国运动医学杂志,2003,22(4):418-419.
    [49]张培珍,乔志源.不同负荷游泳运动对老龄雄性小鼠骨代谢水平的影响[J].中华物理医学与康复杂志2004,26(5):71-74.
    [50]钟卫权.不同负荷的游泳训练及雌激素对去卵巢大鼠骨质疏松症的影响[J].中国组织工程研究与临床康复,2007,17(11):3351-3353.
    [51]A Menkes, S. Mazel, R.A.Redmond, K.koffler, et al. Strength training increases regional bone mineral density and bone remodeling in middle-aged and older men[J].American Physiological Society,1993,74(5):2478-2484.
    [52]郭芮,胡敏,孙振宇等.模拟失重对下颌骨的影响[D].中国人民解放军军医进修学院硕士学位论 文.2007.
    [53]Tilton FE, Degioanni JJ, Schneider VS.Long-term follow-up of Skylab bone demineralization[J]. Aviat Space Environ Med,1980,51(11):1209-1213.
    [54]Morey-Holton ER, Whalen RT, Arnaud SB, et al. The skeleton and its adaptation to gravity. Handbook of physiology, section 4:Environmental physiology. New York:Oxford University Press, 1996.691-719.
    [55]Oganov VS, Schneider VS. Skeletal system. Humans in spaceflight. Volume 3, Book I. Effects of microgravity. Reston VA:AIAA,1996.247-266.
    [56]Morey-Holton ER, Globus RK. Hindlimb unloading of growing rats:a model for predicting skeletal changes during space flight[J]. Bone,1998,22(5,Suppl):83S-88S.
    [57]Bikle DD, Halloran BP. The response of bone to unloading. J Bone Miner Metab,1999,17(4):233-244.
    [58]付崇建,郁冰冰,朱国雄,等.失重/模拟失重对骨骼系统的影响及其机制[J].实用医药杂志,2003,20(7):546-549.
    [59]Johnston RS, Dietlein LF. Biomedical results from Skylab[R].NASA SP-377,1977.
    [60]郭芮,胡敏,孙振宇,薛京伟.模拟失重对大鼠下颌骨、腰椎和股骨组织结构的影响[J].航天医学与医学工程.2005,18(3):165-169.
    [61]Gazenko OG, Hyin YeA, Savina,et al. Experiment on rats flown on Kosmos-1667:Chief objectives experimental conditions and results [J]. Kosm icheskaya Biologiya I Aviakosm icheskaya Meditsina, 1987, (4):9-16.
    [62]Fldes U, Rapesak M, Szilagy T, et al. Effects of space flight on bone formation and resorption[J].Acta Physiologica Hungarica,1990, (4):271-285.
    [63]Dehority W, Halloran BP, Bikle DD,et al. Bone and hormonal changes induced by skeletal unloading in the mature male rat. Am J Physiol,1999,276(1 PT1):62-69.
    [64]Ohira Y, Yoshinaga T, Nomura T. Gravitational unloading effects on muscle fiber size, phenotype and myonuclear number[J]. Adv Space Res,2002,30(4):777-781.
    [65]Aguirre J I, Plotkin L I, Stewart S- A, et al. Osteocyte apoptosis is induced by weightlessness in mice and precedes osteoclast recruitment and bone loss[J].Bone Miner Res,2006,21(4):605-615.
    [66]IWasaki Y, Yamato H, Murayama H, et al. Maintenance of trabecular structure and bone volume by vitamin K(2) in mature rats with long-term tail suspension[J].Bone Miner Metab,2002, 20(4):216-222.
    [67]佟海英,胡素敏,周鹏等.悬吊模拟失重及解悬吊对大鼠骨密度及生物力学的影响[J].中国骨伤2008,21(4):277-278.
    [68]SHEN Xianyun, XUE Yueying, JIANG Shizhong. Space Gravitational Physiology and Medicine[M]. Beijing:National Defence Industry Press,2001.385-412.
    [69]唐学阳,彭明惺,刘利君.废用性骨质疏松症的运动疗法[J].现代康复,2001,5(3);24-24.
    [70]Klement BJ, Spooner BS. Mineralization and growth of cultured embryonic skeletal tissue in microgravity[J].Bone,1999,24:349-359.
    [71]Gridley DS, Nelson GA, Peters LL, et al. Genetic models in applied physiology:selected contribution: effects of space flight on immunity in the C57BL/6 mouse-Ⅱ Activation, cytokines, erythrocytes, and platelets[J].J Appl-Physiol,2003,94(5):2095-2103.
    [72]Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis:estrogen deficiency causes both type Ⅰ and type Ⅱ osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res,1998,13:763-773.
    [73]谭雄进,王前,郑磊等.模拟失重对不同发育阶段大鼠骨代谢的影响[J].第一军医大学学报.2002:22(7):611-613.
    [74]Wronski TJ, Morey-Holton ER, Doty SB, et al. Histomorphometric analysis of rat skeleton following spaceflight [J]. Am J Physiol,1987,252(2):R252-R255.
    [75]Wronski TJ, Li M, ShenY, et al. Lack of effect of spaceflight on bone mass and bone formation in group-housed rats[J]. J Appl Physiol,1998,85(1):279-285.
    [76]Morey-Holton ER, Halloran BP, Garetto LP, et al. Animal housing influences the response of bone to spaceflight in juvenile rats[J]. J Appl Physiol,2000,88(4):1303-1309.
    [77]王冰,张舒,吴兴裕.失重对成骨细胞基因表达和细胞功能影响的研究进展[J].航天医学与医学工程,2003,16(3):129-134.
    [78]王冰.模拟失重环境对大鼠骨肉瘤成骨样细胞MAPK信号转导功能的影响[C].中国人民解放军第四军医大学博士学位论文.2003.
    [79]Caillot-Augusseau A, Lafage-Proust MH, Soler C,et al.Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95)[J]. Clin Chem,1998, 44(3):578-585.
    [80]曹新生,吴兴裕,吴燕红,等.模拟失重大鼠后肢骨ALP、ACP、I型胶原及生物力学的变化[J].航天医学与医学工程.2005,18(4):255~258.
    [81]Patterson-Buckendahl P, Arnaud SR, Mechanic RB, et al.Fragility and composition of growing rat bone after one week in spaceflight. Am J Physiol 1987,252:R240-R246.
    [82]Pastrica E, Patterson Buckendahl P, Ruth K, etal. Effects of simulated weightlessness on rat osteocalcin and bone calcium.Am J Physiol,1989,257:R1103-R1109.
    [83]崔伟,史之祯.失重环境下骨钙素与骨代谢的关系[J].生理科学进展.1993,24(3):36-39.
    [84]Majd Z, William E, Gathings, et al. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis[J]. Endocrinology,2004,145:2421-2432.
    [85]Westerlind KC, Turner RT. The skeletal effects of spaceflight in growing rats:tissue-specific alterations in mRNA levels for TGF-beta[J].J Bone Miner Res,1995,10(6):843-848.
    [86]Oganov VS, Schneider VS. Skeletal system. Humans in spaceflight[M]. Volume3, Book I Effects of microgravity. Reston VA:AIAA,1996.247-266.
    [87]Rantakokko J, Uusitalo H, Jamsa T, et al. Expression profiles of mRNAs for osteoblast and osteoblast proteins as indicators of bone loss in mouse immobilization osteopenia model. J Bone Miner Res,1999,14(11):1934-1942.
    [88]孙平,蔡德鸿,黄震.失重与骨代谢调节失衡[J].中国骨质疏松杂志.2006,12(5):502-505.
    [89]Basso N, Jia Y, Bellows CG, et al. The effect of reloading on bone volume, osteoblast number, and osteoprogenitor characteristics:Studies in hind limb unloaded rats[J].Bone,2005,37:370-378.
    [90]Fu CJ, Yu BB, Yang LJ. Changes of osteocalcin in bone and bone marrow in tail suspended rats[J]. Space Med Med Eng(Beijing),2003,16:260-263.
    [91]Sarkar D, Nagaya T, Kogak K,et al. Culture in vector-averaged gravity under clinostat rotation results in apoptosis of osteoblastic ROS17/2.8 cells. J Bone Miner Res,2000,15:489-498.
    [92]Senia K, Sandu P, Ayala G, et al. Bone marrow from mechanically unloag rat bone expresses reduced osteogenic capacity in vitro. J Bone Miner Res,1994,9:321-327.
    [93]Collet P, Uebelhart D, Vico L, et al. Effects of 1-and 6-month spaceflight on bone mass and biochemistry in two humans. Bone,1997,20:547-551.
    [94]邓廉夫.骨质疏松发生的细胞学基础及其防治.实用老年医学[J].2000,14(3):119-121
    [95]熊志立,孟繁浩,李遇伯等.成骨细胞的骨形成调控机制[J].生命的化学.2004,24(1):44-46.
    [96]Owen ME, Cave J, Joyner CJ. Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci,1987,87 (Pt 5):731-738.
    [97]Ashton BA, Allen TD, Howlett CR, et al. Formation of bone and cartilage by marrow stromal cells in diffusion chambers in vivo. Clin Orthop Relat Res,1980, (151):294-307.
    [98]Manolagas SC, Jilka RL. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N Engl J Med,1995,332(5):305-311.
    [99]童安莉,陈璐璐,丁桂芝.成骨细胞骨形成机制研究进展[J].中国骨质疏松杂志.1999,5(3):60-64.
    [100]郭敏锋,刘强,孙海飚.成骨细胞分化调控机制研究新进展[J].国际骨科学杂志.2006,27(2):112~114.
    [101]Choi KY, Kim HJ, Lee MH, et al.Dev Dyn,2005;233(1):115~121
    [102]张永宽.地塞米松对体外培养的人牙囊细胞成骨特性影响的实验研究[C].第四军医大学博士学位论文.2006.
    [103]Mansukhami A. Study on the Modulated Mechanism of Osteoblastic Formation[J].Cell Biol,2000,149(6):1297~1308.
    [104]赵虎.成骨细胞在新型生物反应器内的大规模扩增[D].大连理工大学硕士学位论文.2006.
    [105]蔡国锋.生长因子对成骨细胞作用的研究进展[J].国外医学(生理、病理科学与临床分册).2002,22(3):273-275.
    [106]Luo Q, Kang Q, Si W, et al. J Biol Chem,2004;279(53):55958-55968
    [107]郑惠玲.CHIP蛋白对小鼠前成骨细胞增殖与分化的调控[D].西北农林科技大学博士学位论文.2004.
    [108]唐康来.TGF-β对胎兔颅骨成骨样细胞体外成骨作用[J].中国矫形外科杂志,2000,7(10):986~988.
    [109]Fagenholz PJ et al. Altered bleomycin-induced lung fibrosis in osteopontin-deficient mice [J].Craniofac Surg,2001,12(2):183~190.
    [110]牛云飞.持续成骨力值刺激下犬骨盆弓状线骨折愈合的生物学研究[D].第二军医大学博士学位论文.2007.
    [111]韩云珍.大鼠成骨细胞分离培养及其生物学特性鉴定[C].福建农林大学硕士学位论文.2008.
    [112]Lee MH, Kim YJ, et al. J Biol Chem,2003,278(36)34387-34394.4. Lee MH, Kwon TG, Park HS, et al. Biochem Biophys Res Commun,2003; 309(3):689-694.
    [113]Hu Z,Peel SA,Ho SK,et al. Role of bovine bone morphogenetic proteins in bone[J].Craniofac Surg,2005;16(6):1006-1014.
    [114]Gazzerro E et al. Vietri M Serum souluble E-cadherin fragments in lung cancer[J]. Endocrinology,1999,140(2):562~567.
    [115]Kang Q, Sun MH, Cheng H, et al. Bone morphogenetic proteins[J].Gene Ther,,2004;11(17): 1312-1320.
    [116]Komori T. Making a tooth:growth factors, transcription factors, and stem cells[J].Cell Biochem, 2005; 95(3):445-453
    [117]Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol,2000,20:8783~8792.
    [118]Lee KS, Kim HJ, Li QL, etal. Runx2 is a common target of transforming growth factorβ1 and bone morphogenetic protein2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotentmes-enchymal precursor cell line C2C12. Mol Cell Biol,2000,20:8783~8792.
    [119]Banerjee C, Javed A, Choi JY, etal. Differential regulation of the two principal Runx2/Cbfal N-terminal is oforms in response to bone morpho genetic protein-2 during development of the osteoblast phenotype. Endocrinology,2001,142:4026~4039.
    [120]Lee KS, Kim HJ, Li QL, etal. Runx2 is a common target of transforming growth factorβ1 and bone morphogenetic protein2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotentmes-enchymal precursor cell line C2C12. Mol Cell Biol,2000,20: 8783-8792.
    [121]Zhang YW, Yasui N, Ito K, etal. A RUNX2/PEBP2A/CBFA1 mutation displaying impaired transactivation and Smad interaction in cleido cranial dysplasia. Proc Natl Acad Sci USA,2000,97:10549~10554.
    [122]Nakashima K, Zhou X, Kunkel G, et al.The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation.Cell,2002,108(1):17-29.
    [123]Gao Y, Jheon A, Nourkeyhani H, et al. Molecular cloning,structure,expression,and chromosomal localization of the human Osterix (SP7)[J].Gene,2004;341:101~110.
    [124]Milona M A,Gough J E,Edgar A J.Expression of alternatively splice disoforms of human Sp7 in osteoblast-like cells.BMC Genomics,2003,4(1):43~53.
    [125]Simeone A, Acampora D, Pannese M, et al.Cloning and characterization of two members of the vertebrate Dlx gene family. Proc Nat 1 Acad Sci USA,1994,91:2250~2254.
    [126]Lee M H, Kwon T G, Park H S, et al. BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun,2003,309(3):689~694.
    [127]Panganiban G, Rubenstein J L R. Developmental functions of the Distal-less/Dlx homeobox genes. Development,2002:129:4371~4386.
    [128]Komori T, J Cell Biochem,2005,95(3):445~453.
    [129]Acampora D, Merlo GR, Paleari L, et al. Development,1999;126(17):3795~3809.
    [130]Robledo R F, Rajan L, Li X, et al.The Dlx5 and Dlx6 homeoboxgenes are essential for craniofacial, axial, and appendicular skeletal development. Genes&Dev,2002,16:1089~1101
    [131]王茸影,易静.骨形成蛋白调控成骨分化的信号机制[J].生命科学.2005,17(1):34-39.
    [132]Lu HF, Kraut D, Gerstenfeld LC, et al. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology,2003; 144:346~352。
    [133]Akiyama H, Chaboissier MC, Martin JF, etal. The transcription factor Sox9 has essential roles in successive steps of the ehondrocyte differentiation pathway and is required for expression of Sox5 and Sox6Genes Dev,2002,16(21),2813~2828.
    [134]孟亚强,张柳.成骨细胞分化过程中相关信号传导途径的研究进展[J].华北煤炭医学院学报.2007,9(4):490~492.
    [135]Luo Q, Kang Q, Si W, et al. J Biol Chem,2004;279(53):55958-55968.
    [136]Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor β1 and bone morphogenetic protein2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchy malprecursor cell line C2C12. Mol Cell Biol,2000,20:8783-8792.
    [137]Katagiri T, Takahashi N. Oral,Dis,2002;8(3):147-159.
    [138]Morey ER, Baylink DJ. Inhibition of bone formation during space flight.Science,1978,201(4361):1138-1141.
    [139]孙联文,庄逢源.微重力导致航天员骨质疏松的研究进展[J].中华航空航天医学杂志,2004,15(1):54-58.
    [140]Vico L, Novikov VE, Very JM, et al.Bone histomorphometric comparison of rat tibial metaphysis after 7-day tail suspension vs. 7-day spaceflight. Aviat Space Environ Med,1991,62(1):26-31.
    [141]Zerath E, Godet D, Holy X, et al. Effects of spaceflight and recovery on rat humeri and vertebrae: histological and cell culture studies.J Appl Physiol,1996,81 (1):164-171.
    [142]戴钟铨,莹辉,万玉民等.微重力对成骨细胞及其分化过程的影响[J].中华航空航天医学杂志.2005,16(2):148-151.
    [143]廖庆辉.模拟微重力对大鼠骨髓间充质干细胞定向成骨诱导分化的影响[C].南方医科大学硕士学位论文.2009.
    [144]Guignandon A, Genty C, Vico L, et al. Demonstration of feasibility of automated osteoblastic line culture in space flight [J].Bone,1997,20(2):109-116.
    [145]Hughes Fulford M, Lewis ML. Effects of micogravity on osteoblast growth activation[J].Exp Cell Res,1996,224(1):103-109.
    [146]Hughes Fulford M,T jandraw inata R, Fitzgerald J, et al. Effects of microgravity on osteoblast growth.Gravit Space Biol Bull,1998,11(2):51-60.
    [147]衷锐.补肾壮骨中药对模拟微重力成骨细胞的影响[C].南方医科大学硕士学位论文.2009.
    [148]杨志.不同重力环境下流体剪切应力对人骨肉瘤成骨样细胞Cbfal表达的影响[C].第四军医大学硕士学位论文.2006.
    [149]Doty SB, Stiner D, Telford WG. The effect of spaceflight on cartilage cell cycle and differentation[J]. J Gravit Physiol,1999,6(l):89-90.
    [150]Hughes Fulford MI. Function of the cytoskeleton in gravisensing during spaceflight[J].Adv Space Res,2003,32(8):1585-1593.
    [151]王攀.重力变化对人骨肉瘤成骨样细胞和脐静脉血管内皮细胞形态、增殖及周期的影响[C].第四军医大学硕士学位论文.2007.
    [152]Saito M,Soshi S,Fujii K1 Effect of hyper and microgravity on collagen post-t ranslational cont rols of MC3 T32E1 osteoblast s[J].J Bone Miner Res,2003,18(9):1695-1705.
    [153]Dai Z, Li Y, Ding B, et al. Effects of clinorotation on COLIAI EGFP gene expression[J].Sci China C Life Sci,2004,47(3):203-210.
    [154]续惠云,安龙,王哲,等.模拟失重对人成骨样细胞凋亡的影响[J]细胞生物学杂志,2008,30:651-654.
    [155]Caillot-Augusseau[18 Caillot-Augusseau A, Lafage-Proust MH, Soler C, et al. Bone formation and resorption biological markers in cosmonauts during and after a 180-day space flight (Euromir 95). Clin Chem,1998,44(3):578-585.
    [156]Collet P, Uebelhart D, Vico L, et al.Effects of 1-and 6-month spaceflight on bone mass and biochemistry in two humans. Bone,1997,20(6):547-551.
    [157]Wang T, Yang G, Hu P, et al. Effect of simulated weightlessness on TNF-alpha production and the response of bone marrow cells to GM-CSF in rats.Space Med Med Eng,1997,10(3):168-171.
    [158]Carmeliet G, Nys G, Bouillon R. Microgravity reduces the differentiation of human osteoblastic MG-63 cells. J Bone Miner Res,1997,12(5):786-794.
    [159]Otto F, Thornell A P, Crompton T. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development.Cell,1997,89:765~771.
    [160]Cheng SL, Shao JS, Charlton-Kachigian N, et al. Msx2 promotes ostesgenesis and suppresses adipogenic differentiation of multipotent mesen-chymal progenitors. J Biol Chem,2003, 278:45969-45977.
    [161]李益广.成骨相关转录因子Osterix启动子调控机制初步研究[C].广州:暨南大学硕士学位论文.2006.
    [162]刘中博.Runx2能诱导Osterix在非成骨细胞内的基因表达[C].东北师范大学硕士学位论文.2005.
    [163]Yagi K, Tsuji K, Nifuji A, et al. Bone morphogenetic protein-2 enhances osterix gene expression in chondrocytes. J Cell Biochem,2003,88:1077-1083.
    [164]乔建瓯,宁光,王铸钢.Osterix:与成骨细胞分化和骨形成有关的转录因子[J].国外医学.内分泌学分册.2004,24(4):252-254.
    [165]李帆.重组Osterix腺病毒的构建及其对成骨细胞周期影响的初探[C].暨南大学硕士学位论文.2006.
    [166]Lee MH, Kwon TG, Park HS, et al. BMP-2-induced osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun,2003,309:689-694.
    [167]Ito Y. Molecular basis of tissue-specific gene expression mediated by the runt domain transcription factor PEBP2/CBF.Genes Cells,1999,4:685-696.
    [168]Otto F, Thornell A P, Crompton T. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell,1997,89:765-771.
    [169]Mundlos S, Otto F, Mundlos C. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell,1997,89:773-779.
    [170]Nakashima K, Crombrugghe B. Transcriptional mechanisms in osteoblast differentiation and bone formation. Trends in Genetics,2003,19:458-466.
    [171]Katagiri T, Takahashi N. Regulatory mechanisms of osteoblast and osteoclast differentiation.Oral Dis,2002,8:147-159.
    [172]Lee MH, Kwon TG, Park HS, et al.BMP-2-inducned osterix expression is mediated by Dlx5 but is independent of Runx2.Bichem Biophys Res Commun,2003,309:689-694.
    [173]Lee MH, Kin YJ, Kim HJ, et al. Tumor suppressor and hepatocellular carcinoma[J].Biok Chem,2003,278(36):34387-34394.
    [174]马进,陈杰,丁兆平等.模拟失重九天对大鼠长骨生物力学特性的影响[J].第四军医大学学报,1994,15(3).17-21.
    [175]Fazzalari NL, Forwood MR, Manthey BA, et al. Three-dimensional eonfoeal images of microdamage in eaneellous bone[J].Bone,1998,23(4):373-378.
    [176]Price PA, et al. New biochemical marker for bone metabolism.J.Clin Invest 1980;66;878.
    [177]陈立峰.运动联合中药早期干预去卵巢后骨质疏松的实验研究[C].浙江大学医硕士毕业论文.2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700