髌骨骨折张力带内固定有限元模型的建立和分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     髌骨是人体最大的籽骨,形状为上宽、下尖、前后扁,前面粗糙,其上连接股四头肌,下通过髌韧带连接于胫骨结节。后面为光滑的关节面,与股骨髌面构成髌股关节。髌骨是构成膝关节的骨之一
     髌骨位置表浅,只有皮肤、薄层皮下组织及髌前滑囊在髌骨之上,故髌骨易因直接暴力及跌打而受伤。近年来随着科学与技术的发展,生产生活的日益加速,骨折的发生也随之增加。髌骨骨折是临床常见的关节内骨折,占全身骨折的1.65%。
     对于分离移位较大的髌骨骨折,较为理想的治疗方法是切开复位内固定手术,其有利于关节的早期活动和膝关节功能的恢复。目前对于髌骨骨折的内固定方法有很多种,常见的方法有克氏针张力带、螺钉钢丝张力带、NT-PC (NiTi-patella concentrator,镍钛-聚髌器)、Cable-pin系统、五角网缝合和丝线荷包缝合等,各有其优缺点。究竟选择哪种较为恰当?
     因此如何比较各种内固定的力学性能,为临床选取最佳的手术治疗方案尤为重要。
     当前大多数学者从三个方面进行髌骨骨折内固定方式的比较研究。一是对临床病例进行观察及比较研究,大多以Bostman评分标准进行比较,Bostman评分标准包括:关节运动范围的大小、有无疼痛及疼痛程度、对工作的影响、股四头肌的萎缩、是否需手杖、有无关节积液、有无打软腿、爬楼梯是否困难等多方面进行综合评价。该方法主要以临床恢复效果来间接评估髌骨骨折内固定方式的优劣,无法直接了解在相同应力条件下不同髌骨骨折内固定变化程度的差异。二是在新鲜尸体膝关节进行髌骨骨折内固定模拟,进行比较。该方法系正统地对髌骨骨折内固定进行生物力学的研究,可以直接从生物力学角度比较,但在实验方法上仍受到不少制约。比如新鲜尸体标本的来源比较困难;需要专业的生物力学工程实验室;一具尸体标本只能应用一次,不能重复应用,实验成本大;无法直接观察内部克氏针的变形及骨折内部的位移情况;实验结果不够直观形象等。三是理论生物力学研究,即以数学力学模型来进行数值应力分析。
     有限元分析即属于理论生物力学研究。与实验生物力学相比,有限元分析具有以下特点:(1)有限元法能在不同状态下进行模拟,得到不受实验条件影响的结果,排除了因为实验条件不同造成的误差。(2)用有限元分析法对模拟体的结构形状、材料性能、边界条件等均可用数学形式概括出来。可重复计算,节约了实验成本。(3)可以很逼真地建立三维模拟实验体的模型,并赋予其生物力学材料特性。通过仿真实验,得到很多其它实验方法无法得到的数据。
     由于以上优势,有限元分析在骨科临床研究中得到较广泛地应用,但有关髌骨骨折内固定的有限元研究较少,大多集中在临床病例观察及总结性研究和生物力学研究。
     虽然南京大学医学院附属鼓楼医院骨科陈履平等曾在1989年利用平面九节点法对髌骨及张力带内固定以平面问题进行演算,但随着计算机及软件的进一步发展,应用大型有限元软件进行分析无疑比以前更加准确、全面、形象。
     为什么对髌骨骨折内固定采用大型有限元软件分析较少,考虑原因在于当前髌骨骨折内固定主要是以张力带内固定的方式,因为固定的钢丝及克氏针均较细小,以CT或MRI直接扫描方式进行重建较困难,若利用大型建模软件进行模拟重建,最难的是建立钢丝张力带,其构建有3个难点:一是钢丝张力带是贴附在髌骨前表面;二是钢丝张力带与克氏针接触的四端,不仅要与髌骨前表面贴附,而且还要与克氏针表面相贴附;三是钢丝结的构建。由于髌骨前方表面本身非常不规则,更增加了构建符合上述标准的钢丝张力带的难度。因此制约了髌骨骨折内固定有限元的研究。
     本课题利用先进的计算机辅助建模、分析技术,对成人正常髌骨进行三维建模、模拟髌骨骨折、张力带内固定,克服髌骨骨折张力带内固定的建模难题,成功建立两种不同髌骨骨折张力带内固定有限元模型,并进行有限元分析,探讨应有现代多种大型软件对髌骨骨折内固定进行有限元分析的方法和可行性,并通过有限元分析比较两种髌骨骨折内固定方法的优劣。
     目的
     1、建立髌骨骨折不同张力带内固定的三维有限元模型,并对所建模型进行有限元力学分析。
     2、探讨应用现代多种大型软件对髌骨骨折内固定进行有限元分析的方法和可行性。
     3、通过有限元分析比较两种髌骨骨折内固定方法的优劣。
     方法
     1、髌骨模型的建立:选择1名成年女性志愿者,成年女性志愿者仰卧在CT(Computed tomography,电子计算机断层摄影)扫描台上,使用16层螺旋CT扫描机(SIMENS SENSATION 16)对该志愿者自足底至大腿中段进行薄层扫描,间距1.25mm,共获得489层断层扫描图像。将图像数据以DICOM(Digital imaging and communications in medicine,医学数字成像和通信)格式存入可读写光盘,并导入三维医学图像建模软件Mimics 10.01软件,通过Region growing选择右侧髌骨区域,提取右侧髌骨Polylines,共40层,以IGES (Initial graphics exchange specification,初始化图形交换规范)格式导出后导入Geomagic studio10.0软件进行去噪、封装、光滑化,利用该软件强大的曲面建模功能建立髌骨几何模型。
     2、AO/8字形张力带钢丝模型的建立:将Geomagic studio 10.0软件中建立的髌骨几何模型以IGES格式导出后导入Pro/ENGINEER Wildfire 2.0软件中生成髌骨几何体,再利用Pro/ENGINEER Wildfire 2.0软件进行测量,取髌骨横轴分成四等分,纵轴三等分,取外、内1/4,前1/3处作为克氏针固定轴,利用扫描功能,生成两根折弯的克氏针,直径1.5mm,根据AO张力带和8字形张力带中钢丝的捆扎方式分别绘出钢丝曲线,利用扫描混合生成钢丝,钢丝直径0.6mm。
     3、髌骨骨折的建立:取纵轴中点,利用Pro/ENGINEER Wildfire 2.0软件,拉伸生成一与髌骨相垂直平面(Z向),进行分割,分别生成平面上段髌骨(近端骨折块)和平面下段髌骨(远端骨折块),模拟髌骨横型骨折。
     4、髌骨骨折AO/8字形张力带内固定模型(Pro/E)的建立:将建成的髌骨骨折块、克氏针、捆扎钢丝在Pro/ENGINEER Wildfire 2.0进行装配,生成髌骨骨折AO/8字形张力带内固定模型。
     5、髌骨骨折AO/8字形张力带内固定的ANSYS模型的建立:激活ANSYS10.0软件安装选项中包含与Pro/ENGINEER Wildfire 2.0软件的接口模块"Connection for ProEngineer"。将Pro/ENGINEER Wildfire 2.0中的文件直接导入ANSYS 10.0软件中,其中考虑髌骨分为骨皮质和骨松质,为了进行有限元分析时方便建立接触分析,利用Geomagic studio 10.0中的偏移功能,将整个髌骨表面内移1 mm,生成骨松质髌骨模型,在ANSYS 10.0中进行布尔运算,生成骨皮质髌骨模型,将骨皮质髌骨模型与骨松质髌骨模型通过Glue黏合在一起,建立完整的两个髌骨骨折块。将克氏针及缠绕钢丝导入ANSYS 10.0中,进行装配,生成髌骨骨折AO/8字形张力带内固定ANSYS模型。
     6、髌骨骨折AO/8字形张力带内固定的有限元模型的建立:按下表对髌骨骨折两种张力带内固定ANSYS模型中各实体进行赋予单元类型及材料参数,进行网格划分,设置接触对。生成髌骨骨折AO/8字形张力带内固定的有限元模型。其中髌骨骨折AO张力带内固定有限元模型总节点数:404343,总单元307719;髌骨骨折8字形张力带内固定有限元模型总节点数:401853,总单元数:296078。
     完整髌骨骨折张力带内固定模型单元类型、材料特性表
     7、边界条件和荷载的设置
     由于髌骨活动度不同关节面接触部分不同,屈膝活动90。时,髌骨关节接触面在髌骨上方,我们固定髌骨上下方约髌韧带大小的部分(对髌骨最下端和最上端髌韧带附着区进行全约束),在髌骨近端骨折块上90。关节面区施加正向压力600N,分析模拟屈膝90。时髌骨骨折两种张力带内固定术后受力后的位移和变形特点。
     结果
     1、髌骨骨折块应力后向前发生位移(Z正向),自关节面侧(后侧)至前侧,呈大到小变化,因此张力带有明显的Z向加压作用。(Z轴移位是前后移位,正向为向前)
     2、髌骨骨折块,无论是在双克氏针平面以上或在双克氏针平面以下,在应力后均以下位移为主(Y负向),因此张力带有明显的对抗股四头肌的向上拉应力作用。(Y轴移位是上下移位,Y轴正向为向上)
     3、髌骨骨折块在应力后,虽然在双克氏针平面以上和在双克氏针平面以下的位移云图有所不同,但两者向下移位(Y方向)的绝对值从骨折中心到周围位移均逐渐减少,因此张力带有明显的周围向骨折端及中心加压作用。
     4、髌骨骨折块在应力后,在双克氏针平面以下,右侧到左侧(X方向)的位移绝对值由大到零再到大,即有明显的中心向两侧分散作用。而在双克氏针平面以上,虽有明显中心向两侧分散作用,但由于钢丝环扎的作用,两侧又形成两个中心,从中心到周围位移绝对值逐渐减小,有周围向两中心加压作用,起到阻止两侧分散的作用。(X轴移位是右左移位,X轴正向为向左)
     5、两枚克氏针存在着明显的变形,其变形以骨折端为中心向两侧递减,起到弹性固定作用,而且两枚克氏针的变形是不对称的。
     6、克氏针、钢丝的最大位移主要集中在骨折端上方。
     7、克氏针的最大变形位移大于钢丝的最大变形位移,因此张力带充分利用了克氏针折弯要优于钢丝的性能。
     8、8字形张力带内固定髌骨骨折在相同荷载下的位移小于AO张力带内固定髌骨骨折。
     结论
     1、AO/8字形张力带有多向加压作用,可将髌股作用力转化拮抗股四头肌向上的拉应力。
     2、对于髌骨横骨折,8字形张力带内固定要优于AO张力带内固定。
     3、有限元分析结果与生物力学结果相符,建立的髌骨骨折AO/8字形张力带内固定有限元模型有效;利用现代多种大型软件对髌骨骨折内固定进行有限元分析的方法可行,可通过有限元分析比较髌骨骨折内固定方法的优劣。为临床治疗提供借鉴。
Background
     Patella is the maximal sesamoid bones of human body,it is flat,wide top,cuspidal underside and rough anterior surface.It connects quadriceps muscle of thigh from top and tubercle of tibia by patellar tendon.Its back is smooth articular surface which composes patellofemoral joint with patellar fossa of femur.Patella is the one of bones composing knee joint.
     Patella is superficial,only a skin,lamellar subcutaneous tissue and bursa synovialis above it,so it is easy to be injured by direct violence and tumble.For the past few years,with the development of science and technology and increasingly acceleration of society,bone fractures have been also increasing.Patellar fracture is frequent,it is 1.65 percent of all bone fractures.
     It is a ideal method that operation of open reduction and internal fixation treats patellar fracture with comparatively large dissociation,which is beneficial to early mobilization and rehabilitation of knee joint.Currently,there are many internal fixation methods for treating patellar fracture include tensile force girdle with kirschner wires、NT-PC (NiTi-Patella Concentrator)、Cable-pin system、five-pointed star lattice sutures,the purse string with silk thread,etc.Each has itself advantage and disadvantage,how to select the best?
     Accordingly,it is very important that how to compare various kinds of internal fixation methods for selecting the best therapic method.
     At present,most of scholars undertake comparative studies of internal fixation methods of patellar fracture from three directions.The first direction is carried out by reviewing the different clinical cases by Bostman score,Bostman score is composed of ROM(range of Joint motion),pain degree,obstructive work degree,auantic degree of quadriceps muscle of thigh,hand crutch Assistance,quantity of hydrops articuli,strength of lower limb,ability of climbing staircase,etc.Which judges the therapeutic effects of internal fixation methods of patellar fracture by clinical bone healing and rehabilitation of knee joint,it is indirect,cann't know displaces after the same force on the postoperative patellar.The second direction is carried out by simulating different internal fixation operations on patellas of cadavers.Which is a standard biomechanical research.lt can measure results after the same force on the postoperative patellars,but it has many shortages,such as difficult cadaveric source,needing good experiment conditions include professional biomechanical engineering laboratory,costly expenses,deficient of observing deformations and offsets of inner bone and kirschner wires,metaphysical results,etc.The third direction is a theoretical biomechanical research.Which has stress analysis of numerical values by mathematical mechano-models.
     The finite element analysis (FEA) belongs to the theoretical biomechanical research.In contrast with experimental biomechanics,the finite element analysis has following advantages:(1)The finite element method can have simulations in different conditions,so it gets results that don't be influenced by conditons,namely,it precludes error from different experimental conditions.(2)The finite element analysis method can summarize structural shape,material efficiency and boundary condition of analogue by mathematical pattern,calculate tautologically and save experimental cost.(3)The finite element analysis method can establish three dimensional experimental analogue,then assign its biomechanical material characteristics.in the experiement of simulations,many datas can be gained which cann't in other experimental way.
     Owing to above advantages,the finite element analysis is made extensive use of clinical researchs of orthopedics.But on patellar fracture,it is less,most of researchs concentrate on clinical cases'reviews and biomechanics.
     Although Chen LP et al carried out calculus for patella fixed with tensile force girdle in planar nine nodes method in 1989,with the further development of computer and his softwares,it is more accurate,comprehensive and iconical to analyse the internal fixations of patella fracture with the finite element by many modern large scale softwares.
     Why to study internal fixations of patellar fracture is less in the finite element method?Because the major operative method of treating patella fracture is fixing by tensile force girdle with kirschner wires,both the kirschner wires and steel wire are small,it is very difficult to modeling them by computed tomography or magnetic resonance imaging scanning directly.So the best method is established model by large scale modeling software.There are three difficulties:Firstly,tensile force girdle is attached to surface of patella.Secondly,tensile force girdle is not attached to surface of patella,but to surfaces of two kirschner wires on quadripolar.Thirdly,steel wire tie must be satisfactorily established.On account of very irregular surface of patella,it is more difficult that tensile force gridle as above standardizations is established. Markedly,it restricts the finite element reseach on patella fracture.
     On this research,We have established three dimensional model of adult's normal patella,simulated bone fracture,fixed patella fracture with kirschner wires and tensile force girdles by advanced computer-assisted modeling and analytical techniques.We have overcome three difficulties,established the finite-element models of patella fracture fixed with two different tensile force girdles successfully,then have the finite element analysis,investigate feasibility and method to analyse the internal fixations of patella fracture by many modern large scale softwares,compared the two internal fixations simultaneously.
     Objective
     1.To create finite-element models of patella fracture fixed with two different tensile force girdles and have the finite element mechanical analysis on them.
     2.To investigate feasibility and method to analyse the internal fixations of patella fracture with the finite element by many modern large scale softwares.
     3.To compared the two internal fixations of patella fracture by the finite element analysis.
     Methods
     1.Establishment of the model of patella
     An adult female volunteer was selected,she was scanned at 1.25mm slice from foots to middle legs by computed tomography machine of SIMENS SENSATION 16,after backlay on the scanner platform of computed tomography machine,then 489 slices of tomoscanning images were gained.
     We wrote these images into R/W (readable/writable) compact disc by DICOM(Digital imaging and communications in medicine) format,and imported into the software of Mimics 10.01,selected right region patellaris by Region growing,extracted 40 slices of polylines of right patella,then imported into the software of Geomagic studio 10.0 by IGES (Initial graphics exchange specification) format,reduced noise,wraped polygons,smoothed surfaces,lastly established geometrical model of patella.
     2.Establishment of the models of AO and 8 font style tensile force gridle
     The geometrical model of patella was imported into the software of Pro/ENGINEER Wildfire 2.0 by IGES format,by measure we divided it into quartering by axis of abscissa and trisection by axis of ordinate,firstly selected front of 1/3,then on the plane,selected outside of 1/4 and inside of 1/4 as axises of kirschner wires,generated two bended kirschner wires by mixed-sweeping function,their diameter was 1.5 millimeter.Finally,curves of steel wires were drawed respectively by winding ways of AO and 8 font style tensile force gridles,generated two bended steel wires by mixed-sweeping function,their diameter was 0.6 millimeter.
     3.Establishment of the models of patella fracture
     We selected middle point of axis of ordinate,extended a vertical plane (Z direction),then divided the patella into two fractured blocks by the software of Pro/ENGINEER Wildfire 2.0.
     4.Establishment of models of patella fracture fixed with AO and 8 font style tensile force girdles
     We assembled two patella fractured blocks,two kirschner wires and two bended steel wires into two models of patella fracture fixed with AO and 8 font style tensile force girdles by the software of Pro/ENGINEER Wildfire 2.0.
     5.Establishment of ANSYS models of patella fracture fixed with AO and 8 font style tensile force girdles
     We activated interface modular of Connection for ProEngineer in the setting options of the soft of ANSYS 10.0,directly imported the documents of Pro/ENGINEER Wildfire 2.0 into the software of ANSYS 10.0,because patella is composed of cortical bone and cancellous bone,we established two sections,offseted inward 1 millimeter,generated model of cancellous patella,by boolean we generated model of cortical patella,then glued them,established two integrated patella fractured blocks.Lastly imported two kirschner wires and two bended steel wires into the software of ANSYS 10.0,assembled them into ANSYS models of patella fracture fixed with AO and 8 font style tensile force girdles.
     6.Establishment of finite-element models of patella fracture fixed with AO and 8 font style tensile force girdles
     We assigned elemental type and materical parameter to each entity by following table,meshing them,then seted up contact pairs,finally we get finite-element models of patella fracture fixed with AO and 8 font style tensile force girdles.The finite-element model of patella fracture fixed with AO tensile force girdles has 404343 nodes,307719 element units;the finite-element model of patella fracture fixed with 8 font style tensile force girdles has 401853 nodes,296078 element units.
     Table of elemental types and materical features in the finite element models of patella fracture fixed with tensile force girdles
     7. Settings of boundary condition and loading
     Because contiguous articular surface of patella is varied with the range of patella motion,it is the top of patella when the range of patella motion is 90°,we selected and exerted force of 600N from norientation on the section,after wholly constrainted attachment regions of patellar ligament in the two polar of patella,analyzed displacement and deformation features simulating patellofemoral joint under 600 N loading at 90°knee bending.
     Results
     1.Fractured blocks of patella offsets from post to fore(z norientation) and offset's absolute values gradually diminish after exerted force,accordingly,tensile force girdles have an evident pressure on Z-direction.(positive displace of Z-direction is from post to fore)
     2.Fractured blocks of patella wherever above or below two kirschner wires offsets mainly downward(Y-negative direction)after exerted force,accordingly,tensile force girdles have an evident effect against drawing upward from quadriceps muscle of thigh.(positive displace of Y-direction is from below to above)
     3.Although Fractured blocks of patella above two kirschner wires have different offset's nephograms from below after exerted force,both of their offset's absolute values (Y-negative direction) gradually diminish from center to environment of bone fracture,accordingly,tensile force girdles have an evident pressure from environment to center.
     4.Offset's absolute values of fractured blocks of patella below two kirschner wires from right to left gradually diminish to zero then gradually increase after exerted force,namely,have an evident dispersion from center to two sides.But above two kirschner wires their Offset's absolute values from right to left gradually diminish to zero then gradually increase,namely,have an evident dispersion from center to two sides,simultaneously two sides form two center,absolute values gradually diminish from center to environment,namely,tensile force girdles have an evident pressure from environment to two center,which can prevent two-side dispersion.(positive displace of X-direction is from right to left)
     5.Two kirschner wires have marked deformations which gradually diminish from center to environment of bone fracture,two kirschner wires have an role of elastic fixation,furthermore,their deformations are dissymmetrical.
     6.Maximum displaces of both kirschner and steer wires concentrate mainly on bone fracture.
     7.Maximum displaces of kirschner wires is bigger than of steer wires.Therefore,tensile force girdles make good use of better kirschner wires' bending efficiency than steer wires'
     8.Displace of patella fracture fixed with 8 font style tensile force girdles is smaller than with AO's under the same loading.
     Conclusions
     1.AO/8 font style tensile force girdles can pressurizing on bone fracture from many directions and convert patellofemoral force against drawing upward from quadriceps muscle of thigh.
     2.8 font style tensile force girdles is better than AO fixed on transverse fracture of patella.
     3.Results of the finite element analysis is coincident with of biomechanics,which confirms that finite-element models of patella fracture fixed with AO and 8 font style tensile force girdles are effective,it is feasible to analyse the internal fixations of patella fracture with the finite element by many modern large scale softwares,we can compared different internal fixations by the finite element analysis and provide clinical instruction.
引文
[1]张峻,候筱魁.髌骨的生物力学研究进展[J].医用生物力学,2004,19(2):120-125
    [2]Goldstein SA,Coale E,Weiss AP.et al.Patellar surface strain[J].J Orthop Res,1986,4(3):372-377
    [3]Grelsamer RP,Weinstein CH.Applied biomechanics of the patella[J].Clin Orthop Relat Res,2001(389):9-14
    [4]李开南,马运宏.捆绑内固定在骨折固定中研究进展[J].中国矫形外科杂志,2009,17(2):115-117
    [5]刘爱峰,金鸿宾,王志彬等.髌骨骨折固定研究进展[J].中国矫形外科杂志,2010,18(2):128-131
    [6]Carpenter JE,Kasman RA,Patel N,et al.Biomechanical evaluation of current patellar fracture fixation techniques[J].Orthop Trauma,1997,11(5):315-356
    [7]修玉才,任先军.髌骨骨折空心拉力螺钉组合张力带固定的生物力学[J].中国矫形外科杂志,2001,8(4):381-383
    [8]郑季南,徐新华,洪庆南,等.髌骨骨折不同改良方式张力带钢丝固定的生物力学研及临床应用[J].中国骨伤,2002,15(4):208-210.
    [9]叶林根,俞光荣,王以进.髌骨骨折四种不同内固定方法的生物力测试研究[J].生物医学工程与临床,2001,5(3):121-124
    [10]李贺君,王大平,倪江东,等.镍钛形状记忆合金蟹爪式聚髌器的研制及生物力学研究[J].中国现代手术学杂志,2002,6(2):119
    [11]王一农,温鹏,王以进,等.空心加压螺钉治疗髌骨骨折的生物力学研究及临床应用[J].河北医药,2002,24(7):541-543.
    [12]王小平,张先龙,李柱国等.有限元分析在医疗器械的力学性能评价及优化设计中的应用[J].医疗卫生装备,2004(2):10-13
    [13]Benjamin J, Bried J, Dohn M,et al.Biomechanical evaluation of various forms of fixation of transverse patellar fracture[J].J Orthop Trauma.1987,1(3):219-222.
    [14]Burvant JG,Thomas KA,Alexander R,et al.Evaluation of methods of internal fixation of transverse patellar fracturesra biomechanical study[J].J orthop Trauma,1994;8(2):147-153.
    [15]Carpenter JE. Kasman RA, Patel N, et al. Biomechanical evaluation of current patella fracture fixation techniques [J]. J Orthop Trauma.1997,1 (5):351-356.
    [16]Kose KC,Kuru I,Maralcan G,et al.Comparison of a technique using a new percutaneous osteosynthesis devicewith conventional open surgery for displaced patella fractures [J]. J Orthop Trauma.2007,21(1):77-78.
    [17]陈永铵,利盛成,方祥,等.髌骨骨折固定术式选择及生物力学分析[J].中国临床解剖学杂志,2003,21(3):389-391.
    [18]刘远禄,王珏,李帮春.髌骨骨折的生物力学研究及其治疗现状[J].创伤外科杂志,2005,7(2):149-150,158.
    [19]张伟,张铁良,张玉朵.医学图像三维重建及其临床应用进展[J].国际骨科学杂 志,2008,29(4):214-215,222
    [20]洪锋,梅炯,李明禄.医学图象三维重建技术综述[J].中国图象图形学报,2003,8(z1):784-791
    [21]Morriss J,Moreland J,Burkhart H,et al.Pre-surgical evaluation of interrupted aortic arch with 3-dimensional reconstruction of CT images[J].Ann Thorac Surg,2007,84(1):299
    [22]Opielinski KJ,Gudra T.Three dimensional reconstruction of biological objects' internal structure heterogeneity from the set of ultrasonic tomograms[J].Ultras-onics,2004,42(1-9):705-711
    [23]Feichtinger M,Mossbock R,Karcher H.Evaluation of bone volume following bone grafting in patients with unilateral clefts of lip,alveolus and palate using a CT-guided three-dimensional navigation system[J].J Craniomaxillofac Surg,20 06,34(3):144-149
    [24]Elliot K, Donna M, Derek R,et al.Three-dimensional imaging[J].Radiology,19 91,181(2):321-337
    [25]陈伟南,候春林,苟三怀等.三维重建上肢解剖结构的计算机模拟手术[J].生物医学工程学杂志,2000,17(3):292-294
    [26]孙明林,李涤尘,王臻等.个体定制化人工半膝关节的快速设计制造与临床试用[J].武警医学院学报,2006,15(5);411-414
    [27]Park SE,Frate LE,Suggs JF,et al.The change in length of the medial and lateral collateral ligaments during in vivo knee flexion[J].Knee,2005,12(5):377-382
    [28]Sahara W,Sugamoto K,Murai M,et al.The three-dimensional motions of glenohumeral joint under semi-loaded condition during arm abduction using vertically open MRI[J].Clin Biomech(Bristol,Avon),2007,22(3):304-312
    [29]Sojar V,Stanisavljevic D,Hriibernik M,et al.Liver surgery training and planning in 3D virtual space[A].In:Lemke HU ed.Computer Assisted Radiology and Surgery.Proceedings:CARS 2004[M].Amsterdam:Elsevier,2004:390-394
    [30]Cimerman M,Kristan A.Preoperative planning modules[J]. Injury,2007,38(4): 442-449
    [31]张健.组合式颈推整体三维有限元模型的建立及其在新型颈椎融合器生物力学评价中的应用.四川大学博士论文,2006
    [32]胥少汀,葛宝丰,徐印坎.实用骨科手术学(第2版)[M].北京:人民军医出版社,2003:705
    [33]张景僚.骨盆三维有限元模型建立及其分析.第一军医大学博士论文,2007
    [1]陈履平,韩祖斌,李承球,等.以有限元法探讨髌骨及张力带内固定术[J].南京医学院学报,1989,9(3):208-211
    [2]潘哲尔,黄加张,顾湘杰,等.磁共振影像膝关节三维有限元模型的建立[J].中国骨与关节损伤杂志,2006,21(4):268-270
    [3]Yoganadan N,Kumaresasn S,Voo L,et al.Finite element applications in human cervical spine modeling[J].Spine,1996,21(15):1824
    [4]Keyak JH,Meagher JM,Skinner HB,et al.Automated three-dimensional finite element modeling of bone:a new method[J].J Biomed Eng,1990,12(5):389-397
    [5]Camacho DLA,Hopper RH.An improved method for finite element mesh generation of geometrically complex structures with application to skullbase[J].J Biomech,1997,30(10):1067-1070
    [6]杨国标,徐峰.基于Hamgmann骨折的植骨融合钢板内固定术有限元稳定性分析[J].力学季刊,2005,26(3):491-496
    [7]佟大可,蔡郑东,吴建国,等.骶骨肿瘤切除后骨盆三维有限元模型的建立与相关应力分析[J].医用生物力学,2005,20(4):231-234
    [8]Iceconti M,Bellingeri L,Cristofolini L,et al.A comparative study on different methods of automatic mesh generation of human fumurs[J].Med Eng Phys,1998, 20(1):1-10
    [9]牛文鑫,丁祖泉.三种三维有限元建模方法在跟骨模型建立中的应用和比较[J].医用生物力学,2007,12(4):345-350
    [10]郭波,邹丽梅,钱学毅.巧妙转换Pro/ENGINEER与ANSYS间的模型数据[J].CAD/CAM与制造业信息化,2006,(4):53-56
    [11]聂文忠,张绍祥,王成杰.基于冷冻切片的人体腰椎三维有限元模型[J].医用生物力学,2007,12(3):260-263
    [12]梁凯恒,马迅,关哲,等.颈椎(C0-C3)有限元模型的建立及验证[J].山西中医学院学报,2009,10(1):53-55
    [13]刘桂奇,周勇刚CroweⅣ型髋关节发育不良骨盆有限元模型的构建[J].中国组织工程研究与临床康复,2010,14(30):5511-5514
    [14]刘耀升,陈其昕,廖胜辉,等.腰椎L4-L5活动节段有限元模型的建立及验证[J].第二军医大学学报,2006,27(6):665-669
    [15]Kajzer W,Kajzer A,Marciniak J.FEM analysis of compression screws used for small bone treatment[J].J Ach in Mater Manu Eng.2009,33(2):189-196
    [16]Krauze A,Marciniak J.Numerical method in biomechanical analysis of intramedullary osteosynthesis in children[J].J Ach in Mater Manu Eng, 2006,15(1-2):120-126
    [17]Walke W, Marciniak J, Paszenda Z,et al.Biomechanical analysis of tibia-double threaded screw fixation[J].Arch of Mater Sci Eng,2008,l(30):41-44
    [18]Chiang MF, Zhong ZC, Chen CS, et al.Biomechanical comparison of instrume-nted posterior lumbar interbody fusion with one or two cages by finite element analysis[J].Spine (Phila Pa 1976),2006,31(19):E682-689
    [19]吴宇峰,苏培基,伍中庆,等.髌骨的三维有限元重建及初步力学分析[J].中国中医骨伤科杂志,2004,12(2):1-3
    [20]汪强,孙俊英,赖震,等.膝关节三维有限元模型的建立[J].山西医药杂志,2007,36(3):210-212
    [21]许硕责,张春才,苏佳灿,等.镍钛聚髌器治疗髌骨骨折的三维有限元分析[J].第二军医大学学报,2001,22(9):816-818
    [22]李润方,龚剑霞主编.接触问题数值方法及其在机械设计中的应用.第1版.重庆:重庆大学出版社,1991
    [23]郭欣.腕部的三维有限元模拟及腕管综合征的生物力学研究.四川大学博士学位论文,2007
    [24]Anderson DD, Goldsworthy JK, Li W, et al.Physical validation of a patient-specific contact finite element model of the ankle[J].J Biomech, 2007,40(8):1662-1669
    [1]李开泰,黄艾香,黄庆怀.有限元方法及其应用[M].西安:西安交通大学出版社.1992,1-3
    [2]崔红新,程方荣,王健智.有限元法及其在生物力学中的应用[J].中医正骨,2005,17(1):53-55
    [3]龚璐璐,季海龙,王铭春,等LISS钢板治疗股骨远端骨折有限元建模及分析[J].生物医学工程学进展,2010,31(1):12-17
    [4]林斌,姚小涛,张美超.双钢板夹持内固定治疗Riiedi-AllgoweⅢ型Pilon骨折的三维有限元分析[J].中国骨与关节损伤杂志,2009,24(1):50-51
    [5]侯筱魁.关节镜手术学[M].上海:上海科学技术出版社,2003:93
    [6]林斌,陈昆,张美超.II型齿状突骨折螺钉固定的三维有限元分析[J].中国骨与关节损伤杂志,2008,23(2):92-94
    [7]Ong KL, Kurtz SM, Manley MT, et al. Biomechanics of the Birmingham hip resurfacing arthroplasty[J]. J Bone Joint Surg Br.2006,88(8):1110-1115
    [8]Van Staden RC, Guan H, Loo YC. Application of the finite element method in dental implant research[J].Comput Methods Biomech Biomed Engin.2006,9(4): 257-270
    [9]Saha S, Roychowdhury A. Application of the finite element method in orthopedic implant design[J]. J Long Term Eff Med Implants.2009,19(1):55-82
    [10]Assuncao WG, Barao VA, Tabata LF,et al. Biomechanics studies in dentistry: bioengineering applied in oral implantology[J]. J Craniofac Surg.2009,20(4):117 3-1177
    [11]张德盛,宋跃明.L3-L5三维非线性有限元模型的建立及其临床意义[J].生物医学工程学杂志,2006,23(6):1250-1252
    [12]Lohfeld S, Barron V, McHugh PE.Biomodels of bone:a review[J]. Ann Biomed Eng.2005,33(10):1295-311
    [13]Yosibash Z, Trabelsi N, Milgrom C. Reliable simulations of the human proximal femur by high-order finite element analysis validated by experimental observati-ons[J].J Biomech.2007,40(16):3688-3699
    [14]Kupczik K, Dobson CA, Fagan MJ,et al.Assessing mechanical function of the zygomatic region in macaques:validation and sensitivity testing of finite element models[J].J Anat,2007,210(1):41-53
    [15]Benjamin J, Bried J, Dohn M,et al.Biomechanical evaluation of various forms of fixation of transverse patellar fracture[J].J Orthop Trauma,1987,1(3):219-222
    [16]Burvant JG, Thomas KA,Alexander R,et al.Evaluation of methods of internal fixation of transverse patellar fractures:a biomechanical study[J].J orthop Traum-a,1994,8(2):147-153
    [17]Carpenter JE. Kasman RA, Patel N, et al. Biomechanical evaluation of current patella fracture fixation techniques[J]. J Orthop Trauma,1997,1(5):351-356
    [18]Kose KC,Kuru I,Maralcan G,et al.Comparison of a technique using a new percutaneous osteosynthesis devicewith conventional open surgery for displaced patella fractures[J].J Orthop Trauma,2007,21(1):77-78
    [19]陈永铵,利盛成,方祥,等.髌骨骨折固定术式选择及生物力学分析[J].中国临床解剖学杂志,2003,21(3):389-391
    [20]刘远禄,王珏,李帮春.髌骨骨折的生物力学研究及其治疗现状[J1.创伤外科杂志,2005,7(2):149-150,158
    [21]陈履平,韩祖斌,李承球,等.以有限元法探讨髌骨及张力带内固定术[J].南京医学院学报,1989,9(3):208-211
    [22]Goldstein SA,Coale E,Weiss AP.et al.Patellar surface strain[J]. J Orthop Res,198 6,4(3):372-377
    [23]叶林根,俞光荣,王以进.髌骨骨折四种不同内固定方法的生物力学测试研究 [J].生物医学工程与临床,2001,5(3):121-124
    [24]郑季南,徐新华,洪庆南等.髌骨骨折不同改良方式张力带钢丝固定的生物力学研究与临床应用[J].中国骨伤,2002,15(4):208-210
    [1]金丽颖.髌骨对膝关节运动影响的生物力学分析[J].山东体育学院学报,2008,24(2):60-61
    [2]张峻,候筱魁.髌骨的生物力学研究进展[J].医用生物力学,2004,19(2):120-125
    [3]张宇.丝线内固定荷包式缝合治疗髌骨骨折的临床应用.黑龙江中医药大学硕士论文,2009
    [4]Goldstein SA,Coale E,Weiss A P.et al.Patellar surface st rain[J].J Orthop Res,1986,4(3):372-377
    [5]刘亚云.五角网缝合术治疗髌骨骨折的生物力学研究及其临床应用.南昌大学医学院硕士论文,2008
    [6]胥少汀,刘树清,于学钧,等.实用骨科学,北京:人民军医出版社,2004,703-704
    [7]王亦璁.骨与关节损伤第(3)版,北京:人民卫生出版社,2001,1024-1025
    [8]李文强.克氏针张力带与非克氏针张力带治疗髌骨骨折疗效的分析.新疆医科大学硕士论文,2007
    [9]张国栋.髌骨骨折几种内固定方法的临床疗效分析.吉林大学硕士论文,2007
    [10]Gosal HS,singh P,Fiel RE.Clinical experience of patella fracture fixation using metal wire or non absorbable polyester a study of 37 cases[J].Injure,2001,32(2): 129-135
    [11]Lennox IA, Cobb AG, Knowles J, et al.Knee function after patellectomy.a 12-to 48-year follow-up[J]. J Bone Joint Surg Br.1994,76(3):485-487
    [12]刘建伟,熊波.髌骨骨折的手术治疗[J].中国矫形外科杂志,2008,16(6):442-444,449
    [13]Gardner MJ,Yacoubian S,Geller D.The incidence of soft tissue injury in operative tibial plateau fractures:a magnetic resonance imaging analysis of 103 patients[J].J Orthop Trauma,2005,19(2):79-84
    [14]Nordin M,Frankel VH Biomenchanics of the knee.InrNordin M,Frankel VH(eds) Basic biomechanics of themusculoskeletal system.Lea&Febiger,Philadelphia.115-134
    [15]Muller EJ,Wick M,Muhr G.Patellectomy after trauma:is there a correlation between the timing and the clinical outcome[J].Unfallchirurg,2003,6(12):1016-1019
    [16]Saltzman CL, Goulet JA, McClellan RT, et al.Results of treatment of displaced patellar fractures by partial patellectomy[J].J Bone Joint Surg Am,1990,2(9):127 9-1285
    [17]宁资社,陆裕朴.髌骨部分切除治疗髌骨骨折疗效及实验研究[J].中华骨科杂志,1991,11(3):191-194
    [18]Marder RA,Swanson TV,Sharkey NA,et al.Effects of partial patellectomy and reattachment of the patellar tendon on patellofemoral contact areas and pressures[J].J Bone Joint Surg Am.1993,75(1):35-45
    [19]Milankov M,Miljkovic N, Stankovic M.Treatment of the knee stiffness caused by partial patellectomy-technical tricks[J].Indian J Med Sci,2005,59(12):534-537
    [20]王亦璁,毕五蝉,高继宗,等.髌骨骨折治疗原则的实验依据[J].中华创伤杂志,1990,6(3):133-136
    [21]荣国威,王承武.骨折[M].北京:人民卫生出版社,2004,1043-1051
    [22]Heppenstall RB.Fracture treatment and healing[M].Listed Lord:Sanders Company,1980,759-69
    [23]Pauwels FR.Surprising success with traction girding in fracture of the patella[J]. Med Klin.1966,61(22):888
    [24]刘爱峰,金鸿宾,王志彬等.髌骨骨折固定研究进展[J].中国矫形外科杂志,2010,18(2):128-131
    [25]叶林根,俞光荣,王以进.髌骨骨折四种不同内固定方法的生物力测试研究[J].生物医学工程与临床,2001,5(3):121-124
    [26]郑季南,徐新华,洪庆南,等.髌骨骨折不同改良方式张力带钢丝固定的生物力学研究及临床应用[J].中国骨伤,2002,15(4):208-210
    [27]张胜军.环形加“8”字钢丝内固定治疗髌骨粉碎性骨折[J].中医正骨,2009,21(3):54
    [28]李海峰,杨玉环.髌骨骨折内固定术后效果不佳原因分析[J].中华实用中西医杂志,2003,16(11):1661
    [29]刘威,冯峰,朱明海,等.克氏针张力带内固定治疗髌骨骨折并发症及失败原因分析[J].骨与关节损伤杂志,2005,20(3):205
    [30]Burvant JG, Thomas KA, Alexander R, et al.Evaluation of methods of internal fixation of transverse patella fractures:a biomechanical study[J].J Orthop Trauma.1994,8(2):147-53
    [31]Carpenter JE,Kasman RA,Patel N,et al.Biomechanical evaluation of current patellar fracture fixation techniques[J].Orthop Trauma,1997,11(5):315-356
    [32]庞再力.空心拉力螺钉张力带联合髌囊环扎治疗髌骨骨折[J1.中国矫形外科杂志,2008,16(4):301-302
    [33]刘国辉,杨述华,杜靖远,等.可吸收螺钉与克氏针张力带治疗髌骨骨折应用选择比较[J].中国矫形外科杂志,2007,15(14):1059-1061,1068
    [34]张春才,张巽奇.髌骨内固定形态记忆整复器的设计与临床应用[J].中华外科杂志,1989,27(11):692-695
    [35]张治国,成明华,熊波.聚髌器与克氏针张力带治疗髌骨骨折的临床疗效分析[J].中国骨与关节损伤杂志,2009,24(3):253
    [36]汤晓正.五角网缝合术治疗髌骨骨折[J].中国矫形外科杂志,2004,12(7):554-555
    [37]陈希.可吸收手术缝线研究进展[J].国外医学创伤与外科基本问题分册,1995,16(4):204-206
    [38]Freudenberg S,Rewerk S,Kaess M,et al.Biodegradation of absorbable sutures in body fluids and PH buffers[J].Eur Sur Res,2004,36(6):376-385
    [39]谢扬,郑佳坤,林本丹,等.可吸收线张力带治疗髌骨骨折的生物学研究及其临床意义[J].中华创伤杂志,2004,20(5):300-302
    [40]Li X,Ma BT,Zhu SY.Absorbable sutures fasten treatment of patella fracture[J].Chinese Journal of integrated Traditional and western Medicine on surgery,2000,6(3):191
    [41]Scilaris TA,Grantham JL,Prayson MJ,et al.Biomechanical comparison of fixation methods in transverse patella fractures[J].Journal of Orthopaedic Trauma,1998, 12 (5):356
    [421陈晓斌,孙天胜,刘智,等Cable-pin系统治疗髌骨骨折的初步临床报告[J].中国骨与关节损伤杂志,2008,23(1):12-14
    [43]Cekin T,Tukenmez M,Tezeren G.Comparison of three fixation methods in transverse fractures of the patella in a calfmodel[J].Acta Orthop Traumatol Turc,2006,40(3):248-251
    [44]ReinerLabitzke,赵金中,罗从风,译.钢缆接骨术[M].上海:科学技术出版社,2007,13-85
    [45]蔡晓冰,佟大可,纪方,等Cable-Pin系统选择性治疗髌骨骨折的疗效分析[J].中国矫形外科杂志,2009,17(6):411-413
    [46]Baydar ML,Doral MN,Gur E,et al.The treatment of patellar fractures by external fixation under arthroscopic control:a new technique.ISAKOS First Biennial Congress PodiumPresentation,May 11-16,1997,Buenos Aires,Argentina. Abstract-Book 242
    [47]Lauterbach HH,Kinzl L.Treatment of open patella fracture with external mini-fixator[J].Chirurg,1991,62(5):432-433
    [48]Liang QY,Wu JW.Fracture of the patella treated by open reduction and external compressive skeletal fixation[J].J Bone Joint Surg,1987,69(1):83-89
    [49]Ibrahim Y,Erbil O,Sabri A,et al.Application of circular external fixator under arthroscopic control in comminuted patella fractures technique and early results[J].J Trauma,2006,60(3):659-663
    [50]Smith ST,Cramer KE,Kargas DE,et al.Early complication in the operative treatment of patella fractures[J].J OrthopTrauma,1997,11(3):183-187
    [51]Luna-Pizarro D, Amato D, Arellano F, et al.Comparison of a technique using a new percutaneous osteosynthesis device with conventional open surgery for displace fractures in a randomized controlled trial[J].J Orthop Trauma,2006,20(8): 529-535
    [52]Tandogan RN,Demirors H,Tuncay CI,et al.Arthroscopic-assisted percutaneous screw fixation of select patellar fractures[J].Arthroscopy,2002,18(2):156-162
    [53]陈履平,韩祖斌,李承球,等.以有限元法探讨髌骨及张力带内固定术[J].南京医学院学报,1989,9(3):208-211

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700