重组人骨形成蛋白成骨分化及其定量测活的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨形成蛋白(bone morphogenetic protein,BMP)的发现证实了骨形成的诱
    导学说,为难治性骨折和骨缺损的治疗提供新的希望。从1988年Wozney首次
    克隆人BMP cDNA基因,至今已发现近20种人BMP。BMP属于TGF-β超家族
    成员,不仅在骨骼的发育和再生修复中发挥关键作用,而且在中胚层的诱导
    和分化、造血组织的形成和发育、神经系统的发育和修复等方面都起着重要
    作用。因而对BMP的研究不仅有重要的理论意义,而且还具有广阔的临床应
    用前景。从骨组织提取BMP,方法烦琐、收获量少、纯度低、重复性差,因
    此,用基因工程制备BMP就成为将BMP推向应用的必然途径。国内外在COS、
    CHO、昆虫等真核细胞中已经表达得到不同种人BMP,但表达量低,成本昂
    贵;我研究组率先在大肠杆菌中高表达获得具诱骨活性的人BMP-2和-3羧基
    端肽,为BMP的研究和应用提供了新来源。
     然而BMP的研究和应用遇到了一大难题——至今还没有理想的定量测
    定BMP生物学活性的方法,这大大限制了BMP临床应用的进度。目前国内
    外对BMP的测活,基本上还是沿用Urist最早采用的体内植入法,即将BMP
    
    
     第 四 军 医 大 学 博 土 论 义
     植入动物骨以外的组织(最常用是肌肉)中,植入后不同时间作组织学切片、
     X-线照像等检查,以观察其有无诱导骨组织生成的活性。该方法能从整体观
     察BMP的真实活性,但实验周期长(一般要2-3周)、只能定性而不能定量,
     而且结果受动物品种、植入状况等因素影响,仅看BMP有无活性,难以比
     较不同来源、不同批次等BMP的活性,这使BW的研究工作和生产应用缺
     乏量的依据。为此国内外在BW定量测活研究上作过很多努力,包括在整
     体植人法(常用植入肌肉中的方法称为肌袋实验)的基础上发展的方法。近
     年来又发展了一些体外测活方法,如测定BMP刺激后培养细胞的ALP活性、
     蛋白聚糖水平、钙盐沉积的量和速度等。但进展都不大,BMP的定量测活
     仍未解决。
     BMP定量测活困难的原因在于它是个分化因子。一般促进细胞生长繁
     殖的生长因于可以用同位素前体参入DNA来观察促生长的效应,从而定义
     其活性的单位。而BMP与这些细胞生长因子不同,它的活性表现在使细胞
     分化上,促进细胞生长不是BMP活性的主要表现,有时反而抑制细胞繁殖;
     故不能用DNA合成和细胞分裂繁殖的速度来衡量其活性。而且BMP促细胞
     分化的表现又是多方面的,因此造成定量测活的困难。不过,因BMP最初
     是作为诱骨分于被发现,所以其活性检测基本还是围绕BMP这一基本特性,
     即促成骨分化来进行。
     为此我们也从BMP分化功能的角度探讨了BMP的定量测活,包括测定
     BMP刺激后ALP活性、合成蛋白量等的变化,除骨髓细胞外,其余细胞系
     nP活性并无明显变化。另外我们还用放免法测定了BMP-2作用不同细胞
     后骨钙素(OC)的含量变化,该指标虽然特异,但反应幅度不够大,最大
     增加约1倍多,且该方法要用同位素,检测步骤烦琐。所以说BMP的研究,
     特别是重组人BMP的研究和临床应用,迫切需要建立一种可快速定量的活
     性测定方法。
     近年克隆发现的Cbfal是成骨分化特异性转录因子,对成骨分化发挥极
     其关键的转录激活作用,Cbfal的基因敲除或突变将导致全身骨骼发育障碍。
     Cbfal 在非成骨细胞或成骨前体细胞均可上调成骨分化相关基因——一骨钙
     一
    
     第 四 军 医 大 学 博 士 论 文
     素、碱性磷酸酶(Alkaline phosphatase,ALPL骨桥素及 1型胶原基因的表达,
     而且证实这些基因的启动子内均有与 Cbfa 结合的作用元件。研究发现,
     某些正常情况下并无成骨细胞表型的细胞(如间充质细胞C3H10TI/2等),
     在BMP诱导其成骨分化过程中,首先出现Cbfal 的高表达,然后出现碱性
     磷酸酶(ALP)、骨钙素(OC)、骨桥素的表达。这说明Cbfal是BMP作用
     信号的下游靶分子,BMP诱导成骨分化是通过Cbfal的中介完成,即Cbfal
     接到BMP刺激信号后,结合到成骨分化相关基因启动子内的Cbfal作用元
     件,从而启动、激活这些基因的转录、表达。
     这些研究结果使我们产生定量测定BMP活性的新思路。因骨钙素是成骨
     分化特异性相关标志,所以我们选定骨钙素作为BMP诱骨分化的靶向指标。
     而荧光素酶报告基因系统是近年发展起来、广泛应用的基因转录报告系统,
     它是通过上游启动子启动Luciferase基因表达,然后检测荧光素酶分解底物产
Bone morphogenetic protein (BMP) was first discovered as a osteoinductive molecule, which proved substantial morphogenetic evidence for the theory of induction. Nearly 20 cDNAs of human BMP have been cloned since Wozney etal reported the successful cloning of BMP-1 through BMP-4 in 1988. On the basis of characteristics that include amino acid similarity, the BMPs grouped as a family within the TGF-B superfamily. BMPs not only play a key role in skeletogenesis and bone repair but also involve in dorsal/ventral pattern and extraskeletal organogenesis such as hematopoietic and nervous system during embryonic development. Natural BMPs can be extracted from animal or human bones, but the extraction is labor- and time-consuming process and the amounts of BMPs obtained from bones are often less productive. Fortunately, different recombinant human BMPs (rhBMP) have been expressed in mammalian cells, insects cells or E.coli and all of them can induce cartilage and bone formation in in vivo assay,
    so the recombinant DNA technology will allow a supply of almost unlimited amounts of rhBMP for further
    Department of Biochemistry and Molecular Biology. FMMU
    - 7 -
    
    
    
    
    study and clinical applications. Especially the use of bacterial expression system for the production of rhBMPs might facilitate the introduction of them for clinical applications, as this system offers an extremely high protein output at relatively low cost. In the near future, rhBMPs can potentially replace conventional autogenous bone grafts in the repair of nonunions, large bone fractures, and bone defects.
    But there is not an ideal quantitative bioassay method for BMP so far, for BMPs are cell differentiation factors. Their activities are always judged in vivo in mouse or other animals by a standard if they can induce ectopic bone formation. Although this in vivo rodent assay system is reliable and classical, it needs a long time and is affected by many factors. So it is necessary to develop a new in vitro assay method for BMP. A lot of efforts have been applied, including detection of ALP, osteocalcin (OC) and glycogan etc, but the results are not satisfied, for they are not specific or sensitive for BMP's effects. We also analyzed the changes of ALP, OC and synthesis of protein in bone morrow stromal cells (MSCs), NIH3T3 fibroblast and C2C12 myoblast cells stimulated by rhBMP-2. The results showed that concentrations of OC and proteins were gently added in all 3 cells, while the level of ALP was only gone up in the MSCs in dose-dependant effect. Therefore, the direct detection of ALP or OC is not suitable for the quantitative assay of rhBMPs' biological abilities.
    Meanwhile the mechanism of osteoblast differentiation is well progressed and the Cbfal (Core binding factor al) is cloned as an essential transcription factor required for osteoblast differentiation. The gene knockout or mutation of Cbfal will lead to a total lack of bone or abnormal skeleton. Cbfal stim Dlates osteoblast-specific gene expression, such as ALP, osteocalcin (OC), type I collagen, osteopontin, and bone sialoprotein. The consensus DNA binding sequence for Cbfal is found in the promoters of these genes as PuACCPuCA, which is regarded as osteoblast-specific element (OSE). More importantly, BMPs' up-regulation of the expression of ALP and OC is associated with the expression of Cbfal, which is prior to the expression of osteoblastic phenotype. It is suggested that Cbfal is one of BMPs targeting key transcriptors which then activate the expression of osteoblast-
    Department of Biochemistry and Molecular Biology, FMMU
    - 8 -
    
    
    
    specific genes. So we can take advantage of the findings that effects of BMPs on osteoblast differentiation are partly mediated by Cbfal, and augment the effects of BMPs by increasing numbers of OSE (Cbfal activating osteoblast-specific element) in order to quantitatively assay the biological abilities of rhBMP. Then we focus on the OC promoter and Luciferase reporter gene as OC is one of osteoblastic phenotype and Luciferase reporter gen
引文
1. Urist MR. Bone formation by autoinduction. Science. 1965; 150:893
    2. Hanamura H, et al. Solublized bone morphogenetic protein(BMP) from mouse osteosarcoma and rat demineralized bone matrix. Clin Orthop. 1980; 148:281
    3. Bessho K, et al. Purification of rabbit bone morphogenetic protein-derived from bone, dentin, and wound tissue after tooth extraction. J Oral Maxillofac Surg 1990; 48:162
    4. Wozney JM, Rosen V, Celeste AJ, et al. Novel regulation of bone formation: molecular clone and activities. Science, 1988;242:1528
    5. Wang EA, Rosen V, Cordes P, et al. Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA. 1988;85:9484
    6. Celeste AJ, Iannazzi JA, Taylor RC, et al. Identification of transforming growth factor family members present in bone inductive protein purified from bovine bone. Proc Natl Acad Sci USA. 1990; 87:9843
    7. Ozkaynak E., et al. Osteogenic protein-2, a new member of the transforming growth factor-beta superfamily expressed early in embryogenesis. J Bio Chem 1992; 267:25220
    8. Zhao QQ, Deng K, Labosky PA, et al. The gene encoding BMP 8B is required for the initiation and maintenance of spermazogenesis in the mouse. Genes & dev. 1996;10(3) :1657
    9. Celeste AJ, Song JJ, Cox K, et al. Bone morphogenetic protein-9, a new member of the TGF-β superfamily. J Bone Miner Res. 1994;9(Abstract 64) :9
    10. Inada M, Katagiri T, Akiyama S, et al. BMP-12 and-13 inhibit terminal differentiation of myoblasts, but not induce their differentiation into osteoblasts. Biochem Biophys Res Commun. 1996;222:317
    11. Hino J, Makoto T, Norimatsu T, et al. cDNA cloning and genomics structrue of human bone morphogenetic protein-3b (BMP-3b). Biochem Biophy Res Commun. 1996;223:304
    12. Dube JL, Wang P, Elvin J, Lyons KM, et al. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998 ;12(12) :1809-17.
    13. Bond JS, et al. The astacin family of metalloendopeptidases . Protein Sci 1995; 4:1247
    14. Burt DN. Evolutionary grouping of the transforming growth factor-beta superfamily. Biochem Biophys Res Commun 1992; 184:590
    15. Tabas JA, Zasloff M, Wasmuth JJ, et al. Bone morphogenetic protein: Chromo-somal
    
     localiation of human genes for BMP-1, BMP-2A and BMP-3. Genomics, 1991;9:283
    16. Tabas JA, et al Chromosomal assignmenr of the human gene for Bone morphogenetic protein 4. Clin Orthop 1993; 293:310
    17. Hahn GV, et al. A bone morphogenetic protein subfamily: chromosomal localization of human genes for BMP5, BMP6, BMP7. Genomics 1992; 14:759
    18. Wrana, et al TGF-P signals thro gh a heteromeric protein kinase receptor complex. Cell 1992; 71:1003
    19. Peter TD. Activin receptor-like kinases: A novel subclass of cell-surgace receptors with predicted serine/threonine Kinase activity . Oncogene 1993; 8:2879
    20. Yamaji N, et al. A mammalian serine/threonine kinase receptor specifically binds BMP2 and BMP4. Biochem Biophys Res Commun 1994; 205:1944
    21. Nohno T, et al. Identification of a human type Ⅱ receptor for BMP4 that forms differential heteromeric complexes with BMP typell receptor. J Bio Chem 1995; 270:22522
    22. Rosenzweig BL, et al. Cloning and characterization of a human type II receptor for BMPs. Proc Natl Acad Sci USA 1995; 92:7636 Toyono T, Nakashima M, Kuhara S, et al. Expression of TGF-beta superfamily receptors in dental pulp. J Dent Res. 1997;76:1555
    23. Bepppu H, Minowa O, Miyazono K, et al. cDNA cloning and genomic organization of the mouse BMP type II receptor. Biochem Biophys Res Commun. 1997;235:499
    24. Toyono T, Nakashima M,Kuhara S, et al. Expression of TGF-beta superfamily receptors in dental pulp. J Dent Res. 1997;76:1555
    25. Roelen BA, Goumans MJ, Rooijen MA, et al. Differential expression of BMP receptors in early mouse development. Int J Dev Biol. 1997;41:541
    26. Nicole C., et al. Schnurri is required for Drosophila Dpp signaling and encodes a zinc finger protein similar to the mammalian transcription factor PRDII-BF1. Cell 1995; 81:791
    27. Raftery L.A., et al. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics 1995; 139:241
    28. Liu F, et al. A human MAD protein acting as a BMP-regulated transcriptional activator. Nature 1996; 381:620
    29. Nishita M, Ueno N, Shibuya H. Smad8B, a Smad8 splice variant lacking the SSXS site that inhibits Smad8-mediated signalling. Genes Cells 1999 Oct;4(10) :583-91
    30. Maduzia LL, Padgett RW. MAD, a member of the Smad family,translocates to the nucleus upon stimulation of the dpp pathway. Biochem Biophys Res Commun. 1997; 238:595
    
    
    
    31. Hahn SA, et al. DPC-4, a candidate tumor suppressor gene at human chromosomal 18q 21. 1. Science 1996; 271:350
    32. Shi Y, Hata A, Lo RS, et al. A structural basis for mutational inactivity of the tumour supressor Smad4. Nature. 1997;388:87
    33. Zhang Y, Musci T, Derynck R, et al. The tumor suppressor Smad4/DPC4 as a mediator of Smad function. Curr Biol.l997;7:270
    34. Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-P superfamily. Nature. 1997;389:622
    35. Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFP receptor and functions as an antagonist of TGFp signaling. Cell. 1997;89:1165
    36. Ishisaki A, Yamato K, Hashimoto S,J, et al. Differential inhibition of Smad6 and Smad7 on bone morphogenetic protein-and activin-mediated growth arrest and apoptosis in B cells.Biol Chem 1999 ;274(19) : 13637-42
    37. Yamamoto N, Akiyama S, Katagiri T, et al. Smadl and Smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts. Biochem Biophys Res Commun. 1997;238:574
    38. Wu RY, Zhang Y, Feng XH, et al. Heteromeric and homomeric interactions correlate with signaling activity and functional cooperativity of Smad3 and Smad4/DPC4. Mol Cell Biol.l997;17:2521
    39. Shi Y, Hata A, Lo RS, et al. A structural basis for mutational inactivity of the tumour supressor Smad4. Nature. 1997;388:87
    40. Kretzschmar M, Doody J, Massague J. Opposing BMP and EGF signalling pathways converge on the TGF-p family mediator Smadl. Nature. 1997;389:618
    41. Ohta S, Hiraki Y, Shigeno C, et al. Bone morphogenetic proteins (BMP-2 and BMP-3) induce the late phase expression of the proto-oncogene c-fos in murine osteoblastic MC3T3-E1 cells. FEBS Lett. 1992;314:356
    42. Ghosh Choundhury G, Kim YS, Simon M, et al. BMP2 inhibits platelet-derived growth factor-induced c-fos gene transcription and DNA synthesis in mesangial cells. Involvement of MAP kinase. J Biol Chem 1999;274(16) : 10897-902
    43. Xu RH, Dong Z, Maeno M, et al. Involvement of Ras/Raf/AP-1 in BMP-4 signaling during Xenopus embryonic development. Pro Natl Acad Sci USA. 1996;93:834
    44. Lee YS. Chuong CM. Activity of protein kinase A is a pivotal step involved in both BMP-2 and cyclic AMP induced chondrogenesis. J Cellular Phys. 1997; 170(2) : 153
    45. Zehentner BK, Dony C, Burtscher H. The transcription factor Sox9 is involved in BMP-2
    
    signaling. J Bone Miner Res 1999;14(10):1734-41
    46.刘新平,陈苏民,陈南春等.人骨形成蛋白cDNA1、2A、3在大肠杆菌中的克隆、表达及活性。第四军医大学学报,1991;12:458
    47.蒲勤,陈苏民,陈南春等.重组人骨形成蛋白-2成熟肽在大肠杆菌中的高效表达。第四军医大学学报,1998:19(1):8
    48.崔有宏,陈苏民,刘新平,等.重组人骨形成蛋白 3 C 端肽在大肠杆菌中的到表达及其诱骨活性。生物化学杂志,1997;13(5):513
    49.朱帮福,蒲勤,陈苏民等.重组人BMP3成熟肽的表达、纯化及诱骨活性的研究。生物工程学报.1999;15(3):288-291
    50.张斌,蒲勤,李毅,等.人BMP2、3成熟肽削短/突变体的构建与表达及其诱骨活性。第四军医大学学报,2001:22(6):573
    51.赵明,王会信,周廷冲.重组人骨形态发生蛋白-2成熟肽在大肠杆菌中的表达及其诱导成骨活性。生物化学杂志,1994;10(2):318
    52.林松,徐印钦,李伯良.人骨形成蛋白2A活性片段在大肠杆菌中的高效表达。生物化学与生物物理学报,1996;28(1):8
    53. Ruppert R, Hoffmann E, Sebald W. Human bone morphogenetic protein-2 contans a heparin-binding site which modifies its biological activity. Eur J Biochem. 1996;237:295
    54. Wang EA, Rosen V, D'Alessandro JS, et al. Recombinant human bone morphogenetic protein induces bone formation. Proc Natl Sci Acad USA. 1990;87:2220
    55. Hammonds RG. Manufacture of BMP2 with recombinant mammalian cells. Mol Endocrinol. 1991; 5:149
    56. Ishida N, Tsujimoto M, Kanaya T. Expression and characterization of hBMP2 in silkworm larvae infected with recombinant BmNPV. J Biochem. 1994; 115:279
    57.林松,宓怡德,戴聂红.重组人骨形成蛋白2在家蚕幼虫中表达及产物纯化。生物化学与生物物理学报,1996;28(1):8
    58.卢兹凡.人骨形成蛋白2和3在昆虫杆状病毒表达系统中的表达纯化及活性研究。第四军医大学博士学位论文,1997
    59. Takaoka K, et al. Transfilter bone induction by Chinese Hamster Ovary(CHO) cells transfected by cDNA encoding bone morphogenetic protein 4. Clin Orthop 1994; 300:269
    60. Shimizu K, et al. Periosteal and intratumaorous bone formation in athymic nude mice by Chinese hamster ovary tumors expression of murine BMP 4. Clin Orthop. 1994; 300:274
    61. Lou J, Tu Y, Ludwig FJ, et al. Effect of bone morphogenetic protein-12 gene transfer on mesenchymal progenitor cells. Clin Orthop 1999 ;(369):333-9
    62. Lou J, Xu F, Merkel K. J Gene therapy: adenovirus-mediated human BMP-2 gene
    
    
    ?/transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo.Orthop Res 1999 ;17(1) :43-50
    63. Okubo Y, Bessho K, Fujimura K, et al. Expression of bone morphogenetic protein-2 via adenoviral vector in C2C12 myoblasts induces differentiation into the osteoblast lineage. Biochem Biophys Res Commun 1999 ;262(3) :739-43
    64. Day CS, Bosch P, Kasemkijwattana C, et al. Use of muscle cells to mediate gene transfer to the bone defect. Tissue Eng 1999 ;5(2) :119-25
    65. Franceschi RT, Wang D, Krebsbach PH, et al. Gene therapy for bone formation: in vitro and in vivo osteogenic activity of an adenovirus expressing BMP7. J Cell Biochem 2000 Jun 6;78(3) :476-86
    66. Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9 gene therapy to induce spinal arthrodesis in the rodent. J Neurosurg 2000;92(2 Suppl):191-6
    67. Fang J, Zhu YY, Smiley E, et al. Proc Natl Sci Acad USA. 1996;93:5753
    68. Noden D.M. Factors and mechanisms influencing bone growth. New York: Alan.R.liss. 1982;167
    69. Zhang Y, Zhang Z, Zhao X, et al. A new function of BMP4: dual role for BMP4 in regulation of Sonic hedgehog expression in the mouse tooth germ. Development. 2000;127(7) :1431-43.
    70. Nifuji A, Kellermann O, Kuboki Y, et al. Perturbation of BMP signaling in somitogenesis resulted in vertebral anf rib malformations in the axial skeletons formation. J Bone Miner Res.l997;12:332
    71. Chalmers J., et al. Observations on the induction of bone in soft tissues. J Bone Joint Surg 1975;57B:36
    72. Noden D.M. The role of the neural crest in patterning of avian cranial skeletal, connective and muscle tissues. Dev Biol 1983; 96:144
    73. Reddi AH. Biochemical sequence in transformation of normal fibroblasts into cartilage and bone in adolescent rat. Proc Natl Acad Sci USA 1972; 69:1601
    74. Suzuki A, Kaneko E, Maeda J, et al. Mesoderm induction by BMP-4 and-7 heterodimers. Biochem Biophys Res Commun. 1997;232:153
    75. Wilson PA, Lagna G, Suzuki A, et al. Concentration-dependent patterning of the Xenopus ectoderm by BMP-4 and its signal transducer Smadl. Development. 1997;124:3177
    76. Gamer LW, Wolfman NM, Celeste AJ, et al. A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos.Dev Biol 1999 Apr l;208(l):222-32
    77. Fann M.J., et al. Depolarization differentially regulates the effects of BMP2-6 and activin
    
    A on sympathetic neural phenotype. J Neurochem 1994; 63:2074
    78. D'Alessandro J.S. Bone morphogenetic protein induce differentiation in astrocyte lineage cells. Growth factors 1944; 11:53
    79. Xu R.H., et al. A dominant negative BMP4 receptor cause neuralizatin in xenopus ectoderm. Biochem Biophys Res Commun 1995; 212:212
    80. Krieglstein K., et al. TGF-βsuperfamily members promote survival of midbrain dopaminergic neurons and peotect them against MPP toxicity. EMBO J 1995; 14:736
    81. Hattori A. BMP2 is markedly synergistic with TNF in stimulating the production of nerve growth factor(NGF) in fibroblasts. Biochem molecular Biology International 1996; 38:1095
    82. Reissmann E., et al. Involvement of BMP4 and BMP7 in the differention of the adrenergic phenotype in developing sympathetic neurons. Development 1996; 122:2079
    83. Arekell R, Beddington RS. BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development. 1997;124:1
    84. Luo G, Hofmann C, Bronckers AL, et al. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning . Gene Development. 1995;9:2808
    85. Oh SH, Johnson R, Wu DK. Differential expression of bone morphogenetic protein in the developing vestibular and auditory sensory organs. J Nenurosci. 1996;16:6463
    86. Hattori A, Katayama M, Iwasaki S, et al. Bone morphogenetic protein-2 promotes survival and differentiation of striatal GABAergic neurons in the absence of glial cell proliferation. J Neurochem 1999 ;72(6):2264-71
    87. Johnsson B.M. and Wiles M.V. Evidence for involvement of activin A and BMP4 in mammalian mesoderm and hematopoietic development. Mol Cell Biol 1995; 15:144
    88. Zhang C.H., et al. BMP-like signals are required after the mid-blastula transition for blood cell development. Developmental Genetics 1996; 18:267
    89. Ahmed N, Sammons J, Khokher MA, et al. Effect of bone morphogenetic protein-6 on hematopoietic stem cells and cytokine production in normal human bone marrow stromaExp Hematol 2000 ;28(12): 1495
    90.田琼,张绍章,蒲勤,等.rhBMP2-m对小鼠辐射损伤的治疗作用及其机理的探讨。中华放射医学与防护杂志,1998;18:253
    91. Yokouchi Y. BMP2/BMP4 mediate programmed cell death in chicken limbs buds. Development. 1996; 22:3725
    92. Zou H, Niswander L. Requirement for BMP signaling in interdigital apoptosis and scale formation. Science. 1996;272:738
    
    
    93. Marazzi G, Wang Y, Sasson D. Msx2 is a transcription regulator in the BMP4-mediated programmed cell death pathway. Dev Biol. 1997; 186:127
    94. Graham A., et al. The signaling molecule BMP4 mediates appoptosis in the rhombencephalic neural crest. Nature 1994; 37:654
    95. Kawamura C, Kizaki M, Yamato K, et al. Bone morphogenetic protein-2 induces apoptosis in human myeloma cells with modulation of STAT3. Blood 2000 15;96(6) :2005-11
    96. Bentley H, et al. Expression of Bone Morphogenetic Proteins in humman prostatic adenocarcinoma and benign prostatic hyperplasia. Br J Cancer 1992;66:1159-1163
    97. Mehdi R, Shimizu T, Yoshimura Y, et al. Expression of bone morphogenetic protein and its receptors in osteosarcoma and malignant fibrous histiocytoma. Jpn J Clin Oncol 2000 Jun;30(6) :272-5
    98. Kim IY, Lee DH, Ahn HJ, et al. Expression of BMP receptors type-IA,-IB and-Ⅱ correlates with tumor grade in human prostate cancer tissues. Cancer Res 2000 l;60(11) :2840-4
    99. Zhao G.Q., et al. Evidence that mouse BMP8a and 8b are duplicates gene that plays a role in supermatogenesis and placental development. Mechanisms of Development 1996; 57:159
    100. Thomson JR, Machado RD, Pauciulo MW, et al. Sporadic primary pulmonary hypertension is associated with germline mutations of the gene encoding BMPR-Ⅱ, a receptor member of the TGF-beta family. J Med Genet 2000;37(10) :741-5
    101. Dorai H, Sampath TK. BMP-7 modulates genes that maintain the vascular smooth muscle cell phenotype in culture. J Bone Joint Surg Am 2001;83-A Suppl 1(Pt 1) :S70-8
    102. Ikeda S, Hachisu R, Yamaguchi A, et al.Radiation retards muscle differentiation but does not affect osteoblastic differentiation induced by bone morphogenetic protein-2 in C2C12 myoblasts. Int J Radial Biol 2000 ;76(3) :403-11
    103. Okubo Y, Bessho K, Fujimura K, et al.Osteoinduction by recombinant human bone morphogenetic protein-2 at intramuscular, intermuscular, subcutaneous and intrafatty sites. Int J Oral Maxillofac Surg 2000 ;29(l):62-6
    104. Okubo Y, Bessho K, Fujimura K, et al. Comparative study of intramuscular and intraskeletal osteogenesis by recombinant human bone morphogenetic protein-2. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999 ;87(l):34-8
    105. Bessho K, Konishi Y, Kaihara S, et al. Bone induction by Escherichia coli-derived recombinant human bone morphogenetic protein-2 compared with Chinese hamster ovary cell-derived rhBMP-2. Br J Oral Maxillofac Surg 2000 Dec;38(6) :645-649
    
    
    106. Bessho K, Kusumoto K, Fujimura K, et al. Comparison of recombinant and purified human bone morphogenetic protein. Br J Oral Maxillofac Surg 1999 ;37(1):2-5
    107. Gao T.J. and Linholm T.S. Searching for a novel carrier for bioactive delivery of Bone Morphogenetic Protein. Bone Morphogenetic 5: Protein Biology, Biochemistry and Reconstructive Surgery edited by T. Sam Lindholm. 1996; R.G. Lands company 121-127
    108. Winn SR, Uludag H, Hollinger JO. Carrier systems for bone morphogenetic proteins. Clin Orthop 1999 ;(367 Suppl):S95-106
    109. Isobe M, Yamazaki Y, Mod M, et al. regeneration produced in rat femur defects by polymer capsules containing recombinant human bone morphogenetic protein-2.J Oral Maxillofac Surg 1999 ;57(6):695-8; Bone
    110. Zellin G, Linde A. Bone neogenesis in domes made of expanded polytetrafluoroethylene: efficacy of rhBMP-2 to enhance the amount of achievable bone in ratPlast Reconstr Surg 1999;103(4):1229-37
    111.马秦,毛天球,刘宝林,等.生物珊瑚、胶原和rhBMP-2的合成人工骨修复兔下颌骨缺损的实验研究。实用口腔医学杂志,1998:14(1):24
    112.毛天球,陈富林,杨维东,等.骨组织工程支架材料的研究。解放军医学杂志,2001;26(4):235
    113. Yamagiwa H, Endo N, Tokunaga K, et al. In vivo bone-forming capacity of human bone marrow-derived stromal cells is stimulated by recombinant human bone morphogenetic protein-2. J Bone Miner Metab 2001 ;19(1):20-8
    114. Noshi T, Yoshikawa T, Dohi Y, et al. Recombinant human BMP-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs 2001 ;25(3):201-8
    115. Bae SC, Takahashi E, Zhang YW, et al. Cloning, mapping and expression of PEBP2 alpha C, a third gene encoding the mammalian Runt domain. Gene. 1995 ;159(2):245-8.
    116. Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747-54.
    117. Bae SC, Lee J. cDNA cloning of run, a Caenorhabditis elegans Runt domain encoding gene. Gene. 2000;241(2):255-8.
    118. Coffman JA, Kirchhamer CV, Harrington MG, et al. SpRunt-1, a new member of the runt domain family of transcription factors, is a positive regulator of the aboral ectodermspecific CyⅢA gene in sea urchin embryos. Dev Biol. 1996;174(1):43-54.
    119. Rodan GA, Harada S. The missing bone. Cell. 1997 May 30;89(5):677-80.
    120. Ogawa E, Maruyama M, Kagoshima H, et al. PEBP2/PEA2 represents a family of transcription factors homologous to the products of the Drosophila runt gene and the human AML1 gene. Proc Natl Acad Sci U S A. 1993 ;90(14):6859-63.
    
    
    121. Kagoshima H, Akamatsu Y, Ito Y, et al. Functional dissection of the alpha and beta subunits of transcription factor PEBP2 and the redox susceptibility of its DNA binding activity. J Biol Chem. 1996 ;271(51) 33074-82.
    122. Golling G, Li L, Pepling M, et al. Drosophila homologs of the proto-oncogene product PEBP2/CBF beta regulate the DNA-binding properties of Runt. Mol Cell Biol. 1996;16(3) :932
    123. Wang Q, Stacy T, Binder M, et al. Disruption of the Cbfa2 gene causes necrosis and hemorrhaging in the central nervous system and blocks definitive hematopoiesis. Proc Natl Acad Sci USA. 1996;93(8) :3444-9.
    124. Satake M, Nomura S, Yamaguchi-Iwai Y, et al. Expression of the Runt domain-encoding PEBP2 alpha genes in T cells during thymic development. Mol Cell Biol. 1995;15(3) :1662-70.
    125. Mundlos S, Otto F, Mundlos C, et al. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 1997;89(5) :773-9.
    126. Xiao ZS, Thomas R, Hinson TK, et al.Genomic structure and isoform expression of the mouse, rat and human Cbfal/Osf2 transcription factor. Gene. 1998 ;214(1-2) : 187-97.
    127. Harada H, Tagashira S, Fujiwara M, et al. Cbfal isoforms exert functional differences in osteoblast differentiation. J Biol Chem. 1999;274(11) :6972-8.
    128. Vaillant F, Blyth K, Terry A, et al. A full-length Cbfal gene product perturbs T-cell development and promotes lymphomagenesis in synergy with myc. Oncogene. 1999 25;18(50) :7124-34.
    129. Thirunavukkarasu K, Mahajan M, McLarren KW, et al.Two domains unique to osteoblast-specific transcription factor Osf2/Cbfal contribute to its transactivity function and its inability to heterodimerize with Cbfbeta. Mol Cell Biol. 1998 ;18(7) :4197-208.
    130. Lee MH, Javed A, Kim HJ, et al. Transient upregulation of CBFA1 in response to bone morphogenetic protein-2 and transforming growth factor betal in C2C12 myogenic cells coincides with suppression of the myogenic phenotype but is not sufficient for osteoblast differentiation. J Cell Biochem. 1999;73(1) :114-25.
    131. Chang DJ, Ji C, Kim KK, et al. Reduction in transforming growth factor beta receptor I expression and transcription factor CBFal on bone cells by glucocorticoid. J Biol Chem. 1998 ;273(9) :4892-6.
    132. Gao YH, Shinki T, Yuasa T, et al. Potential role of cbfal, an essential transcriptional factor for osteoblast differentiation, in osteoclastogenesis: regulation of mRNA expression of osteoclast differentiation factor (ODF). Biochem Biophys Res Commun. 1998;252(3) :697-702.
    
    
    133. Xiao G, Wang D, Benson MD, et al. Role of the alpha2-integrin in osteoblast-specific gene expression and activity of the Osf2 transcription factor. J Biol Chem. 1998;273(49):32988
    134. Xiao G, Jiang D, Thomas P, et al. MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfal. J Biol Chem. 2000;275(6):4453-9.
    135. Sato M, Morii E, Komori T, et al. Transcriptional regulation of osteopontin gene in vivo by PEBP2aiphaA/CBFA1 and ETS1 in the skeletal tissues. Oncogene. 1998; 17(12): 1517
    136. Li J, Tsuji K, Komori T, et al. Smad2 overexpression enhances Smad4 gene expression and suppresses CBFA1 gene expression in osteoblastic osteosarcoma ROS17/2.8 cells and primary rat calvaria cells. J Biol Chem. 1998;273(47):31009-15.
    137. Bae SC, Lee KS, Zhang YW, et al. Intimate relationship between TGF-beta/BMP signaling and runt domain transcription factor, PEBP2/CBF. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 1):S48-55.
    138. Lee KS, Kim HJ, Li QL, et al. Runx2 is a common target of transforming growth factor betal and bone morphogenetic protein 2, and cooperation between Runx2 and Smad5 induces osteoblast-specific gene expression in the pluripotent mesenchymal precursor cell line C2C12. Mol Cell Biol. 2000;20(23):8783-92.
    139. Zhang YW, Yasui N, Ito K, et al. A RUNX2/PEBP2alpha A/CBFA1 mutation displaying impaired transactivity and Smad interaction in cleidocraniai dysplasia. Proc Natl Acad Sci U S A. 2000;97(19):10549-54.
    140. Komori T, Yagi H, Nomura S, et al.Targeted disruption of Cbfal results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755
    141. Otto F, Thornell AP, Crompton T, et al. Cbfal, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765
    142. Kreiborg S, Jensen BL, Larsen P, et al. Anomalies of craniofacial skeleton and teeth in cleidocranial dysplasia. J Craniofac Genet Dev Biol. 1999;19(2):75-9.
    143. Zhang YW, Bae SC, Takahashi E, et al. The cDNA cloning of the transcripts of human PEBP2alphaA/CBFA1 mapped to 6p12.3-p21.1, the locus for cleidocranial dysplasia. Oncogene. 1997;15(3):367-71.
    144.司徒镇强,吴军正.细胞培养.西安:世界图书出版公司,1996;58-187
    145.谭祖健,李起鸿.BMP及其诱成骨的分子生物学基础.中华骨科杂志,1996;16:9-11
    146. Yan LJ. Jin Y. Immunohistochemical observations on bone morphogenetic protein in normal and abnormal conditions. Clin Orthop, 1990; 257:249-254
    147. Akira Y. Takenobu K, Tohru I, et al. Recombinant human BMP-2 stimulates osteoblasttic maturation and inhibits myogenic differentiation invitro. J of Cell Biology, 1991;113:681-688
    
    
    148.蒲勤.人骨形成蛋白2成熟肽在大肠杆菌中的表达、纯化及其生物学活性的研究.第四军医大学博士论文.2000,西安.
    149. Jephsson C, Aspenberg R BMP-2 inhibits bone healing: Bone-chamber study in rabbits. Acta Orthop Scandinavica. 1996; 67(7):589-592
    150. Aspenberg P, Turek T. BMP-2for intramuscular bone indution:effect in squirrel monkeys is dependent on implantation site. Acta Orthop Scandinavica. 1996; 67(1):3-8
    151. Urist MR. BMP in Biology and Medicine. In: Bone Morphogenetic Protein: Biology, Biochemistry and Reconstructive Surgery. Edited by Lindholm TS. R.G. Landes Company, 1996:8-27
    152. Rudikin GH, Dean TY, Kenji I, et al. Transforming growth factor-β, osteogenin, and bone morphogenetic protein-2 inhibit intercellular communication and alter cell proliferation in MC3T3-E1 cell. J Cell Physiol. 1996;168:433
    153. Boyan B, Schwartz Z, Swain LD, et al. Initial effects of partially purified BMP on the expression of glycosaminoglycan, collagen, and alkaline phosphatase in nonunion cell c ultures. Clin Orthop 1992; 287:286
    154. Ahrens M, Ankenbauer T, Schroder D, et al. Expression of human BMP-2 and -4 in murine mesenchymal progenitor C3H10T1/2 cells induces differentiation into distinct mesenchymal cell lineages. DNA Cell Biol 1993; 12:871
    155. Alam J, Cook JL. Reporter genes: appliacation to the stud of mammalian gene transcription. Anal Biochem. 1990; 188:245-249
    156. Wood KV. In: Bioluminescence and Chemiluminescence: Current Status. Edited by Standley P and Kicka L. John Wiley and Sons, Ltd., Chichester, NY, 1991; 11: 543
    157. Ow DW, et al. Transient and stable expression of the firefly luciferase gene in plants and transgenic plants. Science. 1986; 234:856-862
    158. de Wet JR, et al. Firefly luciferase gene; structure and expression in mammalian cells. Mol Cell Biol.1987; 7:725-731
    159. Wood KV. Firefly luciferase: A new tool for molecular biologists. Promega Notes. 1990; 28: 1
    160.许彦鸣,王多宁,王成济等.三种阳离子脂质体转染效率的测定.细胞与分子免疫学杂志.2000:16(3):S09-S11
    161.李德葆,徐平.重组DNA的原理和方法:稳定表达系统.浙江科学技术出版社.1993;p247-248
    162.司晓辉.人骨形成蛋白2基因转染对成纤维细胞作用的实验研究.1999,西安.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700