三维分级多孔钛植入体的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛和钛合金具有良好的力学性能和生物相容性,是主要的外科植入件优选的替代材料。目前医用钛在临床应用中主要存在着以下问题:一是生物力学相容性相对较差,其弹性模量与人体硬组织不匹配;二是生物活性较差,不能与人体硬组织形成化学骨性结合。因此,有必要降低弹性模量以提高其生物力学相容性以及表面改性以提高其生物活性。医用多孔钛是基于生物组织可以长入,提高机械固定作用而开发的,这就要求多孔钛具有足够的孔隙率及孔径大小,并且还须具备一定的力学性能。然而,孔隙的增加必然导致力学性能的下降,如何在具备较高孔隙率及良好孔隙结构的同时,使多孔钛达到与人体自有骨组织相匹配的力学性能,这一直是医用多孔钛研究及应用中存在的问题。另外,目前医用多孔钛还存在连通孔的闭塞率较高,孔径大小不合理等问题,而三维贯通的孔隙结构及合适的孔径大小对于骨组织的修复过程也有着重要影响。
     粉末浆料发泡法通常用于多孔陶瓷的制备,操作简便,成本低,不需要加压处理,本文选用此方法来制备多孔钛植入体。根据金属钛粉末的性质特点,本研究对传统浆料发泡法的工艺方法及参数(如粘结剂的选择,发泡剂用量及发泡时间,烧结温度和保温时间等)进行改进,制备出具有三维连通孔隙的多孔钛,并表征了其物理性能、孔隙特征以及力学性能,研究了发泡剂用量、烧结温度等对多孔钛表面形貌和力学性能的影响;随后,通过化学处理活化其表面,并构建了一种具有分级多孔结构的多孔钛种植体;分别通过体外仿生矿化和小牛血清蛋白吸附试验,考察了活化处理及多孔结构对诱导矿化和蛋白吸附的影响;通过体外细胞培养,评价了多孔钛的细胞相容性;通过动物体内实验,考察其对骨整合的影响;最后,对含钇的多孔钛种植体的性能进行了初步研究。
     本文首先对发泡剂、烧结温度等工艺参数对多孔钛孔隙率、显微组织以及表面形貌的影响进行了研究。结果表明,当发泡剂用量为10%、25%、40%时,多孔钛孔隙率分别为48%、64%及76%;烧结温度对多孔钛的物理性能和表面形貌有重要影响,当烧结温度升高时,烧结体线收缩率增大,孔的形状由不规则形状逐渐变成圆形,并且烧结颈变粗大,基体烧结成一个整体。研究中还发现,发泡法制备的多孔钛不但孔隙结构互相贯通,而且同时包含100-400μm的大孔以及20μm左右的微孔;孔隙率为48%、64%及76%多孔钛的压缩强度分别为246±10MPa、102±7.1MPa及23.6±3.4MPa,能够满足负重植入体的要求。另外,多孔钛具有一定的能量吸收能力和抗冲击性能,在植入时有望提高植入体的早期稳定性。
     通过化学方法对多孔钛进行活化处理,结果表明,经过酸碱处理后的多孔钛呈现出一种独特的三维分级多孔结构,其中包含三种不同孔径大小的孔隙,即100-400μm的大孔、20μm左右的微孔以及网络状几百纳米大小的孔隙。生物仿生矿化和蛋白吸附结果表明,这种多孔钛具有良好的生物活性和生物相容性,在模拟体液中浸泡3天即可快速沉积HA,且其复杂的多孔结构提供大的比表面积和表面能,大大促进了其对蛋白质的吸附能力。将其与成骨细胞联合培养,结果表明,分级多孔结构以及材料表面的化学状态对细胞的生长有明显影响,能够促进成骨细胞的黏附、增殖及分化;酸碱处理多孔钛表面成骨细胞生长行为良好,细胞完全铺展,伪足较多,且细胞向内部孔隙生长。
     通过动物体内植入实验进一步考察了其对骨整合的影响。结果表明,发泡法制备的多孔钛具备良好的生物相容性以及骨传导能力。HA涂层以及材料的多孔结构对骨组织的生长有明显影响,可以促进骨组织向材料内部孔隙长入,具有分级多孔结构的多孔钛种植体在动物体内植入4周和12周后,都具有最高的与骨剪切强度和新骨形成率,骨整合情况良好。
     最后,本研究通过在纯钛中添加氧化钇,考察了稀土钇对于多孔钛性能的影响。研究结果表明,添加0.2%和0.5% Y2O3均可以提高多孔钛种植体的强度,而添加量为1.0%时,压缩强度则明显下降;在钛基体表面以及颗粒间隙均有富Y颗粒存在,并且Y元素在基体分布较均匀;富钇颗粒中不仅含有稀土氧化物,还有Ti/Y金属间化合物的存在,有利于其力学性能的改善;含钇多孔钛种植体生物力学相容性良好,有望提高种植体的长期稳定性。
Due to good mechanical properties and biocompatibility, titanium (Ti) and Ti alloys are the main pieces of the preferred alternative to surgical implant materials. For Ti in medical use, however, the following questions still exist in clinical applications currently:Firstly, it has relatively poor biomechanical compatibility and its elastic module does not match the human hard tissue. Secondly, with poor biological activity, it also can not form a chemical combination with human bone tissue. Therefore, it is necessary to reduce the elastic modulus to increase its bio-mechanical compatibility and treat the surface modification to enhance its biological activity. Medical porous Ti was developed for it can allow biological tissue to grow into pores to improve the mechanical fixation, which requires porous Ti to have sufficient porosity, pore size and necessary mechanical properties. However, the increase of porosity increase will inevitably lead to a decline in mechanical properties. It has been a problem for porous Ti in medical research and applications that how to obtain porous Ti with not only high porosity and good pore structure but also mechanical properties of a certain to match the autogenously bone tissue. Also, the connecting-hole occlusion rate of porous Ti was higher and the pore size is irrational at present, while the three-dimensional interconnected of the pore structure and appropriate pore size also have important impact on bone tissue repair process.
     The slurry foaming method was commonly used in the preparation of porous ceramics. As this method is simple, low cost and no pressure-treated, it was used to the preparation of porous Ti implants in this paper. According to the characteristics of Ti powder, the methods and parameters of traditional slurry foaming process (such as the choice of binders, foaming agents and time of foaming, sintering temperature and holding time, etc.) were modified and porous Ti with three-dimensional interconnected pore structure was prepared. Their physical properties, pore characteristics and mechanical properties were characterized, and the effect of the amount of vesicant and sintering temperature on the surface morphology and mechanical properties were also investigated. Then, chemical treatments were conducted to activate the surface, and a hierarchical porous structure was constructed. Biomimetic mineralization and BSA adsorption experiments were used respectively to study the effect of activation treatment and porous structure on the mine-induced and BSA adsorption. Through cell culture in vitro, the cell compatibility of porous Ti was evaluated and animal experiments were used to study the impact of osseointegration. Finally, the performance of porous Ti implant containing yttrium was investigated preliminary.
     Firstly, the impact of vesicant, sintering temperature and other process parameters on porosity, micro-texture and surface morphology of were studied in this paper. The results showed that the foaming method can prepare porous Ti with high porosity, and its porosity can be controlled by adjusting the amount of foaming agent. When the foaming agent dosage was 10%,25% and 40%, the porosity of porous Ti was 48%,64% and 76%, respectively. Sintering temperature has a major impact on the surface morphology and physical properties of porous Ti. When sintering temperature increased, the linear shrinkage rate of sintered body also increased and the holes became round from irregular shape gradually. Finally, as the sintering neck became thicker and large, the matrix sintered into a whole.
     The study also found that the porous Ti prepared by slurry foaming method had not only interconnected pore structure, but also included macropores size 100-400μm and micropores size 20μm. Porosity was the important factor to affect the mechanical properties of porous Ti. When the porosity was 48%,64% and 76%, the compressive strength of porous Ti was 246±10MPa,102±7.1MPa and 23.6±3.4MPa, respectively, which meet the requirements of implants. Moreover, due to the energy absorption capacity and impact resistance, the porous Ti is expected to improve the early stability of the implants.
     Porous Ti was activated by chemical method, and the results showed that the porous Ti presents a unique three-dimensional hierarchical porous structure after acid-base treatment, which contains three different pore size of pores, that is, large holes size 100-400μm, microporous with 20μm size and network-like pores with size of hundreds nanometers. Biomimetic mineralization and protein adsorption results indicated that the porous Ti has good bioactivity and biocompatibility. When the porous Ti was immersed in a simulated body fluid, HA can quickly deposit on the surface in 3 days, and its complex porous structure provides a large surface area and surface energy which greatly contributed to their protein adsorption capacity. When co-cultured with osteoblasts, the results showed that the hierarchical porous structure and surface chemical state have obvious impacts on cell growth, and it can promote the adhesion, proliferation and differentiation of osteoblast. Cells growed well on the surface of acid-base treated porous Ti, spreaded completely with more pseudo-feet, and growed into the pores.
     Animal experiment was conducted to further study its effects on bone integration. The results showed that the porous Ti had good biocompatibility and bone conduction capacity. HA coating and the porous structure had significant effect on the growth of bone tissue and promoted bone tissue ingrowth into the inner pores. When implanted in animals for 4 weeks and 12 weeks, the porous Ti with hierarchical porous structure showed the highest shear strength, new bone formation rate and best osseointegration.
     Finally, by adding yttrium oxide, the effect of rare-earth yttrium on properties of porous Ti was investigated in this study. The results showed that adding 0.2% and 0.5% Y2O3 can enhance the strength of porous Ti implants, while the adding amount was 1.0%, the compressive strength significantly decreased. Y-rich particles existed in Ti substrate as well as the gap of particles, and Y elements distributed uniformly in the matrix. Yttrium-rich particles contain not only the rare-earth oxides but also Ti/Y intermetallic compounds, which enable the improvement of mechanical properties. With good biomechanical compatibility, the yttrium contained porous Ti implants are expected to improve the long-term stability of the implant.
引文
[1]阮建明,邹俭鹏,黄伯云.生物材料学.北京:科学出版社,2006,6-8.
    [2]Puleo D A, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999,20:2311-21.
    [3]Zhang Y, Zhang M. Three dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res,2002, 61(1):1-8
    [4]Kettunen J, Makeia E A, Miettinen H, et.al. Mechanicalproperties and strength retention of carbon fibre-reinforced liquid crystalline polymer (LCP/CF) composite:An experiment study on rabbits. Biomaterials,1998,19(14):1219-28.
    [5]Kokubo T, Kim H M, Kawashita M.Novel bioactive materials with different mechnical properties. Biomaterials,2003,24:2161-75.
    [6]陈亦平,宋雪峰,曹德勇等.骨修复材料研究进展.化工进展,2003,22(7):673-7
    [7]张祎,郝志彪,张晓虎,康健.人体硬.组织植入材料的.研究概况.炭素技术,2006,25(3):18-21.
    [8]Thomann U I, Uggowitzer P J. Wear-corrosion behavior of biocompatible austenitic stainless steels. Wear,2000,239 (1):48-58.
    [9]阎建中,吴荫顺,李久青等.316L不锈钢微动磨蚀过程表面钝化膜自修复行为研究.中国腐蚀与防护学报,2000,20(6):354.
    [10]任伊宾,杨柯,梁勇.新型生物医用金属材料的研究和进展.材料导报,2002,16(2):12-5.
    [11]国文.医用人体植入物用不锈钢.Metallurgia,1999,66 (7):4.
    [12]启明.利用高温渗氮法生产适合作生体医用材料用的无镍不锈钢.[日]金属,2003,73(3):46.
    [13]李兆峰,黄伟九,刘明.人体用金属植入材料的研究进展.重庆工学院学报,2006,20(5):42-6.
    [14]Watanabe F, Hata Y, Komatsu S, Ramos T C, Fukuda H. Finite element analysis of th e influence of implant inclination, loading position and load direction on stress distributio n. Odontology,2003,91(1):31-6.
    [15]陈孟诗,朱智敏,李宁.深冷处理对钴铬钼高熔铸造合金拉伸力学性能的影响.华西口腔医学杂志,2004,22(3):252-4.
    [16]Bothe R T, Beaton L E, Davenport H A. Reaction of bone to multiple metallic implants. Surg Gynecol Obstet,1990,71:598-602.
    [17]Head W C, Bauk D J, Emerson R H. Titanium as the material of choice for cementless femoral components in total hip arthroplasty. Clin Orthop 1995:85-90.
    [18]Yoshimitsu O, Gotoh E. Comparison of metal releasefrom various metallic biomaterials in vitro.Biomaterials,2005,26 (1):11-21.
    [19]Nakagawa M, Matono Y, Matsuya S, et al. The effect of Pt and Pd alloying additions on the corrosion behavior of titaniumin fluoride-containing environments. Biomaterials,2005,26 (15):2239-46.
    [20]Daisuke K, Hironori K, Akiko Y, et al. Mechanical properties and microstructures of new Ti-Fe-Ta and Ti-Fe-Ta-Zr system alloys. Mater Sci Eng C,2005,25 (3):312-20.
    [21]刘培生,李铁潘,傅超等.多孔金属材料的应用.功能材料.2001,32(1):12-5
    [22]Nakajima H, Hyun S K, Ohashi K, et al. Fabrication of porous copper by unidirectional solidification under hydrogen and its properties. Colloids Surf,2001,179:209-14.
    [23]Banhart J, Ashby M F, Fleck N. Metal foams and porous metal structures. International conference on metal foams and porous metal structures. Bremen:Verl MIT publ,1999.5-37.
    [24]Wen C E, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci:Mater Med, 2002,13:397-401
    [25]晓敏,生物相容性良好的多孔钛和镁.金属功能材料.2002,7(3):13-15
    [26]闵少雄,靳安民.医用生物材料-骨组织界面研究.国外医学生物医学工程分册.2000,6(23):353-57
    [27]Takemoto M, Fujibayashi S, Neo M, Suzuki J, Kokubo T, Nakamura T. Mechanical properties and osteoconductivity of porous bioactive titanium. Biomaterials,2005; 26:6014-23.
    [28]Fujibayashi S, Neo M, Kim HM, Kokubo T, Nakamura T. A. comparative study between in
    vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses. Biomaterials, 2003; 24:1349-56.
    [29]Hacking S A, Harvey E J, Tanzer M, Krygier J J, Bobyn J D. Acidetched microtexture for enhancement of bone growth into porouscoated implants. J Bone Joint Surg Br 2003; 85:1182-9.
    [30]Chang Y S, Gu H O, Kobayashi M, Oka M. Influence of various structure treatments on histological fixation of titanium implants. J Arthroplasty 1998; 13:816-25.
    [31]Van den Dolder J, Farber E, Spauwen PH, Jansen JA. Bone tissue reconstruction using titanium fiber mesh combinedwith rat bone marrow stromal cells. Biomaterials,2003; 24(10):1745-50.
    [32]Vehof J W, Haus M T, Ruijter A E, Spauwen P H, Jansen J A. Bone formation in transforming growth factor beta-I-loaded titanium fiber mesh implants. Clin Oral Implants Res 2002; 13(1):94-102.
    [33]Schwarz K, Epple M. Hierarchically structured polyglycolide-a biomaterial mimicking natural bone. Macromol Rapid Commun 1998; 19(12):613-7.
    [34]Lin C Y, Kikuchi N, Hollister S J. A novel methodfor biomaterial scaffoldinterna 1 architecture design to match bone elastic properties with desired porosity. J Biomech 2004; 37(5):623-36.
    [35]杨贤金,朱胜利,胡飞.用粉末冶金法制备医用多孔TiNi合金的研究.金属热处理,2002,27(7):6-9.
    [36]De G K, Geesink R, Klein C, Serekian P. Plasma-sprayed coatings of hydroxylapatite. J Biomed Mater Res 1987; 21:1375-81.
    [37]Sul Y T, Johansson C B, Jeong Y, Albrektsson T. The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. Med Eng Phys 2001; 23:329-46.
    [38]Sul Y T. The significance of the surface properties of oxidized titanium to the bone response: special emphasis on potential biochemical bonding of oxidized titanium implant. Biomaterials 2003; 24:3893-907.
    [39]Kim H W, Lee S Y, Bae C J, Noh Y J, Kim H E, Kim H M, Ko J S. Porous ZrO2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer. Biomaterials 2003; 24:3277-84.
    [40]Minnear W P, Bewlay B P. Method of forming porous bodies of molybdenum or tungsten.US Patent 5213612,1991
    [41]Liu P S, Liang K M. Functional materials of porous metals made by P/M, electroplating and some other techniques. J Mater Sci,2001,36:5059-72.
    [42]Bernard P, Dauchier J, Simonneau O. Electrode with porous three-dimensional support.US Patent 5928810,1999.
    [43]Thelen S, Barthelat F, Brinson L C. Mechanics considerations for microporous titanium as an orthopedic implant material. J Biomed Mater Res 2004; 69A:601-10.
    [44]Liu P S, Yu B, Hu AM, et al.Techniques for preparation of porous metals. J Mater Sci Technol,2002,18(4):299-305
    [45]Ahlers, O. Method of producing open-celled metal structures. US Patent 5042560,1991.
    [46]赵增典,张勇,李杰.泡沫金属的研究与发展.铸造设备研究,2000,1:48-51
    [47]Kunze H D,Baumeister J,Banhart J,et al.P/M technology for the production of metal foams.Powder Metallurgy International.1993,25(4):182-5.
    [48]薛涛.多孔金属材料泡沫铝的发展,机械工程材料,1992,(1);4-5.
    [49]Jan I, Keany L D, Sang H. Method of producing lightweight foamed metal.US Patent 4973358,1990.
    [50]Babjak J, Ettel V A, Paserin V. Method of forming nickel foam. US Patent 4957543,1990.
    [51]Brannan J R, Bean A S, Vaccaro A J, et al. Continuous electroplating of conductive foams.US Patent 5098544,1992.
    [52]杉川裕文.公开特许公报,特开平7-138792,1995.
    [53]渡边伊津夫,桑野敦司,山田三男.公开特许公报,特开平6-248491,1994.
    [54]前田裕子,川越博隆.公开特许公报,特开平7-109597,1995.
    [55]西河穆,西激也,古川正行,等.公开特许公报,平4-116196,1992
    [56]Wen C E, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M. Processing and mechanical properties of autogenous titanium implant materials. J Mater Sci:Mater Med 2002; 13:397-401.
    [57]王华彬,韩杰才,杜善义.自蔓延高温合成的理论与研究方法.功能材料,1997,28(2):115-21.
    [58]张小明,殷为宏,王学成.SHS法制备高孔隙度YiNi合金.稀有金属材料与工程.2000,29(1):61-3
    [59]Shapavalov V I. Method of manufacture of porous articles. US Patnet,5181549,1993.
    [60]Aizava T, Natori T, Hayashi M, Tanaka T. Method of forming three-dimensional network porous metallic structure having continuous internal cavity. US Patnet,4235277,1980.
    [61]Tsubouchi T, Ihara T. Process for producing porous iron metal body. US Patnet,5725750, 1998.
    [62]Giberson R T, Demaree J R, Nordhausen R W.4-h processing of clinical/diagnostic specimens for electron microscopy using, microwave technique. J Vet Diagn Invest 1997; 9(1):61-7.
    [63]Otsuka M, Kojima A, Itoh M, et al. Science and engineering of light metals. Raselm 91, Tokyo, Japan, Oct,1991,999-1104.
    [64]Geissler U, Hempel U, Wolf C, Scharnweber D, Worch H, Wenzel K. Collagen type I-coating of Ti6Al4V promotes adhesion of osteoblasts. J Biomed Mater Res 2000; 51(4):752-60.
    [65]Goshima J, Goldberg V M, Caplan A.I. The origin of bone formed in composite grafts of porous calcium phosphate ceramic loaded with marrow cells. Clin Orthop 1991; 269:274-83.
    [66]Kohler D, Zabasajja J,Rose F, et al. Metal-Carbon composite electrodes from fiber precursors. J Electrochem Soc,1990,137(6):1750-7.
    [67]Vehof J W, Mahmood J, Takita H, Vant H M, Kuboki Y, Spauwen P H, et al. Ectopic bone formation in titanium meshloaded with bone morphogenetic protein and coated with calcium phosphate. Plast Reconstr Surg 2001; 108(2):434-43.
    [68]高城东一,串桥和人,和田激也.公开特许公报,特开平6-248492,1994.
    [69]Nishiguchi S, Nakamura T, Kobayashi M, Kim H M, Miyaji F,Kokubo T. The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials 1999; 20:491-500.
    [70]余兴泉,何德坪.泡沫金属-高分子聚合物的复合体机械阻尼性能研究.功能材料,1996,27(2):171-5.
    [71]Zheng X B, Huang M H, Ding C X. Bonding strength of plasma sprayed hydroxyapatite/Ti composite coatings. Biomaterials,2000,21:841-3.
    [72]Khor K A, Gu Y W, Quek C H, et al. Plasma spraying of functionally graded hydroxyapatite/Ti6A14V composite coatings. Surf Coat Technol.2003,168:195.
    [73]Ungersboeck A, Geret V, Pohlero, et al.Tissure reaction to bone plates made of pure titanium:a prospective, quantitative clinical study. J Mater Sci:Mater Med,1995,6:223-9.
    [74]Dutta R S, Madangopal K, Gadiyar H S, Banerjee S. Biocompatibility of NiTi shape memory alloy. Brit Corrosion J,1993,28:217-9.
    [75]Widu F, D rescher D, Junker R, Bourauel C. Corrosion and Biocompatibility of Orthodontic Wires. J Mater Sci:Mater Med,1999,10:275-81.
    [76]Wever D J, Veldhuizen A G, Vries J D, et al. Electrochemical and surface characterization of a nikel-titanium alloy. Biomaterials,1998,19:761-9.
    [77]Rondelli G. Corrosion resistance tests on TiNi shape memory alloy. Biomaterials,1996, 17:2003-8.
    [78]Vetter J, Kayser O, Krug T. AlTiN-A universal coating for different applications, International Surface Engineering Congress-Proceedings of the 1 st Congress,2003:635-9.
    [79]Sykaras N, Iacopino A M, Marker V A, Triplett R G, Woody R D. Implant materials, design and surface topographies:their effect on osseointegration. Int J Oral Maxillofac Implants 2000; 15:675-90.
    [80]Wooley P H, Morren R, Andary J, et al. Inflammatory responses to orthopedic biomaterials in the murine air pouch.Biomaterials,2002,23(2):517-26
    [81]Tengvall P, Lundstrom I. Physic-chemical considerations of titanium as a biomaterial.Clin Mater,1992,9:115-34
    [82]Bram M. High-porosity titanium, stainless steel, and superalloy parts. Adv Eng Mater 2000,2:196-9.
    [83]Cook S D, Barrack R L, Thomas K A, Haddad J R. Quantitative histologic analysis of tissue growth into porous total knee components. J Arthroplasty 1989; 4(Suppl):33-43.
    [84]Assad M, Chernyshov A, Leroux M A, Rivard C H. A new porous titanium-nickel alloy: part 2. Sensitization, irritation and acute systemic toxicity evaluation. Biomed Mater Eng 2002; 12:339-46.
    [85]Nishiguchi S, Kato H, Neo M, Oka M, Kim H M, Kokubo T, et al. Alkali-and heat-treated
    porous titanium for orthopedic implants. J Biomed Mater Res 2001; 54:198-208.
    [86]Kim H M, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T. Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 2000; 52:553-7.
    [87]Fujibayashi S, Neo M, Kim H M, Kokubo T, Nakamura T. Osteoinduction of porous bioactive titanium metal. Biomaterials,2004; 25:443-50.
    [88]Nazarian A, Stauber M, Muller R. Design and implementation of a novel mechanical testing system for cellular solids. J Biomed Mater Res Part B:Appl Biomater 2005; 73B:400-11.
    [89]Garrett R, Abhay P, Dimitrios P A. Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials,2006; 27:2651-70
    [90]朱胜利.多孔TiNi形状记忆合金的研究.天津:天津大学,2005:19-21.
    [91]刘培生.多孔材料孔径及孔径分布的测定方法.钛工业进展,2006,23(2):29-34
    [92]Cartmell S, Huynh K, Lin A, Nagaraja S, Guldberg R. Quantitative microcomputed tomography analysis of mineralization within three-dimensional scaffolds in vitro. J Biomed Mater Res,2004,69(1):97-104.
    [93]Gibson L J, Ashby M F. Cellular Solids Solids:Structure and Properties 2nd ed.Cambridge: Cambridge University Press; 1997.
    [94]Degischer H P, Kriszt B. Handbook of Cellular Metals. Wiley-VCH; 2002.
    [95]Popat K C, Leoni L, Grimes C A, Desai T A. Influence of engineered titania nanotubular surfaces on bone cells. Biomaterials,2007,28:3188-97.
    [96]Carbajo M C, Enciso E, Torralvo M J. Synthesis and characterisation of macro-mesoporous titania. Colloids and Surfaces A:Physicochem. Eng. Aspects 2007,293:72-79
    [97]Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials,2004,25:2695-711.
    [98]何福明,赵姗姗,刘丽等.纯钛种植体表面多孔结构的制备与分析.上海口腔医学,2005,14:639-44.
    [99]Feng Q L, Wang H, Cui F Z, Kim T N. Controlled crystal growth of calcium phosphate on titanium surface by NaOH-treatment. J Cryst Growth.1999,200:550-7
    [100]Adriana B, Elisa B, Barbara B, Alessandro F, Silvi P,Francesco S,Luigina S.Nanocrystalline hydroxyapatite coatings coatings on titanium:a new fast biomimetic method. Biomaterials,2005,26:4085-9.
    [101]Monica, Calixto D A, Maria R T F, Tsuneharu O. Hydrothermal nucleation of hydroxyapatite on titanium surface. J Eur Ceram Soc,2002,22:505-10
    [102]Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials,2006,27:2907-15.
    [103]Kim H M, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T.Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res 2000; 52:553-7.
    [104]Le G L, Soueidan A, Layrolle P, Amouriq Y. Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials,2007,23:844-54.
    [105]Diana T, Wassell H, Embery G. Adsorption of bovine serum albumin on to titanium powder. Biomaterials,1996; 17:859-64.
    [106]Hay D I, Moreno E C. Differential adsorption and chemical affinities of proteins for apatitic surfaces. J Dent Res Special Issue B 1979; 58(B):930-40.
    [107]Bartouilh D T L, Porte D M, Labrugere C, et al. Grafting of RGD peptides to cellulose to enhance human osteoprogenitor cells adhesion and proliferation. Compos Sci Technol,2004, 64:827-37.
    [108]Brien J. Investigation of the Alamar Blue fluorescent dye for the assessment of mammalian cell cytoxicity. Eur J Biochem,2000,267:5421-6.
    [109]Zinger O, Anselme K, Denzer A, et al. Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography. Biomaterials,2004,25:2695-711.
    [110]Svehla, Morberg P, Zicat B, et al. Morphometric and mechanical evaluation of titanium implant integration:Comparison of five surface structures. J Biomed Mater Res 2000, 51:1522
    [111]Minamide A, Kawakami M, Hashizume H, et al. Evaluation of carrions of bone morphogenetic protein for spinal fusion. Spine,2001,26(8):933-9.
    [112]Albrektsson T, Branemark P I, Hansson H A, et al. Osseointegrated titanium implants: Requirements for ensuring a long-lasting, direct bone anchorage in man. Acta Orthop Scand, 1981,52:155-70.
    [113]杜挺.稀土金属在金属材料中的一些物理化学作用.金属学报.1997,33(1):69-77.
    [114]孔薇,张秀英.稀土元素在医药上的应用.微量元素与健康研究,2000,17(2):67-9.
    [115]徐丽娟,牙科用钛合金组织与性能的研究,哈尔滨工业大学博士论文.2007:9-10
    [116]Long M, Rack H J. Review:Titanium Alloys in total joint replacement-a materials science perspective. Biomaterials,1998,19:1621-39

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700