低强度复合振动联合阿仑膦酸钠预防卵巢切除大鼠骨质疏松的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     骨质疏松(Osteoporosis, OP)是以骨量减少,骨组织微观结构退化,致使骨强度下降,骨脆性增加以及骨折风险增大为特征的一种全身性骨骼系统疾病。骨重建是一个骨组织自我更新的过程:破骨细胞不断吸收旧骨,而成骨细胞则不断形成新骨补充骨吸收部分。当机体骨骼发育成熟后,破骨细胞在骨重建过程中发挥重要作用。若破骨细胞活性增强或量增多,可以导致骨吸收增加,骨重建失衡,导致很多骨骼系统疾病的发生,如:OP。目前OP在世界常见病、多发病中居第7位。骨质疏松最常见的并发症是骨折,常见部位是髋部,椎体和桡骨远端。妇女在进入绝经期后骨量丢失明显,如无适当预防和治疗,骨质疏松将不可避免地造成桡骨、脊柱和髋部等处的骨折。随着人口老龄化和人均寿命的延长,骨质疏松性骨折发生率全球每年平均以大于1%的速度递增,因此更多有效、简便的非药物的辅助手段以满足不同人群对骨质疏松预防和治疗的需要是目前研究的重点内容之一。目前关于骨质疏松症的治疗目的一是解除全身性疼痛,二是预防病理性骨折的发生。临床上关于骨质疏松症的治疗方案包括药物治疗、物理治疗及外科手术治疗等,其中以药物治疗为主要手段。临床上常使用的药物主要有骨吸收抑制剂、骨形成促进剂、解偶联剂、骨矿化剂以及中医药等五大类。目前临床上越来越多的患者服用骨吸收抑制剂二膦酸盐类药物来预防骨质疏松或者作为抗骨质疏松的主要药物。二膦酸盐类药物主要机制是通过抑制破骨细胞活性减少骨吸收,从而增加骨密度和抑制骨转换,可以减低椎体和非椎体骨折的发生率,并且已为临床研究所证实。阿伦膦酸钠是第三代二膦酸盐类药物的代表药物,也是临床上使用最为广泛的抗骨质疏松药物。阿仑膦酸钠(Alendronate ALE)是治疗OP的传统药物之一,以抑制骨吸收为主,改善骨的质量,同时也可以减轻腰背部疼痛和改善骨质疏松老年的生活质量。但是该药物治疗存在一定副作用,特别是胃肠道反应,限制一部分骨质疏松患者使用该药物。随着社会经济的发展和医疗模式的转变,在关注药物治疗的同时,越来越多的关注已转向了非药物的手段和措施。
     近年来物理疗法(力学、电磁学)防治OP的研究成为热点。Wolff定律认为,骨的结构特点是适应功能需要而塑造的,并随着功能需要的改变而进行重建;骨的功能是承受活动期间骨组织的机械应变,并随着功能需要所产生的应力的变化而进行功能适应性重建。振动是一种力学刺激,它需要一定的强度和频率才能将有效刺激能量传递至成骨效应细胞,从而诱发成骨反应,过低的强度和频率难以到达有效部位或不能成为诱发成骨的阈上刺激,而过高的振动强度对人体是有危害的。众多研究已经证实,高频(≥30Hz)、低强度(<1g,1g=9.8m/s)和短时(<30分钟)的振动可以调节骨代谢,抑制骨吸收和促进骨形成。同时一定的振动刺激还可以增加肌量,预防或改善肌萎缩。所以说,低于引起骨组织损伤的机械振动信号具有很强的成骨效应,是一种新型、无创、副作用小治疗OP的模式,在防治老年性骨质疏松中有广阔的应用前景。但是目前关于低强度的全身复合振动联合阿仑膦酸钠预防骨质疏松症的研究仍未有报道。
     实验目的:
     1.评估高频低强度复合振动预防卵巢切除大鼠骨质疏松的作用;
     2.评估阿仑膦酸钠预防卵巢切除大鼠骨质疏松的作用;
     3.比较传统药物阿仑膦酸钠与新型的低强度全身复合振动在预防骨质疏松的效果;
     4.观察低强度的全身复合振动联合阿仑膦酸钠预防骨质疏松的效果;
     5.观察低强度全身复合振动是否增强阿仑膦酸钠预防骨质疏松的效果。
     实验方法:
     1.讨论高频率低强度复合振动对去势大鼠骨质疏松的预防作用
     1.1实验材料与方法:
     80只8周龄SD雌性未育大鼠随机分为对照组(sham)、治疗1组(OVX+VEH)、治疗2组(OVX+WBV),对照组32只大鼠,其余2个治疗组每组24只。对照组未切除卵巢,而治疗1组、治疗2组中大鼠切除双侧卵巢,制备骨质疏松大鼠模型;待卵巢切除切口愈合后开始干预,其中治疗1组是单纯卵巢切除后给予生理盐水(1mg/Kg,每周灌胃一次);治疗2组是切除卵巢后给予全身复合振动(振动强度为0.3g,频率为45-55Hz,每次振动20min,每天1次,每周5次,休息间隔不大于2d,共12周)。
     1.2检测指标:
     在实验过程中每四周检测实验大鼠的体重。在实验4周、8周和12周分别处死8只大鼠,收集其血标本、子宫和双侧胫骨,并用酶法检测血标本中的骨钙素(osteocalcin OC)和工型胶原C末端肽(C-terminal cross-linked telopeptides of type I collagen, CTX),左侧胫骨标本接受micro-CT检查分析和右侧胫骨标本接受三点弯曲生物力学检测。
     2.讨论阿仑膦酸钠对去势大鼠骨质疏松的预防作用
     2.1实验材料与方法:
     80只8周龄SD雌性未育大鼠随机分为对照组(sham)、治疗1组(OVX+VEH)、治疗2组(OVX+ALE),对照组32只大鼠,其余2个治疗组每组24只。对照组未切除卵巢,而治疗1组、治疗2组中大鼠切除双侧卵巢,制备骨质疏松大鼠模型;待卵巢切除切口愈合后开始干预,其中治疗1组是单纯卵巢切除后给予生理盐水(1mg/Kg,每周灌胃一次);治疗2组是切除卵巢后给予阿仑膦酸钠(1mg/Kg,每周灌胃一次)。
     2.2检测指标:
     在实验过程中每四周检测实验大鼠的体重。在实验4周、8周和12周分别处死8只大鼠,收集其血标本、子宫和双侧胫骨,并用酶法检测血标本中的骨钙素(osteocalcin OC)和Ⅰ型胶原C末端肽(C-terminal cross-linked telopeptides of type I collagen, CTX),左侧胫骨标本接受micro-CT检查分析和右侧胫骨标本接受三点弯曲生物力学检测。
     3.探讨低强度高频率复合振动联合阿仑膦酸钠对去势大鼠骨质疏松的预防效果
     3.1实验材料与方法:
     128只8周龄SD雌性未育大鼠随机分为对照组(sham)、治疗1组(OVX+VEH)、治疗2组(OVX+WBV)、治疗3组(OVX+ALE)和治疗4组(VOX+WBV+ALE),对照组32只大鼠,其余四个治疗组每组24只。对照组未切除卵巢,而治疗1组、治疗2组、治疗3组和治疗4组中大鼠切除双侧卵巢,制备骨质疏松大鼠模型;待卵巢切除切口愈合后开始干预,其中治疗1组是单纯卵巢切除后给予生理盐水(1mg/Kg,每周灌胃一次);治疗2组是切除卵巢后给予全身复合振动(振动强度为0.3g,频率为45-55Hz,每次振动20min,每天1次,每周5次,休息间隔不大于2d,共12周);治疗3组是切除卵巢后给予阿仑膦酸钠(1mg/Kg,每周灌胃一次);治疗4组是切除卵巢后给予全身复合振动及阿仑膦酸钠干预。
     3.2检测指标:
     在实验过程中每四周检测实验大鼠的体重。在实验4周、8周和12周分别处死8只大鼠,收集其血标本、子宫和双侧胫骨,并用酶法检测血标本中的骨钙素(osteocalcin OC)和Ⅰ型胶原C末端肽(C-terminal cross-linked telopeptides of type I collagen, CTX),左侧胫骨标本接受micro-CT检查分析和右侧胫骨标本接受三点弯曲生物力学检测。
     实验结果
     1.讨论高频率低强度复合振动对去势大鼠骨质疏松的预防作用
     1.1实验大鼠体重和子宫指数的变化:大鼠切除卵巢后体重呈显著性增加(P<0.001),但子宫重量减轻显著(P<0.001)。
     1.2血清骨转化标志物检测结果:血清OC和CTX在卵巢切除后均增加显著(P<0.001),说明卵巢切除后大鼠的骨代谢属于高转化状态。总体来说WBV对血清内OC和CTX两种骨代谢标志物影响不大。
     1.3Micro-CT扫描胫骨近端骨微结构结果:在实验12周时,与sham组对比,OVX+VEH对照组Tb.N, Tb.Th, Tb. Sp, BV/TV, Conn. D均显著性减低,而SMI显著性增高。在实验12周时,相对于对照治疗组(OVX+VEH组),WBV治疗组能够显著提高胫骨近端松质骨的骨微结构参数[BV/TV (+38.1%, P<0.001), Tb. N (+12.3%, P=0.015)和Tb. T h(+33.7%, P=0.001)].
     1.4胫骨的三点弯曲实验检测结果:与OVX+VEH组比较,OVX+WBV组在各个实验时间点的所有生物力学参数无统计学意义。在实验4周时,与sham组比较,OVX+VEH组所有生物力学参数同样无统计学意义,但在实验8周和12周时,OVX+VEH组所有生物力学参数均有显著性降低。
     2.讨论阿仑膦酸钠对去势大鼠骨质疏松的预防作用
     2.1血清骨转化标志物检测结果:血清OC和CTX在卵巢切除后均增加显著(P<0.001)。实验过程中发现ALE对OC影响不大,但ALE能够显著抑制血清CTX的增加。
     2.2Micro-CT扫描胫骨近端骨微结构结果:在实验12周时,与sham组对比,OVX+VEH对照组Tb.N, Tb.Th, Tb. Sp, BV/TV, Conn. D均显著性减低,而SMI显著性增高。在实验12周时,相对于对照治疗组(OVX+VEH组),ALE治疗能够显著提高胫骨近端松质骨的骨微结构参数[BV/TV (+73%, P<0.001), TV apparent (+89.9%, P<0.001), Tb. N (+29.9%, P<0.001)和Tb. T h (+56.3%, P0.001)].
     2.3胫骨的三点弯曲实验检测结果:在实验4周时,与sham组比较,OVX+VEH组所有生物力学参数同样无统计学意义,但在实验8周和12周时,所有生物力学参数均有显著性差异。在实验12周时,相对于对照治疗组(OVX+VEH组),ALE治疗组能够显著提高胫骨近端生物力学参数Fmax(+27.6%, P=0.009)和bone energy absorption (+27.4%, P=0.040),但对胫骨近端的stiffness没有任何影响。
     3.探讨低强度高频率复合振动联合阿仑膦酸钠对去势大鼠骨质疏松的预防效果
     3.1血清骨转化标志物检测结果:血清OC和CTX在卵巢切除后均增加显著(P<0.001)。WBV+ALE治疗组对OC影响不大,但WBV+ALE能够显著抑制血清CTX的增加。
     3.2Micro-CT扫描胫骨近端骨微结构结果:在实验12周时,与sham组对比,OVX+VEH对照组Tb. N, Tb. Th, Tb. Sp, BV/TV, Conn. D均显著性减低,而SMI显著性增高。在实验12周时,相对于WBV治疗组来说,ALE治疗组更能够显著提高胫骨近端松质骨的骨微结构参数[BV/TV(+25.3%,p=0.004),TVapparent (+60.3%, P<0.001), BV material (+28.4%, P=0.044), Tb. N (+15.6%, P=0.001), and Tb. T h (+16.9%, p=0.037)].同样在实验12周时,相对于ALE治疗组来说,WBV+ALE治疗组更能够显著提高胫骨近端的骨微结构参数[BV/TV (+25%, p=0.001), TV apparent (+30.4%, P=0.032), Tb. N (+10%, P=0.015), and Conn. D (+44.5%, p=0.042)].
     3.3胫骨的三点弯曲实验检测结果:在实验4周时,与sham组比较,OVX+VEH组所有生物力学参数同样无统计学意义,但在实验8周和12周时,所有生物力学参数均有显著性差异。在实验12周时,相对于对照治疗组(OVX+VEH组),WBV+ALE治疗组均能够显著提高胫骨近端生物力学参数Fmax(+28.7%,P=0.008)和bone energy absorption (+47.6%, P=0.003),但对胫骨近端的stiffness没有任何影响。在实验12周时,虽然ALE治疗组和WBV+ALE治疗组生理力学参数均无统计学意义,但对比ALE治疗组,WBV+ALE治疗组能够提高胫骨近端的最大应力、骨的刚度参数和胫骨近端破坏的吸收能量。
     实验结论
     1.低强度高频率的复合振动可以一定程度上增加骨的形成,改善骨的微结构。
     2.阿仑膦酸钠能够通过抑制破骨细胞活性,减少骨吸收,抑制骨转换,从而减缓了骨质疏松的进行;阿仑膦酸钠还能够改善松质骨的微结构,提高骨的生物力学性能。
     3.相对于低强度全身复合振动,阿仑膦酸钠能够更好的预防去除卵巢大鼠骨质疏松和改善骨的微结构;全身复合振动联合阿仑膦酸钠能够很好的预防去势大鼠骨质疏松,而且低强度复合振动能够增强阿仑膦酸钠预防骨质疏松的效果。
Backgrounds
     As a systemic skeletal disease, osteoporosis (OP) is characterized by bone loss, degradation of bone tissue microstructure, and the resulting in increasing of bone brittleness and easy fracture. Bone remodeling is a self-renewal process, including absorbing bone by osteoclasts and forming new bone constantly by osteoblasts on the resorption bone. Osteoclasts play an important role in maintaining stable bone mass in the remodeling process after bones mature. More or osteoclast activity increased results in increased bone resorption and bone remodeling imbalance, and even leads to the occurrence of many bone diseases such as:OP. There had been more than90millions patients in China. Its incidence has leapt to the7th of common diseases. One of OP'S major complication is OP fractures, a common disease which is harmful to the health of the elderly, Especially in the postmenopausai women. Fracture of hip, which had obviously decreased activity and a High mortality, was thought as the most dangerous consequence in osteoporosis. With ageing and prolonging of life, the rate of osteoporotic fracture increased by1%each year in the world. To deal with the problem,we had to seek more effective and convenient non-pharmacal ways for osteoporosis prevention and treatment. At present, there are two aim of the treatment for osteoporosis. One is to relieve ache, the other is to prevent the happening of the pathological fracture. The clinical treatments of
     osteoporosis include drug therapy, physical therapy and surgical treatment, etc. The drug treatment has been become as the main method. Clinical commonly used drugs for preventing osteoporosis include five categories, such as bone formation actived agent, bone resorption inhibited agent, uncoupler, bone mineralization agent and traditional Chinese medicine. Now more and more patients take bone resorption inhibited drug to prevent osteoporosis, such as bisphostates that is the main anti-osteoporosis drug. Bisphostates which can inhibit osteoclast activity to reduce bone resorption, to increase bone mineral density and bone turnover, can reduce the incidence of vertebral body and the vertebral fracture which has been confirmed in clinical researches. Alendronate, which is the third generation representative drug of bisphostates, is a drug widely used for preventing osteoporosis in the clinical. Alendronate (ALE) is one of the traditional medicines for the treatment of OP. ALE can inhibit bone absorption, improve the quality of the bone. At the same time, ALE also can relieve lower back pain and improve the quality of life of senile osteoporosis. But there are some side effects, especially the gastrointestinal tract reaction, limiting some osteoporosis patients using this drug. With the development of social economy and the transformation of medical model, more and more attention has turned to non-drug methods and measures.
     In recent years, the studies of prevention OP using physical therapy (mechanics, electromagnetism) have become hotspot. Wolff law shows that the bone remodels to adapt to the needs of function and the changes of the mechanical stress. So the mechanical stress loading on osteocytes within the bone is the original power for bone reconstruction. A certain frequency and intensity are required for vibration inducing osteoblastic bone formation. Two low intensity or frequency is hard to reach the stimulation for bone formation. While too high-intensity, vibration is harmful to human. Many researches confirmed that high frequency(>30Hz), low level(     Objectives
     1. To evaluate the preventive effects of high frequency and low level compound vibration on ovariectomized rats;
     2. To evaluate the preventive effects of alendronate on ovariectomized rats;
     3. To differentiate the effect in ovariectomized rats between conventionally alendronate drug and low-magnitude whole-body vibration.
     4. To investigate the effect of low-magnitude WBV combined with ALE in ovariectomized rats
     5. To determine whether low-magnitude WBV could enhance the effect of ALE on bone turnover and bone properties in ovariectomized rats.
     Methods
     1. To evaluate the preventive effects of high frequency and low level compound vibration on ovariectomized rats
     1.1Materials and methods:
     A total of80Sprague-Dawley rats were randomly divided into three groups (SHAM, OVX+VEH, OVX+WBV). The sham group not received ovariectomy and the other two treat groups received ovariectomy. The level of WBV was applied0.3g at45-55Hz for20min/day,5day/week, for12weeks. VEH was administered in dose of1mg/Kg, once a week.
     1.2Measurements:
     During the experimental period, the body weight of the rats in all groups was measured using electronic scale and was recorded every four weeks during the experimental period. The rats were sacrificed at four predetermined time points for the Sham group (0,4,8and12weeks) and three time points for the remaining four groups (4,8and12weeks). Every four weeks, eight rats from each group were sacrificed and their blood and both tibiae were harvested. At sacrifice, whole blood was collected with a cardiac puncture to determine the serum osteocalcin (OC) and CTX (C-terminal cross-linked telopeptides of type I collagen, CTX) using standard laboratory techniques. The bilateral tibiae were collected, with the soft tissues being thoroughly removed and wrapped in normal saline-soaked gauze and stored at-20℃until further use for biomechanical testing and micro-CT scanning.
     2. To investigate the effect of ALE on ovariectomized rats
     2.1Materials and methods:
     A total of80Sprague-Dawley rats were randomly divided into three groups (SHAM, OVX+VEH, OVX+ALE). The sham group not received ovariectomy and the other two treat groups received ovariectomy. VEH and ALE were administered in dose of1mg/Kg, once a week.
     2.2Measurements:
     During the experimental period, the body weight of the rats in all groups was measured using electronic scale and was recorded every four weeks during the experimental period. The rats were sacrificed at four predetermined time points for the Sham group (0,4,8and12weeks) and three time points for the remaining four groups (4,8and12weeks). Every four weeks, eight rats from each group were sacrificed and their blood and both tibiae were harvested. At sacrifice, whole blood was collected with a cardiac puncture to determine the serum osteocalcin (OC) and CTX (C-terminal cross-linked telopeptides of type I collagen, CTX) using standard laboratory techniques. The bilateral tibiae were collected, with the soft tissues being thoroughly removed and wrapped in normal saline-soaked gauze and stored at-20℃ until further use for biomechanical testing and micro-CT scanning.
     3. To investigate the effect of low-magnitude WBV combined with ALE in ovariectomized rats
     3.1Materials and methods:
     A total of128Sprague-Dawley rats were randomly divided into five groups (SHAM, OVX+VEH, OVX+WBV, OVX+ALE, OVX+WBV+ALE). The sham group not received ovariectomy and the other four treat groups received ovariectomy. The level of WBV was applied0.3g at45-55Hz for20min/day,5day/week, for12weeks. VEH and ALE were administered in dose of1mg/Kg, once a week.
     3.2Measurements:
     During the experimental period, the body weight of the rats in all groups was measured using electronic scale and was recorded every four weeks during the experimental period. The rats were sacrificed at four predetermined time points for the Sham group (0,4,8and12weeks) and three time points for the remaining four groups (4,8and12weeks). Every four weeks, eight rats from each group were sacrificed and their blood and both tibiae were harvested. At sacrifice, whole blood was collected with a cardiac puncture to determine the serum osteocalcin (OC) and CTX (C-terminal cross-linked telopeptides of type I collagen, CTX) using standard laboratory techniques. The bilateral tibiae were collected, with the soft tissues being thoroughly removed and wrapped in normal saline-soaked gauze and stored at-20℃until further use for biomechanical testing and micro-CT scanning.
     Results
     1. To evaluate the preventive effects of high frequency and low level compound vibration on ovariectomized rats
     1.1The change of experimental rats weight and uterus index:
     The rat weight increased significantly after the ovary removed (P<0.001), but the uterus weight reduced significantly (P<0.001).
     1.2The results of serum markers:
     Osteocalcin (OC) and CTX rose with ovariectomy. They were not appreciably changed by WBV.
     1.3The bone microstructure results of the tibia measured by Micro-CT:
     Compared with the Sham group, nearly all tested indices were lower in the OVX+VEH group at week12, such as the BV/TV, Tb. N, Tb. T h, Tb. Sp and Conn. D. Moreover, compared with the OVX+VEH group, the BV/TV (+38.1%, P<0.001), Tb. N (+12.3%, P=0.015), Tb. Th (+33.7%, P=0.001), and Conn. D (+47.5%, P=0.029) were higher, and the SMI (-17.9%, P=0.003) was lower in the OVX+WBV group.
     1.4Three point bending experiment result of tibiae:
     All biomechanical parameters in various time points showed no significant difference between the OVX+VEH and OVX+WBV groups. All biomechanical parameters at week4also showed no significant difference between the OVX+VEH and Sham group. However, compared with the Sham group, all biomechanical parameters were lower in the OVX+VEH group at week8and week12.
     2. To investigate the effect of ALE in ovariectomized rats
     2.1The results of serum markers:
     Osteocalcin (OC) and CTX rose with ovariectomy. The level of OC was not appreciably changed by alendronate alone. Alendronate treatment significantly prevented an increase in this CTX serum marker.
     2.2The bone microstructure results of the tibia measured by Micro-CT:
     Compared with the Sham group, nearly all tested indices were lower in the OVX+VEH group at week12, such as the BV/TV, Tb. N, Tb. T h, Tb. Sp and Conn. D. Moreover, compared with the OVX+VEH group, nearly all tested indices were higher in the OVX+ALE group at week12, such as the BV/TV (+73%, P<0.001), TV apparent (+89.9%, P<0.001), Tb. N (+29.9%, P<0.001), Tb. T h (+56.3%, P<0.001), and Conn. D (+53.6%, P=0.012), and the SMI (-31.3%, P<0.001) and Tb. Sp (-38.7%, P=0.027) were lower in the OVX+ALE group.
     2.3Three point bending experiment result of tibiae:
     All biomechanical parameters at week4also showed no significant difference between the OVX+VEH and Sham group. However, compared with the Sham group, all biomechanical parameters were lower in the OVX+VEH group at week8and week12. Compared with the OVX+VEH (69.80±9.23N) group, the F max were higher in the OVX+ALE group (+27.6%, P=0.009) at week12. At week12, compared with the OVX+VEH group (52.03±1.58N), bone energy absorption were higher in the OVX+ALE group (66.27±2.64N,+27.4%, P=0.040). However, there were no significant differences for stiffness at any point in the two study groups examined.
     3. To investigate the effect of low-magnitude WBV combined with ALE in ovariectomized rats
     3.1The results of serum markers:
     Osteocalcin (OC) and CTX rose with ovariectomy. The level of OC was not appreciably changed by WBV combined ALE. WBV+ALE treatment significantly prevented an increase in this CTX serum marker.
     3.2The bone microstructure results of the tibia measured by Micro-CT:
     Compared with the Sham group, nearly all tested indices were lower in the OVX+VEH group at week12, such as the BV/TV, Tb. N, Tb. T h, Tb. Sp and Conn. D. Compared with the OVX+WBV group, the BV/TV (+25.3%, p=0.004), TV apparent (+60.3%, P<0.001), BV material (+28.4%, P=0.044), Tb. N (+15.6%, P=0.001), and Tb. T h (+16.9%, p=0.037) were higher, and the SMI (-16.4%, p=0.013) was lower in the OVX+ALE group at week12. At week12, significant differences were found for some tested indices between the OVX+ALE and OVX+WBV+ALE groups. Compared with the OVX+ALE group, the BV/TV (+25%, p=0.001), TV apparent (+30.4%, P=0.032), Tb. N (+10%, P=0.015), and Con. D (+44.5%, p=0.042) were higher, and the SMI (-18.4%, p=0.042) was lower in the OVX+WBV+ALE group.
     3.3Three point bending experiment result of tibiae:
     All biomechanical parameters at week4also showed no significant difference between the OVX+VEH and Sham group. However, compared with the Sham group, all biomechanical parameters were lower in the OVX+VEH group at week8and week12. Compared with the OVX+VEH (69.80+-9.23N) group, the F M were higher in the OVX+WBV+ALE group (89.86±6.21N,+28.7%, P=0.008) at week12. At week12, compared with the OVX+VEH group (52.03±1.58N), bone energy absorption were higher in the OVX+WBV+ALE group (76.81±3.23N,+47.6%, P=0.003). However, there were no significant differences for stiffness at any point in the four study groups examined.
     Conclusions
     1. Low-magnitude, high-frequency whole body vibration can increase bone formation and improve bone microstructure.
     2. Alendronate can inhibit osteoclaste activity, reduce bone resorption, inhibit bone transformation. Alendronate also can improve the microstructure and biomechanical properties of cancellous bone.
     3. Compared with the WBV, ALE was more effective at preventing bone loss and improved the trabecular architecture. Moreover, WBV enhance the effect of alendronate in ovariectomized rats by inducing further improvements in trabecular architecture.
引文
[1]. Christiansen C. Conference report:consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis [J]. Am J Med,1993, 94:646-650.
    [2]. Walker-Bone Karen, Walter G, Cooper C. Recent developments in the epidemiology of osteoporosis[J]. Current Opinion. Rheumatology,2002, 14(4):411-415.
    [3]. Melton LJ,3rd. How many women have osteoporosis now? [J]. J Bone Miner Res,1995,10(2):175-177.
    [4]. National Osteoporosis Foundation:Osteoporosis:Review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporosis Int,1998, (suppl 4):1-88.
    [5].Cummings SL, Melton LJ. Epidemiology and outcomes of osteoporotic fracture[J]. Lancet,2002,359:1761-1767.
    [6]. Kanis JA, Johnell O, Oden A, et al. Epidemiology of osteoporosis and fracture in men[J]. Caleif Tissue Int,2004,75:90-99.
    [7]. Huijbregts PA. Osteoporosis:epidemiology, histology, bone remodeling, and classification[J]. J Manu Manipu Therapy,2001,9:134-42.
    [8].骨质疏松症.北京大学人民医院内分泌科.常见疾病简介.
    [9].杨沛彦,苏友新,许书亮.中国人原发性骨质疏松症患病率及影响因素的研究进展[J].中国临床康复,2002,6(19):2904.
    [10]. SP Tuck and RM Francis. Osteoporosis [J]. Postgraduate Medical Journal, 2002,78(923):526-532.
    [11]. Messinger-Rapport BJ, Thacker HL. Prevention for the older woman. A practical guide to prevention and treatment of osteoporosis [J]. Geriatrics, 2002,57(4):16-27.
    [12]. Dennison E, Cooper C. Epidemiology of osteoporotic fracture [J]. Horm Res, 2000,54(S):58-63.
    [13]. Kanis JA, Oden A, Johnell O, et al. The components of excess mortality after hip fracture[J]. Bone,2003,32:468-473.
    [14]. Autier P, Haentiens P, Bentin J, et al. Costs induced by hip fractures:A prospective controlled study in Belgium. Belgian Hip Fracture Study Group[J].Osteoporosis Int,2000,11:373-380.
    [15].叶超群,陈佑学,纪树荣.骨质疏松性骨折的危险因素及预测[J].中国康复医学杂志,2007,22:660-664.
    [16]. Gerdhem P, Akesson K. Rates of fracture in participants and non-participants in the osteoporosis prospective risk assessment study[J]. J Bone Joint Stag Br,2007,89:1627-1631.
    [17]. Hongo M, Itoi E, Sinaki M, et al. Effect of low-intensity back exercise on quality of life and back extensor strength in patients with osteoporosis:a randomized controlled trial[J]. Ostcoporos Int,2007,18:1389-1395.
    [18]. Malmros B, Mortensen L, Jensen MB, et al. Positive effects of physiotherapy on chronic pain and performance in osteoporosis[J]. Osteoporos Int,1998,8:215-221.
    [19]. Vainionpaa A, Korpelainen R, Vihriala E, et al. Intensity of exercise is associated with bone density change in premenopausal women[J]. Osteoporos Int,2006,17:455-463.
    [20]. Arfken CL, Lach HW, Birge SJ, et al. The prevalence and correlates of fear of falling in elderly persons living in the community [J]. Am J Publ Hlth 1994,84:565-570.
    [21]. Bassett CA, Pawluk RL, Pilla AA. Augmentation of bone repair by inductively coupled electromagnetic fields[J]. Science,1974,184:575-577'.
    [22].陈建庭,谭小云,杨春露,等.脉冲电磁场对成骨细胞.破骨细胞复合培养体系中成骨细胞膜电位及细胞内钙离子的影响[J].中国临床康复,2004,8:870-872.
    [23]. Sclmoke M, Midura RJ. Pulsed electromagnetic fields rapidly modulate intracellular signaling events in osteoblastic cells:comparison to parathyroid hormone and insulin[J]. J Orthop Res,2007,25:935-11.
    [24]. Chang K Chang WH, Tsai MT, et al. Pulsed electromagnetic fields accelerate apoptotic rate in osteoclasts [J]. Connect Tissue Res,2006,47: 222-8.
    [25]. Li JK, Lin JC, Liu HC, et al. Cytokine release from osteoblasts in response to different intensifies of pulsed electromagnetic field stimulation [J]. Electromagn Biol Med,2007,26:153-65.
    [26]. Rubin CT, McLcod KJ, Lanyon LE. Prevention of osteoporosis by pulsed electromagnetic fields [J]. J Bone Joint Surg Am,1989,71:411-7
    [27]. Virtanen IM, Karppinen J, Taimela S, et al. Occupational and genetic risk factors associated with intervertebral disc disease [J]. Spine,2007,32: 1129-34.
    [28]. Barrero LH, Shu YH, Tcrwedow H, et al. Prevalence and physical determinants of low back pain in a rural Chinese population [J]. Spine,2006,31:2728-34.
    [29]. Burke FD, Proud G Lawson IJ, et al. An assessment of the effects of exposure to vibration, smoking, alcohol and diabetes on the prevalence of Dupuytren's disease in 97,537 miners[J]. J Hand Surg Eur,2007,32: 400-6.
    [30]. Seidel H, Harazin B, Pavlas K, et al. Isolated and combined effects of prolonged exposed to whole-body vibration[J]. Int Arch Occup Environ Health,1988,60:129-37.
    [31]. Bochnia M, Morgenroth K, Dziewiszek W, et al. Experimental vibratory damage of the inner ear[J]. Eur Arch Otorhinolaryngol,2005,262: 307-313.
    [32]. Bongers PM, Boshuizen HC, Hulshof CT, et al. Long-term sickness absence due to back disorders in crane operators exposed to whole-body vibration[J]. Int Arch Occup Environ Health,1988,61:59-64.
    [33].赵选枝,刘瑞莲,胡述栋,等.煤矿采掘作业工人腕部的核磁共振表 现[J].中华劳动卫生职业病杂志,2006,24:235-8.
    [34].赵宝钰,满兴山,吕素芳,等.局部振动作业工人对血脂和血粘度的影响[J].中华劳动卫生职业病杂志,2003,21:54-6.
    [35]. Cardinale M, Pope MH. The effects of whole body vibration on humans: dangerous or advantageous? Acta Physiol Hung.2003; 90:195-206.
    [36]. Judex S, Zhong N, Squire ME, e t al. Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue[J]. J Cell Biochem,2005,94:982-94.
    [37]. Bacabac RG, Smit TH, Van Loon JJ, et al. Bone cell responses to high-frequency vibration stress:does the nucleus oscillate within the cytoplasm?[J]. FASEB J, Bone,2006,39:1059-66.
    [38]. Luu YK, Capilla E, Rosen C, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity. [J]. J Bone Miner Res.2009, 24(1):50-61.
    [39]. Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. [J]. Bone.2010,46(6):1508-1515.
    [40]. Hwang S J, Lublinsky S, Seo Y K, et al. Extremely Small-magnitude Accelerations Enhance Bone Regeneration-. A Preliminary Study [J]. Clinical Orthopaedics and Related Research.2009,467(4): 1083-1091.
    [41]. Xie L, Jacobson J M, Choi E S, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. [J]. Bone.2006,39(5):1059-1066.
    [42]. Xie L Q, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations [J]. Joural of Applied Physiology.2008,104(4):1056-1062.
    [43]. Rubin C, Reeker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:A clinical trial assessing compliance, efficacy, and safety[J]. J Bone Miner Res.2004,19(3):343-351.
    [44]. Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled pilot study.[J]. J Bone Miner Res.2004,19(3):352-359.
    [45]. Garman R Gaudette G, Donahue L R et al. Low-level accelerations applied in the absence of weight bearing Call enhance trabecular bone formation. [J]. J Orthop Res.2007,25(6):732-740.
    [46]. Totosy DZJ, Giangregorio LM, Craven B C. Whole-body vibration as potential intervention for people with low bone mineral density and osteoporosis:a review.[J]. Rehabil Res Dev.2009,46(4):529-542.
    [47]. Ward K, Alsop C, Caulton J, et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions[J]. J Bone Miner Res.2004,19(3):360-369.
    [48]. Kawanabe K; Kawashima A, Sashimoto L et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly [J]. Keio J Med,2007,56: 28-33.
    [49]. Fagnani E Giombini A, Di Cesare et al. The effects of a whole-body vibration program on muscle performance and flexibility in female athletes[J]. Am J Phys Med Rehabil,2006,85:956-62.
    [1]Xie L, Jacobson JM, Choi ES, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton[J]. Bone,2006,39 (5):1059-1066.
    [2]Tanaka SM, Li J, Duncan RL, Yokota H, et al. Effects of broad frequency vibration on cultured osteoblasts[J]. J Biomech,2003,36 (1):73-80.
    [3]Nagatomi J, Arulanandam BP, Metzger DW, et al. Frequency-and duration-dependent effects of cyclic pressure on select bone cell functions[J]. Tissue Eng,2001,7 (6):717-28.
    [4]Li YJ, Batra NN, You LD, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation [J]. J Ortho Res,2004,22(6): 1283-1289.
    [5]Judex S, Zhong N, Squire ME, e t al. Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue[J]. J Cell Biochem,2005,94(5):982-94.
    [6]Bacabac RG, Smit TH, Van Loon JJ, et al. Bone cell responses to high-frequency vibration stress:does the nucleus oscillate within the cytoplasm?[J]. FASEB J,2006,20(7):858-864.
    [7]Luu YK, Capilla E, Rosen C, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity [J]. J Bone Miner Res,2009,24(1):50-61.
    [8]Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts. [J]. Bone,2010,46(6):1508-1515.
    [9]Hwang S J, Lublinsky S, Seo YK, et al. Extremely Small-magnitude Accelerations Enhance Bone Regeneration:A Preliminary Study [J]. Clinical Orthopaedics and Related Research,2009,467(4):1083-1091.
    [10]Xie L, Jacobson J M, Choi ES, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton. [J]. Bone,2006,39(5):1059-1066.
    [11]Xie L Q, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations[J]. Joural of Applied Physiology,2008,104(4):1056-1062.
    [12]Rubin C, Reeker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:A clinical trial assessing compliance, efficacy, and safety [J]. J Bone Miner Res,2004, 19(3):343-351.
    [13]Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled pilot study [J]. J Bone Miner Res,2004,19(3):352-359.
    [14]Garman R, Gaudette G, Donahue L R, et al. Low-level accelerations applied in the absence of weight bearing Call enhance trabecular bone formation[J]. J Orthop Res,2007,25(6):732-740.
    [15]Totosy DZJ, Giangregorio LM, Craven BC. Whole-body vibration as potential intervention for people with low bone mineral density and osteoporosis:a review.[J]. Rehabil Res Dev,2009,46(4):529-542.
    [16]Ward K, Alsop C, Caulton J, et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions[J]. J Bone Miner Res,2004, 19(3):360-369.
    [17]Kawanabe K, Kawashima A, Sashimoto L, et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly [J]. Keio J Med,2007,56(1):28-33.
    [18]Fagnani E, Giombini A, Di Cesare, et al. The effects of a whole-body vibration program on muscle performance and flexibility in female athletes[J]. Am J Phys Med Rehabil,2006,85 (12):956-962.
    [19]Russ o CR, Lauretani F, Bandinelli S, et al. High-frequency vibration training increases muscle power in postmenopausal women [J]. Arch Phys Med Rehabil,2003,84 (12):1854-1871
    [20]Torvinen S, Kannus P, Sievanen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance:a randomized controlled study [J]. J Bone Miner Res,2003,18 (5):876-841
    [21]Hannah MT, Cheng DM, Green E, et al. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study [J]. Osteoporos Int,2004,15(11):918-926.
    [22]Judex S, Lei X, Han D, et al. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude[J]. J Biomech,2007,40(6): 1333-1339.
    [23]Torvinen S, Kannus P, Sievanen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle, performance, and body balance:a randomized controlled study[J]. J Bone Miner Res,2003,18(5):876-884.
    [24]Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled pilot study[J]. J Bone Miner Res,2004,19(3):352-359.
    [25]Prisby RD, Lafage-Proust MH, et al. Effects of whole body vibration on the skeleton and other organ systems in man and animal models:what we know and what we need to know [J]. Ageing Res Rev,2008,7 (4):319-329.
    [26]Rubin C, Recker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:a clinical trial assessing compliance, efficacy, and safety [J]. J Bone Miner Res,2004,19 (3): 343-511.
    [27]Robling AG, Hinant FM, Burr DB, et al. Shorter, more frequent mechanical loading sessions enhance bone mass [J]. Med Sci Sports Exerc,2002,34 (2): 196-202.
    [28]林守清,宋亦军,孙允高.雌激素对肌力与骨量间关系的影响[J].国外医学内分泌学分册,2003,23:90-92.
    [29]序全.应力环境与骨折愈合[J].国外医学生物医学工程分册,1999,22(1):40-44.
    [30]杨明辉,武勇.微动与骨折愈合[J].国外医学骨科学分册,2003,24(4):201-204.
    [31]Ivaska KK, Kakonen SM, Gerdhem P, et al. Urinary osteocalcin as a marker of bone metabolism[J]. Clin Chem,2005,51 (3):618-628.
    [32]Iwamoto J, Takeda T, Sato Y, et al. Effect of whole body vibration exercise on lumbar bone mineral density, bone turnover, and chronic back pain in postmenopausal osteoporotic women treated with alendronate[J]. Aging Clin Exp Res,2005,17 (2):157-163.
    [33]Marfinez-Cummer MA, Heek R, Leeson S. Use of axial X-ray microcomputed tomography to assess three-dimensional trabecular micro-architecture and bone mineral density in single comb white leghorn hens[J]. Poul Sci,2006.85 (4):706-711.
    [34]Laib A, Kumer JL, Majumdar S, et al. The temporal changes of trabecular architecture in ovariectomized rats assessed by Micro-CT[J]. Osteoporos Int, 2001,12 (11):936-941.
    [35]Judex S, Boyd S, Qin YX, et al. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load[J]. Ann Biomed Eng,2003,31(1):12-20.
    [36]Oxlund BS, Qrtoft G, AndreassenTT, et al. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats [J]. Bone,2003,32 (1):69-77.
    [37]沈辉,潘时中.大鼠切除卵巢骨质疏松模型的实验研究.福建医科大学学报,2004,38(2):152-155.
    [1]富灵杰,汤亭亭,戴魁戎.骨质疏松与骨整合[J].中华骨科杂志,2007,27(5):384-386.
    [2]富灵杰,汤亭亭,戴魁戎.骨质疏松性骨折治疗的研究进展[J].中华创伤骨科杂志,2007,9(12):1193-1194.
    [3]富灵杰,汤亭亭,戴魁戎.骨质疏松动物模型的建立和应用[J].中华实验外科杂志,2008,25(2):270-272.
    [4]郝永强,戴魁戎.实验性骨质疏松性骨折愈合方式的组织学观察[J].上海医学,1999,22:137-139.
    [5]Chapurlat RD, Delmas PD. Drug insight:bisphosphonates for postmenopausal osteoporosis[J]. Nat Clin Pract Endocrinol Metab,2006,2 (4):211-219.
    [6]Papapoulos SE, Landman JO, Bij voet OL, et al. The use of bisphosphonates in the teratment of osteoporosis[J].Bone,1992,13(Suppl 1):S41-S49.
    [7]Donaldson MG, Palermo L, Ensrud KE, et al. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density:the Fracture Intervention Trial[J]. J Bone Miner Res,2012,27(8):1804-1810.
    [8]Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment:the fracture intervention trial long-term extension (FLEX):a randomized trial. JAMA,2006,296(24):2927-2938.
    [9]Bone HG, Hosking D, Devogelaer JP, et al. Ten years experience with alendronate for osteoporosis in postmenopausal women[J]. N Engl J Med, 2004,350(12):1189-1199.
    [10]Bilezildan JP, Silverberg SJ. Parathyroid hormone Does it have a role in the pathogenesis of osteoporosis?[J].Clin Lab Med,2000,20(3):559-567.
    [11]Helfrich MH, Evans DE, Grabowski PS, et al. Expression of Nitric Oxide Syathase Isoformas in Bone and Bone Cell Cultures[J].J Bone Miner Res, 1997,12(7):1108-1115.
    [12]何涛,杨定焯,刘忠厚.骨质疏松症诊断标准的探讨[J].中国骨质疏松杂志,2010,16(2):151-156.
    [13]Chachra D, Lee JM, Kasra M, et al. Differential effects of ovariectomy on the mechanical properties of cortical and cancellous bone in rat femora and vertebrae[J].Biomed Sci Instrum,2000,36:123-128.
    [14]Chesnut CH 3rd, Silverman S, Andriano K, et al. A randomized trial of nasal spray salmon calcitoinn in postmenopausal women with established osteoporosis:the prevent recurrence of osteoporotic fractures study. Proof Study Group[J]. Am J Med,2000,109(4):267-276.
    [15]Riggs BL, Parfitt AM. Drugs used to treat osteoporosis:the critical need for a uniform nomenclature based on their action on bone remodeling [J]. J Bone Miner Res,2005,20(2):177-184
    [16]Schwartz AV, Ensmd KE, Cauley JA, et al. Effects of continuing or stopping alendronate after 5 years of treatment:the fracture intervention trial long-term extension(FLEX):a randomized trial [J]. JAMA,2006,296(24):2968-2969.
    [17]Bouletreau PH, Bost M, Fontanges E, et al. Fluoride exposure and bone status in patients with chronic intestinal failure who are receiving home parenteral nutrition[J].Am J Clin Nutr,2006,83(6):1429-1437
    [18]Whyte MP. The long and the short of bone therapy[J].N Engl J Med,2006, 354(8):860-863.
    [19]Liberman UA, Weiss SR, Broil J, et al. Effect of oral alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis[J]. N Engl J Med,1995,333 (22):1437-1443.
    [20]Harris ST, Watts NB, Jackson RD, et al. Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis:three years of blinded therapy followed by one year of open therapy[J]. Am J Med,1993,95 (6): 557-567.
    [21]Giannini S, D'Angelo A, Malvasi L, et al. Effects of one-year cyclical treatment with clodronate on postmenopausal bone loss [J]. Bone,1993,14(2): 137-141.
    [22]Fleiseh H. Bisphosphonates in bone disease,2nd ed. New York, USA: Parthenon Publishing Group, Inc; 1995.
    [23]Rodan GA, Martin TJ. Therapeutic approaches to bone diseases [J]. Science, 2000,289(5484):1508-1514.
    [24]Bell NH, Johnson RH. Bisphosphonates in the treatment of osteoporosis. Endocrine,1997,6:203.
    [25]Carol D, Morris, Thomas A, et al. Bisphosphonates in Orthopaedic Surgery. The Journal of Bone and Joint Surgery(American),2005,87:1609-1618.
    [26]余自成.骨质疏松症预防和治疗的药物选择[J].上海医药,2004,25(5) 214.
    [27]Erem C, Tanakol R, Alagol F, et al. Reationship of bone truenover parameters endogenous hormones and VitD deficiency to hip fracture in elderly postmenopausal women[J]. Int J Cli n Pract,2002,56 (5):333-337.
    [28]Lee Y H, Rho Y H, Choi SJ, et al. Predictors of bone mineral density and osteoperosis in patients attending arheumatoogy outpatient clinic[J]. Rheumatol Int,2003,23 (2):67-69.
    [29]李梅,孟迅吾,邢小平,等。阿仑膦酸钠治疗37例绝经后骨质疏松症的疗效及观察[J]。基础医学与临床,2003,23(3):302-30。
    [30]Shanbhag AS, May D, Cha C, et al. Enhancing net bone formation in canine total hip components with bisphosphonates [J]. Trans Orthop Res Soc,1999, 44:255.
    [31]N. Giuliani, M. Pedrazzoni, G Passed, et al. Bisphosphonates inhibit IL-6 production by human osteoblast-like cells[J]. Scand J Rheumatol,1998,27(1): 38-41.
    [32]L. I. Plotkin, R. S. Weinstein, A. M. Parfitt, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin[J]. J Clin Invest, 1990,104(10):1363-1374.
    [33].Y Abe, A. Kawakami, T. Nakashima, et al, Etidronate inhibits human osteoblast apoptosis by inhibition of pro-apoptotic factor(s) produced by activated T cells[J].J Lab Clin Med,2000,136 (5):344-354.
    [34]Ciarelli TE, Fyhrie DP, Schaffler MB, et al. Variations in three-dimensional cancellous bone architecture of the proximal femur in female hip fractures and in controls[J].J Bone Miner Res,2000,15(1):32-40.
    [35]Marotti G, Muglia MA, Palumbo C. Structure and function of lamellar bone[J]. Clin Rheumatol,1994,13 (Suppl 1):63-68.
    [36]Borah B, Dufresne TE, Chmielewski PA, et al. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography [J].Bone,2004,34(4):736-746.
    [37]Kim M, Na W, Sohn C. Vitamin K1 (phylloquinone) and K2 (menaquinone-4) supplementation improves bone formation in a high-fat diet-induced obese mice[J]. J Clin Biochem Nutr,2013,53(2):108-113.
    [1]Papapoulos SE, Landman JO, Bijvoet OL, et al. The use of bisphosphonates in the teratment of osteoporosis[J]. Bone,1992,13(Suppl 1):S41-S49.
    [2]Donaldson MG, Palermo L, Ensrud KE, et al. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density:the Fracture Intervention Trial[J]. J Bone Miner Res,2012,27(8):1804-1810.
    [3]Xie L, Jacobson JM, Choi ES, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton[J]. Bone,2006,39(5):1059-1066.
    [4]Tanaka SM, Li J, Duncan RL, Yokota H, et al. Effects of broad frequency vibration on cultured osteoblasts[J]. J Biomech,2003,36(1):73-80.
    [5]Nagatomi J, Arulanandam BP, Metzger DW et al. Frequency-and duration-dependent effects of cyclic pressure on select bone cell functions [J]. Tissue Eng,2001,7(6):717-728.
    [6]Li YJ, Batra NN, You LD, et al. Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation [J]. J Ortho Res,2004,22(6): 1283-1289.
    [7]Flieger J, Karachalios L, Khaldi P, et al. Mechanical stimulation in the form of vibration prevents postmenopausal bone loss in ovariectomized rats[J]. Calci Tissue Int,1998,63(6):510-514.
    [8]Judex S, Lei X, Han D, et al. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude[J]. J Biomcch,2007,40(6): 1333-1339.
    [9]Oxlund BS, Ortoit G, Andreassen TT, et al. Low-intensity, high-frequency vibration appears to prevent the decrease in strength of the femur and tibia associated with ovariectomy of adult rats[J]. Bone,2003,32(1):69-77.
    [10]Gilsanz V, Wren TA, Sanchcz M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD[J]. J Bone Miner Res,2006,21(9):1464-1474.
    [11]Haanan MT, Cheng DM, Green E, et al. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study [J]. Ostcoporos Int,2004,15(11):918-926.
    [12]Verschueren SM, Roelants M, Deleeluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled study[J]. J Bone Miner Res,2004,19(3):352-359.
    [13]Ward KC, Alsop C, Caulton J, et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions[J]. J Bone Miner Res,2004, 19(3):360-369.
    [14]Chapurlat RD, Delmas PD. Drug insight:bisphosphonates for postmenopausal osteoporosis[J]. Nat Clin Pract Endocrinol Metab,2006,2(4):211-219.
    [15]Papapoulos SE, Landman JO, Bijvoet OL, et al. The use of bisphosphonates in the teratment of osteoporosis[J]. Bone,1992,13(Suppl 1):S41-S49.
    [16]Donaldson MG, Palermo L, Ensrud KE, et al. Effect of alendronate for reducing fracture by FRAX score and femoral neck bone mineral density:the Fracture Intervention Trial[J]. J Bone Miner Res,2012,27(8):1804-1810.
    [17]N. Giuliani, M. Pedrazzoni, G Passed, G Girasole, Bisphosphonates inhibit IL-6 production by human osteoblast-like cells[J]. Scand J Rheumatol,1998, 27(1):38-41.
    [18]L. I. Plotkin, R. S. Weinstein, A. M. Parfitt, et al, Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin[J]. J Clin Invest, 1999,104(10):1363-1374.
    [19]Black DM, Schwartz AV, Ensrud KE, et al. Effects of continuing or stopping alendronate after 5 years of treatment:the fracture intervention trial long-term extension (FLEX):a randomized trial[J]. JAMA,2006,296(24):2927-2938.
    [20]Bone HG, Hosking D, Devogelaer JP, et al. Ten years experience with alendronate for osteoporosis in postmenopausal women[J]. N Engl J Med, 2004,350(12):1189-1199.
    [21]Chang WH, Chen LT, Sun JS, et al. Effect of pulse burst electromagnetic fields stimulation on osteoblast cell activities[J]. Bioelectromagnetics,2004, 25 (6):457-465.
    [22]Diniz P, Shomura K, Soejima K, et al. Effects of pulsed electromagnetic field stimulation on bone tissue like formation are dependent on the maturation stages of the osteoblasts[J]. Bioelectromagnetics,2002,23 (5): 398-405.
    [23]Wan Yumin, Ma Yongjie, Wang Honghui, et al. Effects of low-frequency magnetic field on bone metabolism in hindlimb of unloaded rat[J]. Chin J Osteoporos,2006,12 (4):350-353 (in Chinese).
    [24]Xie Zhao,Li Qihong,Xu Jianzhong, et al. Impact of bionics pulsed electromagnetic fields in relation to BMD and biomechanics of ovariectomy osteoporosis rats[J]. Chin J Osteoporos,2006,12 (6):582-585 (in Chinese).
    [25]Tang Xiaoyun, Chen Jianting, Liu Wenjun, et al. Effect of pulse electromagnetic field on bone metabolism in ovariectomized rats[J].Chinese Journal of Clinical Rehabilitation,2004, (8) 12:2316-2317(in Chinese).
    [26]Flieger J,Karachalios T,Khaldi L.Mechanical stimulation in the form vibration prevents postmenopausal bone in ovariectimized rats[J]. Calcif Tissue Int,1998,63 (6):510-514.
    [27]Rubin C,Turner AS,Bain S,et al.Low mechanical signals strengthen long bones[J]. Nature,2001,412 (6847):603-604.
    [28]Robling AG, Hinant FM, Burr DB, et al. Shorter, more frequent mechanical loading sessions enhance bone mass[J]. Med Sci Sports Exerc,2002,34 (2):196-202.
    [29]Simmons CA,Matlis S, Thornton AJ, et al. Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal2regulated kinase (ERK1P2) signaling pathway[J]. J Biomech,2000,36 (8):1087-1096.
    [30]Wolff J.The classic:on the inner architecture of bones and its importance for bone growth.1870[J].Clin Orthop Relat Res,2010,468(4):1056-1065.
    [31]Wolff J.The classic:on the theory of fracture healing.1873[J].Clin Orthop Relat Res,2010,468(4):1052-1055.
    [32][32]. Rubin S,Judex YXQ. Inhibition of osteopenia by low-magnitude high-frequency mechanical stimuli [J]. Drug Discovery Today,2001,6 (16):848-858.
    [33]Judex S,Boyd S,Rubin C.,et al. Adaptations of trabecular bone to low magnitude vibrations result in more uniform stress and strain under load[JJ. Annals of Biomedical Engineering,2003,31 (1):12-20.
    [34]Xie L, Jacobson JM, Choi ES, et al.Low21evel mechanical vibrations can influence bone resorption and bone formation in the growing skeleton[J].Bone,2006,39 (5):1059-1066.
    [35]Rubin CT, Sommerfeldt DW, Judex S, et al. Inhibition of osteopenia by low magnitude, high-frequency mechanical stimuli [J]. Drug Disco v Today, 2001,6 (16):848-858.
    [36]Gilsanz V, Wren TA, Sanchez M, et al. Low-level, high-frequency mechanical signals enhance musculoskeletal development of young women with low BMD[J]. J Bone Miner Res,2006,21 (9):1464-1474.
    [37]陈建庭,邓轩赓,查丁胜,等.复合振动对去势大鼠腓肠肌肌纤维的影响[J].中国骨科临床与基础研究杂志,2009,1(02):113-116.
    [38]Luu YK, Capilla E, Rosen CJ, et al.Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity.[J].J Bone Miner Res,2009,24(1):50-61.
    [39]Lau E, AI-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteoeytes in the regulation of osteoclasts[J].Bone,2010,46(6):1508-1515.
    [1]Christiansen C. Conference report:consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis[J]. Am J Med,1993, 94:646-650.
    [2]Walker-Bone Karen, Walter G, Cooper C. Recent developments in the epidemiology of osteoporosis [J]. Current Opinion. Rheumatology,2002,14(4): 411-415.
    [3]Melton LJ,3rd. How many women have osteoporosis now? [J]. J Bone Miner Res,1995,10(2):175-177.
    [4]National Osteoporosis Foundation:Osteoporosis:Review of the evidence for prevention, diagnosis, and treatment and cost-effectiveness analysis. Osteoporosis Int,1998, (suppl 4):1-88.
    [5]Liberman UA, Weiss SR, Broil J, et al. Effect oforal alendronate on bone mineral density and the incidence of fractures in postmenopausal osteoporosis [J]. N Engl J Med,1995,333 (22):1437-1443.
    [6]Harris ST, Watts NB, Jackson RD, et al. Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis:three years of blinded therapy followed by one year of open therapy [J]. Am J Med,1993,95 (6): 557-567.
    [7]Giannini S, D'Angelo A, Malvasi L, et al. Effects of one-year cyclical treatment with clodronate on postmenopausal bone loss[J]. Bone,1993,14(2): 137-141.
    [8]Fleiseh H. Bisphosphonates in bone disease,2nd ed. New York, USA: Parthenon Publishing Group, Inc; 1995.
    [9]Rodan GA, Martin TJ. Therapeutic approaches to bone diseases[J]. Science. 2000,289(5484):1508-1514.
    [10]Geddes AD, D'Souza SM, Ebetino FH, et al. J Bone Miner Res,1994,8(2): 265.
    [11]Ezra A, Golomb G. Adv Drug Deliv Rev,2000,42 (3):175-195.
    [12]Amin D, Cornell SA, Gustafson SK,et al. Bisphosphonates used for the treatment of bone disorders inhibit squalene synthase and cholesterol biosynthesis[J]. J Lipid Res,1992,33 (11):1657-1663.
    [13]Luckman SP, Hughes DE, Coxon FP, et al. Nitrogen-containing bisphosphonates inhibit the mevalonate pathway and prevent post-translational prenylation of GTP-binding proteins, including Ras[J]. J Bone Miner Res, 1998,13 (4):581-589.
    [14]Zhang D, Udagawa N, Nakamural, et al. The small GTP-binding protein, rho p21, is involved in bone resorption by regulating cytoskeletal organization in osteoclasts[J]. J Cell Sci,1995,108 (pt6):2285-2292.
    [15]Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro [J]. Proc Natl Acad Sci U S A,1999,96(1):133-138.
    [16]Shanbhag AS, May D, Cha C, et al. Enhancing net bone formation in canine total hip components with bisphosphonates[J]. Trans Orthop Res Soc,1999, 44:255.
    [17]N. Giuliani, M. Pedrazzoni, G Passed, G Girasole, Bisphosphonates inhibit IL-6 production by human osteoblast-like cells[J]. Scand J Rheumatical,1998, 27 (1):38-41.
    [18]L. I. Plotkin, R. S. Weinstein, A. M. Parfitt, et al. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin[J]. J Clin Invest, 1999,104 (10):1363-1374.
    [19]Black DM, Cummings SR, Karpf DB, et al. Randomised trial of effect of alendronate on risk of fracture in women with existing vertebral fractures. Fracture Intervention Trial Research Group [J]. Lancet,1996,348 (9041):1535-1541.
    [20]Bone HG, Hosking D, Devogelaer JP, et al. Alendronate Phase III Osteoporosis Treatment Study Group. Ten years'experience with alendronate for osteoporosis in postmenopausal women[J]. N Engl J Med,2004,350 (12):1189-1199.
    [21]Rizzoli R, G-reenspan SL, Bone G 3rd, et al. Alendronate Once-Weekly Study Group. Two-year results of once-weekly administration of alendronate 70 mg for the treatment of postmenopausal osteoporosis[J]. J Bone Miner Res,2002, 17 (11):1988-1996.
    [22]Cooper C, Campion G Melton U 3rd. Hip fractures in the elderly:a world-wide projection[J]. Osteoporos Int,1992,2:285-289.
    [23]Orwoll E, Ettinger M, Weiss S, Miller P, et al. Alendronate for the treatment ofosteoporosis in men[J]. N Engl J Med,2000,343:604-610.
    [24]Ringe JD, Orwoll E, Daifotis A, et al. Treatment of male osteoporosis:recent advances with alendronate [J]. Osteoporos Int,2002,13 (3):195-199.
    [25]Eggelmeijer F, Papapoulos SE, vall Paassen HC, et al. Clinical and biochemical response to single infusion of pamidronate in patients with active rheumatoid arthritis:a double blind placebo controlled study [J]. J Rheumatical,1994,21 (11):2016-2020.
    [26]Eggelmeijer F, Papapoulos SE, Van Paassen HC, et al. Increased bone mass with pamidronate treatment in rheumatoid arthritis. Results of a three-year randomized, double-blind trial[J]. Arthritis Rheum,1996,39(9):396-402.
    [27]Virtanen IM, Karppinen J, Taimela S, et al. Occupational and genetic risk factors associated with intervertebral disc disease[J]. Spine,2007,32 (10): 1129-1134.
    [28]Barrero LH, Shu YH, Tcrwedow H, et al. Prevalence and physical determinants of low back pain in a rural Chinese population[J]. Spine,2006,31 (23): 2728-2734.
    [29]Burke FD, Proud G Lawson IJ, et al. An assessment of the effects of exposure to vibration, smoking, alcohol and diabetes on the prevalence of Dupuytren's disease in 97,537 miners[J]. J Hand Surg Eur,2007,32 (4):400-406.
    [30][30]. Seidel H, Harazin B, Pavlas K, et al. Isolated and combined effects of prolonged exposed to whole-body vibration[J]. Int Arch Occup Environ Health, 1988,60 (1-2):129-137.
    [31]Bochnia M, Morgenroth K, Dziewiszek W, et al. Experimental vibratory damage of the inner ear[J]. Eur Arch Otorhinolaryngol,2005,262(4):307-313.
    [32]Bongers PM, Boshuizen HC, Hulshof CT, et al. Long-term sickness absence due to back disorders in crane operators exposed to whole-body vibration[J]. Int Arch Occup Environ Health,1988,61 (1-2):59-64.
    [33]赵选枝,刘瑞莲,胡述栋,等.煤矿采掘作业工人腕部的核磁共振表现[J].中华劳动卫生职业病杂志,2006,24:235-8.
    [34]赵宝钰,满兴山,吕素芳,等.局部振动作业工人对血脂和血粘度的影响[J].中华劳动卫生职业病杂志,2003,21:54-56.
    [35]Cardinale M, Pope MH. The effects of whole body vibration on humans: dangerous or advantageous? [J]. Acta Physiol Hung,2003,90:195-206.
    [36]Russ o CR, Lauretani F, Bandinelli S, et al. High-frequency vibration training increases muscle power in postmenopausal women [J]. Arch Phys Med Rehabil, 2003,84(12):1854-1871
    [37]Torvinen S, Kannus P, Sievanen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle performance, and body balance:a randomized controlled study [J]. J Bone Miner Res,2003,18 (5):841-876.
    [38]Hannah MT, Cheng DM, Green E。et al. Establishing the compliance in elderly women for use of a low level mechanical stress device in a clinical osteoporosis study[J]. Osteoporos Int,2004,15(11):918-926.
    [39]Judex S, Lei X, Han D, et al. Low-magnitude mechanical signals that stimulate bone formation in the ovariectomized rat are dependent on the applied frequency but not on the strain magnitude[J]. J Biomech,2007,40(6): 1333-1339.
    [40]Torvinen S, Kannus P, Sievanen H, et al. Effect of 8-month vertical whole body vibration on bone, muscle, performance, and body balance:a randomized controlled study [J]. J Bone Miner Res,2003,18(5):876-884.
    [41]Verschueren SM, Roelants M, Delecluse C. et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled pilot study[J]. J Bone Miner Res,2004,19(3):352-359.
    [42]Prisby RD, Lafage-Proust MH, Malaval L, et al. Effects of whole body vibration on the skeleton and other organ systems in man and animal models: what we know and what we need to know [J]. Ageing Res Rev,2008,7(4): 319-329.
    [43]Rubin C, Recker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:a clinical trial assessing compliance, efficacy, and safety [J]. J Bone Miner Res,2004,19 (3):343-511.
    [44]Robling AG, Hinant FM, Burr DB, et al. Shorter, more frequent mechanical loading sessions enhance bone mass [J]. Med Sci Sports Exerc,2002,34(2): 196-202.
    [45]林守清,宋亦军,孙允高.雌激素对肌力与骨量间关系的影响[J].国外医学内 分泌学分册,2003,23:90-92.
    [46]序全.应力环境与骨折愈合[J].国外医学生物医学工程分册,1999,22(1):40-44.
    [47]杨明辉,武勇.微动与骨折愈合[J].国外医学骨科学分册,2003,24(4):201-204.
    [48]Judex S, Zhong N, Squire ME, etal. Mechanical modulation of molecular signals which regulate anabolic and catabolic activity in bone tissue[J]. J Cell Biochem,2005,94 (5):982-94.
    [49]Bacabac RG, Smit TH, Van Loon JJ, et al. Bone cell responses to high-frequency vibration stress:does the nucleus oscillate within the cytoplasm?[J]. F ASEB J Bone,2006,20 (7):858-864.
    [50]Luu YK, Capilla E, Rosen C, et al. Mechanical stimulation of mesenchymal stem cell proliferation and differentiation promotes osteogenesis while preventing dietary-induced obesity [J]. J Bone Miner Res,2009,24(l):50-61.
    [51]Lau E, Al-Dujaili S, Guenther A, et al. Effect of low-magnitude, high-frequency vibration on osteocytes in the regulation of osteoclasts[J]. Bone,2010,46 (6): 1508-1515.
    [52]Hwang S J, Lublinsky S, Seo Y K, et al. Extremely Small-magnitude Accelerations Enhance Bone Regeneration:A Preliminary Study [J]. Clinical Orthopaedics and Related Research,2009,467(4):1083-1091.
    [53]Xie L, Jacobson J M, Choi E S, et al. Low-level mechanical vibrations can influence bone resorption and bone formation in the growing skeleton[J]. Bone, 2006,39(5):1059-1066.
    [54]Xie L Q, Rubin C, Judex S. Enhancement of the adolescent murine musculoskeletal systemusing low-level mechanical vibrations[J]. Joural of Applied Physiology,2008,104(4):1056-1062.
    [55]Rubin C, Reeker R, Cullen D, et al. Prevention of postmenopausal bone loss by a low-magnitude, high-frequency mechanical stimuli:A clinical trial assessing compliance, efficacy, and safety[J]. J Bone Miner Res,2004,19(3): 343-351.
    [56]Verschueren SM, Roelants M, Delecluse C, et al. Effect of 6-month whole body vibration training on hip density, muscle strength, and postural control in postmenopausal women:a randomized controlled pilot study[J]. J Bone Miner Res,2004,19(3):352-359.
    [57]Garman R Gaudette G, Donahue L R et al. Low-level accelerations applied in the absence of weight bearing Call enhance trabecular bone formation[J]. J Orthop Res,2007,25(6):732-740.
    [58]Totosy DZJ, Giangregorio LM, Craven B C. Whole-body vibration as potential intervention for people with low bone mineral density and osteoporosis:a review[J]. Rehabil Res Dev,2009,46(4):529-542.
    [59]Ward K, Alsop C, Caulton J, et al. Low magnitude mechanical loading is osteogenic in children with disabling conditions [J]. J Bone Miner Res,2004, 19(3):360-369.
    [60][Kawanabe K, Kawashima A, Sashimoto L et al. Effect of whole-body vibration exercise and muscle strengthening, balance, and walking exercises on walking ability in the elderly [J]. Keio J Med,2007,56 (1):28-33.
    [61]Fagnani E Giombini A, Di Cesare et al. The effects of a whole-body vibration program on muscle performance and flexibility in female athletes[J]. Am J Phys Med Rehabil,2006,85 (12):956-62.
    [62]Klein-Nulend J,Semeins CM, Ajubi NE, et al. Pulsating fluid flow increases nitricoxide(NO) synthesis by osteocytes but not periosteal fibroblasts correlation witll prostaglandin upregulation[J]. Biochem Biophys Res Commun,1995,217 (2):640-648.
    [63]Thorsen K, Kristoffersson AO, Lemer UH, et al. In situ miccrodialysis in bone tissue Stimulation of prostaglandin E2 Release by weight-bearingechanical loading[J]. J Clin Invest,1996,98 (11):2446-2449.
    [64]Smalt R, Mitchell FT, Howard RL, et al. Induction of NO and PGE2 in osteoblasts by wall-shear stress but not mechanical strain[J]. Am J Physiol, 1997,273 (4pt1):751-758.
    [65]乔鞠,陈伟辉,李声伟,等.流动剪切力作用下原代大鼠成骨样细胞PGE2的表达[J].华西口腔医学杂志,2001,19(2):86-88.
    [66]Hung CT, Alien FD, Pollack SR, et al. Intracellular Ca2+ stores and extracellular Ca2+ are requred in the real-time Ca2+ response of bone cells experiencing fluid flow[J]. J Biomech,1996,29 (11):1411-1417.
    [67]Skerry TM, Bitensky L, Chayen J, et al. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo[J]. J Bone Miner Res,1 989,4 (5):783-788.
    [68]谷贵山,车明学,徐莘香.OB的钙离子通道川.中国肿瘤临床与康复[J].2002,9(2):120-122.
    [69]Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monopbospbate production [J]. J Cell Physiol,1990,143 (1):1 00-104.
    [70]Klein-Nulend J,vander Plas A, Semeins CM, et al. Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells[J]. J Cell Physiol,1995,163(1):115-119.
    [71]Lean JM, Jagger CJ, Chambers TJ, et al. Increased insulin-like growth factor I mRNA expression in rat osteocytes in response to mechanical stimulation[J]. Am J Physiol,1995,268 (2pt1):E318-E327.
    [72]Klein-nulend J,Roelofsen J,Semeins CM. Mechanical stimulation of osteopontin mRNA expression and synthesis in bone cell cultures[J]. J Cell Physiol,1997, 170 (2):174-181.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700