纳米抑菌与抗菌内植物的研发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨科内植物在推动骨科发展的同时,也增加了内植物感染的风险。内置物感染是骨科手术后灾难性的并发症,不但给国家和个人造成巨大的经济损失,也对骨科医生提出了巨大挑战。
     由于内置物感染发生在生物材料与周围组织的界面,而且细菌贴附是感染的始动因素,因此在内置物表面进行抗菌或抑菌修饰成为新的治疗和预防策略。从理论上讲,内置物表面修饰后,局部形成抗菌或抑菌的微环境,可以减少细菌的贴附,提高自身免疫力和抗菌素杀灭细菌的能力。
     目的:
     为了降低内植物感染的发生,首先解决细菌在内植物表面种植、贴附这一始动环节。通过分析不同亲疏水表面对细菌贴附影响的作用机理,提出了降低内植物表面亲水程度,形成超疏水表面的设计方案,并验证其抑菌效果。同时,在钛金属表面构建载体层,负载有效抗菌素,观察其抗菌效果。
     材料和方法:
     1.通过电化学阳极氧化法在钛金属表面构建TiO_2纳米管阵列薄膜
     2通过X射线能谱(EDS)、X射线衍射(XRD)、扫描电镜(SEM)和接触角(CA)仪分析TiO_2纳米管阵列薄膜的表面构成、晶体结构、表面形貌以及表面浸润性
     3.通过自组装的方法,在TiO_2纳米管阵列薄膜的基础上修饰低表面能物质,构建了钛金属超疏水表面
     4.通过接触角分析自组装后钛金属表面的超疏水性
     5.通过体外抑菌试验,比较了不同表面对细菌贴附的影响,观察超疏水表面的抑菌效果
     6.通过药物的吸附和释放实验,观察TiO_2纳米管阵列薄膜的吸附性能
     7.体内和体外抗菌试验,观察载药TiO_2纳米管阵列薄膜的抗菌效能
     结果:
     表面形貌:在含氟溶液中,通过控制反应电压、反应时间等参数,可以在含钛金属的表面制备出形态规则,均匀一致管状结构,形成丛林状纳米管阵列。
     结构表征:纳米管阵列仅由钛元素和氧元素构成,不含任何其它元素。通过热处理可以改变TiO_2纳米管的晶型,加热到450℃后,由无定型转变成锐钛矿型。钛金属表面氧化成纳米管阵列后,其表面亲水性增加,接触角由原来的80.4°±1.5°下降到48.6°±1.0°,和20.2°±2.7°。
     超疏水表面抑菌效果:在TiO_2纳米管阵列表面修饰低表面能物质PETS,其接触角可以达到156°±1.0°。体外抑菌试验证明:相对于亲水和普通疏水表面,其抑菌程度可以降低50%-90%,能够有效降低细菌贴附。
     TiO_2纳米管载药和释放:TiO_2纳米管有强大的吸附能力,可以将万古霉素和妥布霉素吸附到管内。但是从释放角度考察,抗菌素释放较少,释放的时间不规律,需要进一步探索研究。
     载药TiO_2纳米管抗菌实验:体外实验证明,载药TiO_2纳米管可以减少细菌贴附,相对于为载药组减少贴附程度达到50%。动物实验证明,在适当浓度,载药TiO_2纳米管可以改善骨感染和骨髓炎临床症状。核素骨扫描:股骨下端感兴趣区,载药侧放射性计数明显低于对照侧。Micro CT:明确观察到对照侧,皮质骨破坏和骨膜反应,而载药侧不明显。病理结果与Micro CT结果一致,对照侧骨髓感染程度、皮质骨破坏和骨膜反应程度明显高于载药侧。
     结论:
     1.电化学阳极氧化法在钛金属表面构建了TiO_2纳米管阵列薄膜。
     2.在TiO_2纳米管阵列表面,可以形成超疏水表面,并且能大大降低细菌的贴附和种植。
     3.TiO_2纳米管吸附能力强大,可能成为新型药物载体,吸附有效抗菌素治疗或者预防内植物感染
Though implants promotes the development of orthopeadics,it increases the risk of infection.The complication of infection causing by implants is a disaster which leads to much money loss and challenges the decision of orthopeadist on treatment.
     Superficial bacteriostatic or antibacterial modification of implants becomes a new treatment or prevention for that the infection occurs at the interface between the implants and surrounding tissues and begins from the adhesion of bacterial. Theoretically,The bacteriostatic or antibacterial microenvironment forming after the surface modification reduces the adhesion of bacterial,improving autoimmunity and the antibiotic ability in bacterial-killing.
     Objective:
     In order to reduce the infection probability of implants,the problem of bacterial planting and adhesion on the surface,the first step of infection,is the first one to solve.Analyzing the action mechanism of bacterial adhesion to different hydrophilic and hydrophobic surfaces of implants,a design proposal is raised here to decrease the surface hydrophilicity and turn it into super-hydrophobicity,and the result of bacteriostasis was verified also. Meanwhile,a carrier-section carrying effect antibiotic was made on the titanium surface and the result was observed.
     Material and methods:
     1.Using the electrochemistry anodic oxidation method to make a membrane of TiO_2 nanotube arrays at the titanium surface.
     2.Using x-ray electromagnetic spectrum(EDS)、x-ray diffraction(XRD)、scanning electron microscope(SEM)and contact angle(CA)analysator to analyze the surface composition、crystal structure、surface shape and surface invasion of the membrane of TiO_2 nanotube arrays.
     3.Using a self-assembly method,at the basis of the membrane of TiO_2 nanotube arrays,to make a super-hydrophobic surface by modifying the surface with a hypo-energy materials.
     4.Analying the super-hydrophobicity of titanium surface after self-assembly through a CA analysator
     5.Comparing the effects of different surfaces on bacterial adhesion in vitro,
     6.Observing the adsorbability of the membrane of TiO_2 nanotube array through the experiment of medicamentous adsorbing and delivering.
     7.Observing the antibiosis efficacy of the membrane of TiO_2 nanotube array with medicine through vivo and vitro antibiosis experiments.
     Results:
     Surface shape:by controlling the parameters of reaction voltage and reaction time,a regular and uniformity tubiform can be made on the Ti-surface and forming a brush of nanotube array in a solution with fluorine.
     The character of the surface structure:
     Nanotube arrays include no elements but Ti and oxygen.Its crystal form can be changed with heat-treatment.When the temperature was reached on 450℃,it can be turned from amorphous type into anatase type.After oxidization of the nanotube array on the Ti-surface,its hydrophilicity increases,and the CA decreases from 80.4°±1.5°to 48.6°±1.0°and 20.2°±2.7°.
     The bacteriostasis result of hyper-hydrophobic surface:When modificationing the TiO_2 nanotube array with hypo-energy surface material PETS, the CA can be 156°±1.0°.As certificated by vitro experiment of bacteriostasis, compare to hydrophilic and common hydrophobic surfaces,the bacteriostasis function of hyper-hydrophobic surface may degrade by 50%-90%which can reduce the bacterial adhesion effectively.
     Medicine loading and delivering of TiO_2 nanotube:the adsorbability of TiO_2 nanotube is great,and the Vancomycin and Tobramycin can be absorbed into tubes.But to the aspect of antibiotic dilivery,it is less and unregular and needs further exploratory and investigation.
     The antibiosis experiment of ZiO_2 nanotube with medicine:As verified by vitro experiment,TiO_2 nanotube with medicine cannot decrease bacterial adhesion, but can kill 50%-90%attached bacterial.In animal experiment,TiO_2 nanotube with vancomycin medicine can improve the clinic symptoms of bone Infection and osteomyelitis.As demonstrated on bone scan,compared to the control side, the ROI values on the inferior femur of trial side were much less.And on micro CT,contrast to the trial side,cortical bone destroy and periosteal reaction can be seen on control side obviously.The result of pathology is the same as micro CT, that is that the degree of bone marrow infection、cortical bone destroy and periosteal reaction on the trial side is higher than the control side.
     Conclusion:
     1.a membrane of TiO_2 nanotube array was made at the titanium surface with galvanochemistry anodic oxidation methods.
     2.On the surface of the membrane of TiO_2 nanotube array, super-hydrophobic surface was formed,decreasing the ability of bacterial adhesion and planting obviously.
     3.The adsorbability of TiO_2 nanotube is great and it can become a new medicine-carrier adsorbing effective antibiotic to treat or prevent the infection causing by implants.
引文
1.Edna Toubes,John Segreti.Treatment Options for Orthopedic Device-related Infections.Current Infectious Disease Reports.2002,4:433-438
    2.Davide C,Lucio M,Carla RA.The significance of infection related to orthopedic devices and issues of antibiotic resistance.Biomaterials.2006,27:2331-2339
    3.McKinley CL,BS,MSTP(V),et al.Vancomycin Derivative Photopolymerized to Titanium Kills S.epidermidis.Clin Orhtop Relat Res.461:96-105
    4.Andrej T,Werner Z.Antimicrobial Agents in orthopaedic Surgery.Drugs.2006,66(5):1089-1105.
    5.An YH,Stuart GW,McDowell S J,et al.Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro.J Orthop Res.1996,14(5):846-849.
    6.Arciola CR,Radin L,Alvergna P,et al.Heparin surface treatment of poly(methylmethacrylate) alters adhesion of a Staphylococcus aureus strain:utility of bacterial fatty acid analysis.Biomaterials.1993,14(15):1161-1164.
    7.姜雪松.壳聚糖及其衍生物的生物活性和医药应用.生物医学工程学杂志.1996,13(4):353
    8.Rabih O Darouiche,Mohammad D,BS,et al.In vivo efficacy of antimicrobial-coated decices.J Bone Joint Surg Am.2007,89:792-797.
    9.Valentin Antoci,Christopher S.Adams,Noreen J.et al.Vancomycin bound to ti rods reduces periprosthetic infection.Clin Orthop Relat Res.2007,461:88-95
    10.Wassal M,Santin M,Isalberti C,et al.Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins.J Biomed Mater Res.1997,36:325-330.
    11.M.Bosettia,A.Mass eb,E.Tobinc,et al.Silver coated materials for external fixation devices:in vitro biocompatibility and genotoxicity.Biomaterials. 2002,23:887-892
    12.Milovic NM,Wang J,Lewis K,et al.Immobilized Nalkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed.Biotechnol Bioeng.2005,90(6):715-722.
    13.付敏,原鲜霞,马紫峰.TiO_2纳米管制备及其应用研究进展.化工进展.2005,42(1):42-46.
    14.周艺,黄可龙,朱志平等.TiO_2纳米管的水热法合成研究.长沙理工大学学报(自然科学版).2007,4(4):86-90.
    15.Ji J,Zhang W.Bacterial behaviors on polymer surfaces with organic and inorganic antimicrobial compounds.J Biomed Mater Res.2009,88(2):448-453.
    16.Raulio M,J(?)rn M,Ahola J,et al.M.Microbe repelling coated stainless steel analysed by field emission scanning electron microscopy and physicochemical methods.J Ind Microbiol Biotechnol.2008,35:751-760
    17.Lerebour G,Cupferman S,Bellon-Fontaine MN.Adhesion of Staphylococcus aureus and Staphylococcus epidermidis to the Episkin reconstructed epidermis model and to an inert 304 stainless steel substrate.J Appl Microbiol.2004,97(1):7-16.
    18.Okada A,Nikaido T,Ikeda M,et al.Inhibition of biofilm formation using newly developed coating materials with self-cleaning properties.Dent Mater J.2008,27:565-572
    19.Ensikat HJ,Neinhuis C,Barthlott W.Direct Access to Plant Epicuticular Wax Crystals by a New Mechanical Isolation Method.Int J Plant Sci.2000,161(1):143-148。
    20.蒋雄,乔生儒,张程煜等.疏水表面及其减阻研究.化学进展.2008,20(4):450-456.
    21.Khorasani MT,Shorgashti S.Fabrication of microporous thermoplastic polyurethane for use as small-diameter vascular graft material.Ⅰ.Phase-inversion method.J Biomed Mater Res B Appl Biomater.2006,76(1): 41-48.
    22.Lafuma A,Qu(?)r(?) D.Superhydrophobic states.Nat.Mater.2003,2:457-460.
    23.Foster TJ.The Staphylococcus aureus “superbug”.J Clin Invest 2004,114(12):1693-1696.
    24.Yao Y,Sturdevant DE,Villaruz A,et al.Factors characterizing Staphylococcus epidermidis invasiveness determined by comparative genomics.Infect Immun.2005,73(3):1856-1860.
    25.Arciola CR,An YH,Campoccia D,et al.Etiology of implant orthopedic infections:A survey on 1027 clinical isolates.Int J Artif Organs.2005,28(11):1091-1100.
    26.Southwood RT,Rice JL,McDonald PJ,et al.Infection in experimental hip arthroplasties.J Bone J Surg Br.1985,67(2):229-231.
    27.K.Lewis.Persister cells,dormancy and infectious disease.Nat Rev Microbiol.2007,5:48-56.
    28.Greene N,Holtom PD,Warren CA,et al.In vitro elution of tobramycin and vancomycin polymethylmethacrylate beads and spacers from simplex and Palacos.Am J Orthop.1998,27:201-205.
    29.Jose B,Antoci V,Zeiger AR,et al.Vancomycin covalently bonded to titanium beads kills Staphylococcus aureus.Chem Biol.2005,12:1041-1048.
    30.Klekamp J,Dawson JM,Haas DW,et al.The use of vancomycin and tobramycin in acrylic bone cement.J Arthroplasty.1999,14:339-346.
    31.Kuechle DK,Landon GC,Musher DM,et al.Elution of vancomycin,daptomycin,and a mikacin from acrylic bone cement.Clin Orthop Relat Res.1991,264:302-308.
    32.Penner MJ,Masri BA,Duncan CP.Elution characteristics of vancomycin and tobramycin combined in acrylic bone-cement.J Arthroplasty.1996,11:939-944.
    33.Schmidmaier G,Lucke M,Wildemann B,et al.Prophylaxis and treatment of implant-related infections by antibiotic-coated implants:a review.Injury. 2006,37(Suppl 2):S105-S112.
    34.Wei BP,Robins-Browne RM,Shepherd RK,et al.Protective effects of local administration of ciprofloxacin on the risk of pneumococcal meningitis after cochlear implantation.Laryngoscope.2006,116(12):2138-2144.
    35.Oyane A,Yokoyama Y,Uchida M,et al.The formation of an antibacterial agent-apatite composite coating on a polymer surface using a metastable calcium phosphate solution.Biomaterials.2006,27(17):3295-3303.
    36.Kilic D,Agalar C,Ozturk E,et al.Antimicrobial activity of cefazolin-impregnated mesh grafts.ANZ J Surg.2007,77(4):256-260.
    37.Zabramski JM,Whiting D,Darouiche RO,et al.Efficacy of antimicrobial-impregnated external ventricular drain catheters:a prospective,randomized,controlled trial.J.Neurosurg.2003,98:725-730.
    38.Darouiche RO,Smith JA,Jr,Hanna H,et al.Efficacy of antimicrobial-impregnated bladder catheters in reducing catheter-associated bacteriuria:a prospective,randomized,multicenter clinical trial.Urology.1999,54:976-981.
    39.Darouiche RO,Meade R,Mansouri M,et al.In vivo efficacy of antimicrobial-coated fabric from prosthetic heart valve sewing rings.J Heart Valve Dis.1998,7:639-646.
    40.Darouiche RO,Mohammad D,BS,et al.In vivo efficacy of antimicrobial-coated decices.J Bone Joint Surg Am.2007,89:792-797.
    41.Popat KC,Leoni L,Grimes CA,et al.Influence of engineered titania nanotubular surfaces on bone cells.Biomaterials.2007,28(21):3188-3197
    42.庄惠芳,赖跃坤,李静等.高度有序的二氧化钛纳米管阵列的制备及其光催化活性的研究.化学学报.2007,65(21):2363-2369
    43.Popat KC,Eltgroth M,LaTempa TJ,et al.Titania nanotubes:a novel platform for drug-eluting coatings for medical implants? Small.2007,3(11):1878-1881
    44.Popat KC,Eltgroth M,Latempa T J,et al.Decreased Staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes.Biomaterials.2007,28:4880-4888
    45.Zhang HF,Chang JL,Lai YK.Some Critical Structure Factors of Titanium Oxide Nanotube Array in Its Photocatalytic Activity.Environ.Sci.Technol.2007,41:4735-4740
    46.Hoyer,Patrick.Formation of a Titanium Dioxide Nanotube Array.Langrnuir,1996,12:1411-1413.
    47.Jong H J,Hideki K,Kjeld J C,et al.Creation of Novel Helical Ribbon and Double-layered Nanotube TiO_2 Structures Using an Organogel Template.Chem Mater,2002,14(4):1445-1447.
    48.麻明友.胶体模板法制备有序大孔 TiO_2材料.化学学报.2006,64(13):1389-1392.
    49.Tomoko Kasuga.Formation of Titanium Oxide Nanotubes Using Chemical Treatments and Their Characteristic Properties.Thin Solid Fimls.2006,496:141-145.
    50.Kasuga T,Hoson A,Sekino T,et al.Formation of Titanium Oxide Nanotube.Langmuir.1998,14:3160-3163.
    51.Gong D,Grimes CA,Varghese OK,et al.Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation.Mater Res.2001,16(12):3331-3334.
    52.Du G H,Chen Q,Che R C,et al.Preparation and Structure Analysis of Titanium Oxide Nanotubes.Appl Phys Lett.2001,79(22):3702-3704.
    53.Andrei Ghicov,Hiroaki Tsuchiya,J an M,et al.Titanium Oxide Nanotubes Prepared in Phosphate Elect rolytes.Elect rochem Commun.2005,7:505-509.
    54.Wang Wenzhong,Varghese O K,Paulose M,et al.A Study on the Growth and Structure of Titania Nanotubes.J Mater Res.2004,19(2):417-422.
    55.赖跃坤,孙岚,左鹃等.氧化钛纳米管阵列制备及形成机理.物理化学学报.2004,20(9):1063-1066.
    56.Vitiello R P,Macak J M,Ghicov A,et al.N-Doping of Anodic TiO_2 Nanotubes Using Heat Treatment in Ammonia.Electrochem Commun,2006,8:544-548.
    57.Maggie Paulose,Mor G K,Oomman K Varghses,et al.Visible Light Photoelectrochemical and Water-photoelectrolysis Properties of Titania Nanotube arrays.J Photochem Photobiol A:Chem.2006,178:8-15.
    58.王保玉,张景会,刘湛望.TiO_2纳米管的制备.精细化工.2003,20(6):333-336.
    59.Peng L,Eltgroth ML,LaTempa TJ,et al.The effect of TiO_2 nanotubes on endothelial function and smooth muscle proliferation.Biomaterials.2009,30(7):1268-1272.
    60.Feng X,Shankar K,Varghese OK,et al.Vertically aligned single crystal TiO_2nanowire arrays grown directly on transparent conducting oxide coated glass:synthesis details and applications.Nano Lett.2008,8(11):3781-3786.
    61.Fabregat-Santiago F,Barea EM,Bisquert J,et al.High carrier density and capacitance in TiO_2 nanotube arrays induced by electrochemical doping.J Am Chem Soc.2008.130(34):11312-11316.
    62.邵颖,薛宽宏,何春建等.TiO2纳米管对十二烷基苯磺酸钠的光催化降解.化学世界.2003,44:174-178.
    63.Rone Wang,Kazuhito Hashimoto,Akira Fujshima.Light-induced Amphiphilic Surface.Nature.1997(388):431-432.
    64.Zheng K,Wang TM,Xiang G,et al.Photocatalytic activity of nanostructured TiO_2 thin films prepared by dcmagnetron sputtering method.Vacuum.2001,62:361-366.
    65.Negishi N.Takeu Chi K.Structural changes of transparent TiO_2 thin films with heat treatment.Materials Letter.1999,38:150-153.
    66.Fujishima A,Rao TN,Donald AT.Titanium dioxide photocatalysis.J of Phochemistry and Photobiology C:Photochemmistry Reviews.2001,1:1-21
    67.陶杰,陶海军.TiO_2纳米管阵列的制备及应用研究进展.机械制造与自动化.2008,37(1):1-4,7
    68.陶海军,秦亮,王玲等.TiO_2纳米管阵列的制备、热处理及光催化性能.中国有色金属学报,2007,17(5):693-698.
    69.TAO H J,TAO J,WANG T,et al.Fabrication of self-organized TiO_2nanotubes by anodic oxidation and their photocataalysis.Trans.Nonferrous Met.Soc.China,2005,15(3):462-466.
    70.Dell'Acqua G,Giacometti A,Cirioni O,et al.Suppression of drug-resistant staphylococcal infections by the quorum-sensing inhibitor RNAⅢ-inhibiting peptide.J Infect Dis.2004,190(2):318-320.
    71.Mangram A.CDC guideline for prevention of surgical site infection.Infection Control & Hospital Epideminology.1999,20(4):247-280
    72.Krizek TJ.Evolution of quantitative bacteriology in wound management.Am J Surg.1975,130:579-84
    1.Rocca M,Fini M,Giavaresi G,et al.Osteointegration of hydroxyapatite-coated and uncoated titanium screws in long-term ovariectomized sheep.Biomaterials.2002,23:1017-1023.
    2.A.GANGULI,C.STEWARD,S.L.UTLER,et al.Bacterial adhesion to bisphosphonate coated Hydroxyapatite.J Mater Sci Mater Med.2005,16:283-287
    3.郑学斌,季珩,丁传贤等.真空等离子喷涂抗菌 HA 涂层研究.生物骨科材料与临床研究.2005,2(5):7-10
    4.Wassal M,Santin M,Isalberti C,et al.Adhesion of bacteria to stainless steel and silver-coated orthopedic external fixation pins.J Biomed Mater Res.1997,36:325-330.
    5.M.Bosettia,A.Mass eb,E.Tobinc,et al.Silver coated materials for external fixation devices:in vitro biocompatibility and genotoxicity.Biomaterials.2002,23:887-892
    6.孙岚,李静,庄惠芳等.TiO2纳米管阵列的制备、改性及其应用研究进展.无机化学学报.2007,23(11):1841-1850
    7.Suketa N,Sawase T,Kitaura H,et al.An antibacterial surface on dental implants,based on the photocatalytic bactericidal effect.Clin Implant Dent Relat Res.2005,7(2):105-111.
    8.An YH,Stuart GW,McDowell S J,et al.Prevention of bacterial adherence to implant surfaces with a crosslinked albumin coating in vitro.J Orthop Res.1996,14(5):846-849.
    9.Arciola CR,Radin L,Alvergna P,et al.Heparin surface treatment of poly(methylmethacrylate)alters adhesion of a Staphylococcus aureus strain:utility of bacterial fatty acid analysis.Biomaterials.1993,14(15):1161-1164.
    10.姜雪松.壳聚糖及其衍生物的生物活性和医药应用.生物医学工程学杂志.1996,13(4):353
    11.Bumgardner JD,Wiser R,Gerard PD,et al.Chitosan:potential use as a bioactive coating for orthopaedic and craniofacial/dental implants.J Biomater Sci Polym Ed.2003,14(5):423^138.
    12.Rabih O Darouiche,Mohammad D,BS,et al.In vivo efficacy of antimicrobial-coated decices.J Bone Joint Surg Am.2007,89:792-797.
    13.Valentin Antoci,Christopher S.Adams,Noreen J.et al.Vancomycin bound to ti rods reduces periprosthetic infection.Clin Orthop Relat Res.2007,461:88-95
    14.Milovic NM,Wang J,Lewis K,et al.Immobilized Nalkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed.Biotechnol Bioeng.2005,90(6):715-722.
    15.L.G Harrisa,S.Tosattib,M,Wielandc,et al.Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(1-lysine)-grafted-poly(ethyl eneglycol) copolymers.Biomaterials.2004,25:4135-4148
    16.Price JS,Tencer AF,Arm DM,et al.Controlled release of antibiotics from coated orthopedic implants.J Biomed Mater Res.1996,30(3):281-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700