三肇凹陷东部葡萄花油层高分辨率层序地层及成藏规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松辽盆地是油气资源丰富的陆相含油气盆地,随着勘探开发程度的不断加深,正面临着储量和产量下降等严峻问题,而三肇凹陷东部葡萄花油层是松辽盆地北部油气资源的接替区块。因此,在三肇凹陷东部进行高分辨率层序地层学及沉积微相研究,并总结该区的油气富集规律及有利油气富集区,可为该区下一步油气勘探开发提供理论依据。
     本文以高分辨率层序地层学理论及其技术方法为指导,利用成熟探区翔实的岩心资料、地震资料及钻井等资料,通过对各级次基准面旋回的沉积动力学分析与不同级次基准面旋回界面的识别,以三肇凹陷东部葡萄花油层为研究对象,并通过跨凹陷长垣~肇州开发井大剖面的顶底标准层控制、精细对比、岩心泥岩颜色与微相垂向序列、平面微相演化序列、邻区对应分析等综合研究,表明三肇凹陷东部葡萄花油层可以识别出2个中期基准面旋回和9个短期基准面旋回。在短期基准面旋回层序的结构类型剖析基础之上,提出研究区葡萄花油层:向南地层厚度减薄,葡萄花油层顶上移、底下移,各层渐薄、中期基准面旋回的转换点位于SSC_4中部,转换点以下为下降半旋回,转换点以上为上升半旋回的地层发育模式,并建立了研究区与三肇凹陷统一的高分辨率层序地层格架。
     在精细等时地层格架控制下分析了物源、沉积体系及沉积相的展布特征,提出研究区葡萄花油层主要为东北部物源控制的典型“大型河控浅水三角洲沉积体系”,开发区密井网揭示:三角洲前缘亚相发育且以“大量密集、窄的水下河道沉积为主,前、侧缘变为薄层砂”的河控带状砂模式。其骨架砂体为大量窄的条带状(多为200~300m)、连续且可延伸数十公里、密集、总体呈南西向、与其他类型砂体平面组合较好的分流河道砂体。在深入认识三肇凹陷东部葡萄花油层的沉积背景、沉积特征及沉积相类型等基础上,建立了葡萄花油层的河控浅水三角洲沉积模式,又进一步细分为5种沉积模式,即:三角洲分流平原亚相“河控带状体”模式、三角洲前缘—分流平原过渡区“近岸”模式、三角洲前缘亚相内前缘区“河控带状体”模式、三角洲前缘亚相内—外前缘过渡区“水下分流河道末端河控席状砂”模式和三角洲前缘亚相外前缘区“浪控席状砂”模式。
     在等时地层格架及其内部单砂体空间分布规律研究的基础上,充分运用油气成藏系统等现代油气地质学新观点,应用区域成藏综合分析技术、单砂体控油模式分析技术及其复杂区块含油预测技术等,通过对已发现的油藏类型及其分布特征系统分析,指出断层—岩性油藏油气富集主要受控于4种地质因素:①油气来源及成藏期的确定是油气成藏的第一要素;②古构造演化及油气运聚场对油气运聚成藏具有重要的控制作用;③(水下)分流河道砂体展布控制优质储层空间分布,各类河道砂体形成的储层占优质储层的85%以上;④断裂对油气运移聚集的控制作用,断裂与砂体组合方式控制油气的运移范围与分布。按成藏层次分析法,首次提出了岩性类油藏区三个层次的成藏规律:①第1层次为区域成藏规律,具有“主元控油,多元耦合富集”特征,揭示了整体油气富集区带;②第2层次为三级构造成藏规律,具有“三级构造控势,单一圈闭控藏”特征,诠释了局部油水分布规律;③第3层次为单一圈闭成藏规律,具有“局部构造控界,单一砂体控层”特征,剖清了单一圈闭控藏机理。依此方法提出了:该区油气呈“单向三路运聚模式”:尚南古鼻状构造的发现使该区的油气运移呈“单向三路运聚模式”,即:沿尚家鼻状构造轴部、尚南鼻状构造轴部、沿丰乐斜坡呈两向三路运移方式。因此,环凹区、油气主运移线及两侧为有利油气聚集带。同时提出:关键时期尚家鼻状构造轴部和三肇凹陷中心的转移对油气成藏、油水分布范围、有利圈闭预测产生了重大的影响。该成藏规律的提出从本质上揭示了岩性类油藏区内部复杂的油水分布规律,即:垂向多层、平面多支单砂体与复杂局部构造组合形成的圈闭以及非圈闭在空间上复杂叠置是造成岩性类油藏区油水分布极其复杂的根本原因,并指出局部构造、单期分流河道砂体及二者空间组合关系是揭开极其复杂的空间油水分布控制因素与规律的瓶颈,对于下一步岩性类油藏的勘探与开发具有重要的实际应用价值和指导意义。
     在以上成果指导下,基于第1、2层次成藏规律预测尚南鼻状构造、尚家鼻状构造北翼及丰乐斜坡为有利成藏区带。根据密井网解剖以及砂体和油气运移方向认为研究区有3种成藏模式:榆树林地区为源内下生上运、短侧运、断—砂匹配控油模式,丰乐地区为源内下生上运上储式、断—砂匹配、微幅度构造控油模式,朝阳沟地区为源外成藏,倒灌扶余—侧运—上调葡萄花油层,砂体控油模式。并在此区带内基于第3层次的成藏规律预测有利圈闭8个,部署井位10口。
Songliao Basin, a continental basin with rich oil and gas resources, with the deepening exploration and development, is facing the severe problems including reserves and declining in production, however, the east of Sanzhao depression Putaohua reservoir is connected to the oil and gas resources in Songliao Basin. Thus, the study on high resolution sequence stratigraphy and sedimentary facies in the east of Sanzhao depression and the summarizing of the area of oil and gas accumulation and favorable oil and gas rich region, both of which provide a theoretical basis for the further oil and gas exploration development in the area.
     The thesis, based on the high-resolution sequence stratigraphy and its technical methods as well as the use of detailed core data, seismic data and drilling data of mature exploration area, through Dynamic Analysis on all levels of the sedimentary base level cycle times and different grades of identification of base-level cycles interface, takes the east of Sanzhao depression Putaohua as the research object, and the comprehensive study of cross-Depression Placanticline~Zhaozhou top and bottom of the well profile standard layer control, fine contrast, color and mudstone microfacies core vertical sequence, the plane microfacies evolution sequence, corresponding analysis of adjacent areas, indicates that the east of Sanzhao depression Putaohua oil layer can identify two medium-term base level cycles, and nine short-term base level cycles. On the basis of the analysis of the structural type of short term base level cycles sequence, research district Putaohua oil layer is proposed that:“south stratigraphic thinning, the top of the Putaohua oil layer move up, the end move down, each layer gradually thinning, The transition point of the medium term base level cycle is located the center of SSC_4,there is a decreased half-cycle under the transition point,and a increased half-cycle above the transition point" development pattern formation, and a high resolution sequence stratigraphic framework is established,which unified study area with the Sanzhao depression.
     In the fine control of isochronous stratigraphic framework to analyze the source, depositional systems and sedimentary facies distribution characteristics, the thesis proposed that the Putaohua oil layer of the study area is a typical mainly controled by northeastern source“large river-dominated shallow delta sedimentary system”, and the dense well in development zone reveals that: delta front facies, and " a large number of dense, narrow underwater channel sediments, the former, the lateral margin of sand into a thin layer "of the river -controlled strip of sand mode, so that the outer south-central front is not the original sand layer, but extending far south river water to form a high-quality reservoirs in the extended south. The skeleton of sand body is in a large number of narrow banded shape (mostly 200 ~ 300 m), and can extend hundreds of kilometers of continuous, dense, overall was SW, and combines well with other types sand surface to become a better distributary channel sand body. Based on in-depth understanding of the background of the east of Sanzhao depression Putaohua deposition, sedimentary characteristics and facies types, we established river-controlled Putaohua shallow delta depositional model, and further broken down into five sedimentary facies model, namely: delta distributary plain, the "river-controlled belt body" model, delta front-distributary plain transition zone "offshore" model, delta front area in front "River-controlled belt body" model, the delta front - outside the front transitional zone "controlled underwater distributary channel and the end river controlled sheet like sand "model and delta front area outside the front" waves controlled sheet like sand" mode.
     Based on the study of the regulations of isochronic stratigraphic framework and spatial distribution of single sand bodies, take full use of oil and gas accumulation system and new ideas of modern oil and gas geology, apply the technology of comprehensive analysis of accumulation region, a single sand body oil control mode analysis and techniques such as forecasting of complexity oil block, etc. Through the analysis of discovered reservoir types and distribution system, the thesis points out that fault-lithologic reservoir oil and gas accumulation is controlled by four kinds of geological factors:①The oil and gas origin and the definition of reservoir formation period are the first essential;②The palaeostructure evolution and the field of oil and gas migration and accumulation have important control action for the oil/gas migration and accumulation reservoir formation hydrocarbon migration and accumulation.③The distribution of (submerged) distributary channel sandbodies control spatial distribution of quality reservoir, quality reservoir formed by channel sandbodies accounted for more than 85%;④The fault dominates the hydrocarbon migration and accumulation, fault and the array mode of sand body controls the hydrocarbon migration area and distribution. What’s more ,the oiliness is lower. Tibetan rock type proposed three levels of oil forming rules:①the first one forming rules for the regional level, a characteristic that "principal component oil control, multi-coupled enrichment", revealing the overall oil and gas accumulation zone;②the second rule for the three-level structure forming rules, a "three-tier structure controlled potential, controlled possession of a single trap" features, the interpretation of the local water distribution;③the third rule for a single trap with a "local control of community structure, a single layer of sand control" feature, clear profile of a single trap accumulation controlling mechanism. This is the way proposed: oil and gas area was "one-way three-way accumulation mode": Old South is still found in the nose structure of hydrocarbon migration area was 'one-way three-way migration model', namely :Move along the axis of Shangjia nose structures, the axis of Shangnan nose-like structure, along Fengle slopeswith the three-way two-way migration style. Therefore, the ring concave area, the both sides of the main oil and gas migration routes are favorable oil and gas accumulation zones. Also put forward: in the critical period, the axis of Shangjia nose-like structure and the shift of Sanzhao depression center of oil and gas accumulation had a significant impact on hydrocarbon accumulation and oil and water distribution, favorable traps forecasts. The proposed law forming essentially reveals the internal complexity of lithological type of oil Tibetan distribution of oil and water, namely: extremely complex lithology water distribution of hydrocarbon reservoir is caused by an oil Vertical multi-layer, multi-branch single-plane and complex sand traps formed combination of local structures and non-trap superimposed in space. And that local structures, one of the distributary channel and the combination of the two spatial relations are extremely complex and opened the controlling factors of space and laws of water distribution bottlenecks, the next reservoir lithology class exploration and development has important practical applications value and significance.
     Under the guidance of the above results, based on the hydrocarbon accumulation rule of the reservoir levels 1, 2,the thesis predictives Shangnan nose-like structure, north wing of Shangjia nose-like structure and Fengle slopes which are favorable oil reservoir area; according to anatomy of dense well and sand and oil migration direction, the author believes that there are three kinds of accumulation mode: Yushulin area is the oil-controlled pattern of bearing down and moving up inside, shortness side migration, and fault-sand matching. Fengle area is the control oil pattern of bearing down, moving up and saving up in side, short lateral conveying, fault-sand matching, and structure. Fengle area adopts the mode that oil produced upward and stored upward, fault-sand matching, micro-magnitude oil- controlled structure. For Chaoyanggou area, the mode is accumulating outside the reservoir, backing up Fuyu oil layer-lateral migration-shift up Putaohua oil layer, sand body oil-controlled mode. And the author points out eight types of trap controlled models in dense well network area. And make recommendation that ten wells should be located.
引文
[1]杨会东,王书平,马玉天,等.高精度层序地层技术在松辽盆地南部隐蔽油藏勘探中的应用[J].石油学报,2005,26(3):40-43.
    [2]刘金华,张世奇,孙耀庭,等.川西前陆盆地层序地层模式与油气成藏[J].石油学报,2006,27(5):35-40.
    [3]方杰,赵力民,赵太良,等.用层序地层学构建辫状河三角洲岩性油藏地质模型[J].石油学报,2004,25(5):29-33.
    [4]郑荣才,柯光明,文华国,等.高分辨率层序分析在河流相砂体等时对比中的应用[J].成都理工大学学报:自然科学版,2004,31(6):641-647.
    [5]刘宗堡,吕延防,杨志,等.基于高分辨率层序地层学的大庆长垣南部浅层气分布特征[J].地层学杂志,2009,33(4):382-390.
    [6]薛良清.层序地层学研究现状、方法与前景[J].石油勘探与开发,1995,22(5):8-13.
    [7]侯明才,陈洪德,田景春.层序地层学的研究进展[J].矿物岩石,2001,21(3):128-134.
    [8] C.K.威尔格斯,等编.徐怀大,等译.层序地层学原理(海平面变化综合分析)[M].北京:石油工业出版社,1993:1-515.
    [9]钱弈中,陈洪德,刘文均.层序地层学理论与方法研究[M].成都:四川科学技术出版社,1994.
    [10]池秋鄂,龚福华.层序地层学基础与应用[M].北京:石油工业出版社,2001.
    [11]鲁洪波,姜在兴.高分辨率层序地层学在资源序列评价中的应用[J].石油大学学报(自然科学版),1997,21(5):9-12.
    [12]桑树勋,秦勇,范炳恒,等.层序地层学在陆相盆地煤层气资源评价中的应用研究[J].煤炭学报,2002,27(2):113-118.
    [13]宋国奇,徐春华,樊庆真,等.应用层序地层学方法恢复加里东期古地貌——以济阳坳陷沾化地区为例[J].石油实验地质,2000,22(4):350-354.
    [14]赵俊兴,陈洪德,向芳.高分辨率层序地层学方法在沉积前古地貌恢复中的应用[J].成都理工大学学报(自然科学版),2003,30(1):76-81.
    [15]王家豪,王华,赵忠新,等.层序地层学应用于古地貌分析——以塔河油田为例[J].地球科学——中国地质大学学报,2003,28(4):425-430.
    [16] Van Wagoner J C, Mitchum R M, Campion K M, et al. Siliciclastic sequence stratigraphy in well, cores and outcrops:concept for high-resolution correlation of time and facies.AAPG Methods in Exploration Series,1990,(7):1-50.
    [17]冯有良.东营凹陷下第三系层序地层格架及盆地充填模式[J].地球科学——中国地质大学学报,1999,24(6):635-642.
    [18] Graversen O. UpperTriassic-LowerCretaceous seismic sequence stratigraphy and basintectonics at Bornholm, Denmark, Tornquist Zone, NW Europe[J].Marine and Petroleum Geology,2004,21(5):579-612.
    [19]顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式[J].石油勘探与开发,2005,32(5):11-15.
    [20]朱筱敏,董艳蕾,杨俊生,等.辽东湾地区古近系层序地层格架与沉积体系分布[J].中国科学(D辑),2008,38(S1):1-10.
    [21] Nadjafi M,Mahboubi A,Moussavi-Harami R,et al. Depositionalhistory and sequence stratigraphy of outcropping Tertiary carbonatesin the Jahrum and Asmari Formations,Shiraz area(SW Iran)[J].Journal of Petroleum Geology,2004,27(2):179-190.
    [22] Houston, John. High-resolution sequence stratigraphy as a tool in hydrogeological exploration in the Atacam a Desert[J].Quarterly Journal of Engineering Geology and Hydrogeology,2004,37(1):7-17.
    [23]申银民,孙玉善,顾桥元,等.塔里木盆地哈得逊地区下石炭统薄层砂体沉积层序与砂体预测[J].石油勘探与开发,2005,32(2):43-45.
    [24]郑荣才,周祺,王华,等.鄂尔多斯盆地长北气田山西组2段高分辨率层序构型与砂体预测[J].高校地质学报,2009,15(1):69-79.
    [25]张尚锋,洪秀娥,郑荣才,等.应用高分辨率层序地层学对储层流动单元层次性进行分析——以泌阳凹陷双河油田为例[J].成都理工学院学报,2002,29(2):147-151.
    [26]樊继宗,陈林媛,张素君,等.高分辨率层序地层学在划分流动单元中的应用[J].西南石油学院学报,2006,28(5):23-25.
    [27]唐民安,孙宝玲.大牛地气田下石盒子组基准面旋回与储层流动单元的层次性[J].沉积学报,2007,25(1):39-46.
    [28]许广明,徐怀大,孔祥言.高分辨率层序地层学在油藏数值模拟中的应用[J].石油与天然气地质,1999,20(2):115-119.
    [29]顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用[J].石油与天然气地质,2004,25(5):484-490.
    [30]尹太举,张昌民.依据高分辨率层序地层学进行剩余油分布预测[J].石油勘探与开发,2001,28(4):79-82.
    [31]尹太举,张昌民,李中超,等.濮城油田沙三中层序格架内储层非均质性研究.石油学报,2003,25(5):74-78.
    [32] Mitchum R M. Seismic stratigraphy and globle changer of sea level.Prat l:Glossary of terms used of in seismic stratigraphy,in C.E.Payton,ed. Seismic.Stratigraphy-applications to hydrocarbon exploration[J].AAPG Memoir,1977,26:205-212.
    [33] Haq B U,HardenboI J,Vail P R.Chronology of fluctuating sea-levels since the Triassic[J].Science,1987,235:1156-1166.
    [34]薛良清.成因层序地层学的回顾与展望[J].沉积学报,2000,18(3):454-455.
    [35]聂逢君.层序地层学的起源及其发展[J].铀矿地质,2001,17(6):193-202.
    [36]吴富强,刘家铎,胡雪,等.经典层序地层学与高分辨率层序地层学[J].中国海上油气(地质),2001,15(03):65-68.
    [37]杨国臣,于炳松.层序地层学的发展现状及其学科地位与研究前沿[J].石油地质与工程,2009,23(2):1-4.
    [38]付志方,王焕弟,邢卫新,等.层序地层学研究现状及进展[J].勘探地球物理进展,2005,28(05):26-30.
    [39] P.R.Vail. Seismic stratigraphy interpretation using sequence stratigraphy.Pertl:stratigraphy interpretation procedure [A].In: Bally A W,ed. Atlas of seismic Stratigraphy [C].AAPG,Studies in Geology,1987,27:l-10.
    [40] W.E.Galloway. Genetic stratigraPhic sequence in basin analysisl: architecture and genesis of flooding surface bounded depositional units[J].AAPG,1989,73:125-142.
    [41] J.G.Johnson,G.Klapper,C.A.sandberg. Devonian ecstatic fluctuation in Eurameria[J].Geologieal Soeitery of America Balletin, 1985, 96:567-587.
    [42] Cross T A. High-resolution stratigraphic correlation from the perspective of base-level cycles and sediment accommodation.In:Proceedings of Northwestern Europian Sequence Stratigraphy Congress,1994.105-123.
    [43] T.A.Cross. Stratigraphic controls on reservior attributes in continental strata[J].Earth science frotiers,2000,7(4):322-350.
    [44]朱筱敏.层序地层学[M] .北京:石油大学出版社,2000.
    [45]邓宏文.美国层序地层研究中的新学派——高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [46]邓宏文,王洪亮,李熙喆.层序地层地层墓准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-184.
    [47]邓宏文,王洪亮,李小孟.高分辨率层序地层对比在河流相中的应用[J].石油与天然气地质,1997,18(2):90-95.
    [48]邓宏文,徐长贵,王洪亮.陆东凹陷上侏罗统层序地层与生储盖组合[J].石油与天然气地质,1998,19(4):275-279.
    [49]邓宏文,王红亮,翟爱军.中国陆源碎屑盆地层序地层与储层展布[J].石油与天然气地质,1999,20(2):108-114.
    [50]邓宏文,王红亮,宁宁.沉积物体积分配原理——高分辫率层序地层学的理论基础[J].地学前缘,2000,7(4):305-313.
    [51]邓宏文,王红亮,王敦则.古地貌对陆相裂谷盆地层序充填特征的控制——以渤中凹陷西斜坡区下第三系为例[J].石油与天然气地质,2001,22(4):293-296.
    [52]邓宏文,王红亮,王居峰,等.层序地层构成与层序控砂、控藏的自相似特征——以三角洲——浊积扇体系为例[J].石油与天然气地质,2004,25(5):491-495.
    [53]邓宏文,王红亮,阎伟鹏,等.河流相层序地层构成模式探讨[J].沉积学报,2004,22(3):373-379.
    [54]樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例[J].石油与天然气地质,1997,18(2):108-114.
    [55]樊太亮,吕延仓,丁明华.层序地层体制中的陆相储层发育规律[J].地学前缘,2000,7(4):315-321.
    [56]郑荣才,尹世民,彭军.基准面旋回结构和叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369-375.
    [57]吴朝荣,郑荣才.辽河油田西部洼陷沙河街组高分辨率地层学特征[J].成都理工学院学报,1999,26(4):375-381.
    [58]郑荣才,彭军.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比[J].沉积学报,2002,20(1):92-100.
    [59]彭军,陈景山,郑荣才,等.白色盆地白岗组高分辨率层序分析及研究意义[J] .地球学报,2002,23(2):153-158.
    [60]柳梅青,陈亦军,郑荣才.川西新场气田蓬莱镇组陆相地层高分辨率层序地层学研究[J] .沉积学报,2000,18(1):50-56.
    [61]徐怀大.层序地层学理论用于我国断陷盆地分析中的问题[J].石油与天然气地质,1991,12(1):52-57.
    [62]徐怀大.陆相层序地层学研究中的某些问题[J].石油与天气地质,1997,18(2):83-89.
    [63]蒲仁海.断陷盆地层序地层学的几点进展[J].石油与天然地质,2002,23(4):410-414.
    [64]高新生,赵霞飞,李天明,等.准噶尔盆地西部侏罗系层序层特征[J].石油与天然气地质,2001,22(2):165-168.
    [65]陈开远,孙爱霞,杜宁平.成油体系中的层序地层学[J].石油与天然气地质,1998,19(3):221-226.
    [66]胡宗全,李明娟.准噶尔盆地西北缘侏罗系层序模拟与沉积演化特征[J] .石油与天然气地质,2003,24(4):351-355.
    [67] Halbouty M T. The deliberate search for the subtle trap[C].Oklahoma:AAPG Memoir32,1982:1-8.
    [68] Wilson W B. Proposed classification of oil and gas reservoirs[C].Oklahoma:AAPG Sidney Powers Memorial Volum,1934:433-445.
    [69]胡见义,徐树宝,童晓光.中国东部陆相盆地地层岩性圈闭油气聚集区(带)的分布及勘探研究程序[J].大庆石油地质与开发,1984,3(1):6-21.
    [70]陈荣书等.关于“隐秘圈闭(油气藏)”的早期概念[J].石油与天然气地质,1984,5(3):300-301.
    [71]胡见义,徐树宝,刘淑萱,等.非构造油气藏[M].北京:石油工业出版社,1986:69-146.
    [72]李丕龙,庞雄奇.隐蔽油气藏形成机理与勘探实践[A].见:第三届隐蔽油气藏国际学术研讨会论文集[C].北京:石油工业出版社,2004.
    [73]沈守文,彭大钧.试论隐蔽油气藏的分类及勘探思路[J].石油学报,2000,21(1):16-22.
    [74] Kaufman G M,Balcer Y. Druyt D.A probabilistic modal of oil and gas discovery[A].Methods of Estimating the Volume of Undiscovered Oil and Gas Reserves(AAPG Studies in Geology#1)[C],1975:113-142.
    [75]《大庆石油地质与开发》编辑部编.中国隐蔽油气藏勘探论文集[C] .哈尔滨:黑龙江科学技术出版社,1984.
    [76] Michel T,Halbouty编.刘民中,等译.寻找隐蔽油藏[M].北京:石油工业出版社,1988.
    [77]肖焕钦,陈广军,李常宝.陆相断陷盆地隐蔽油气藏分类及勘探[J].特种油气藏,2002,9(5):10-12.
    [78]陆建林,李思田,等.南阳凹陷隐蔽油气藏的分类及勘探思路[J].江汉石油学院学报,2004,26(1):27-28.
    [79] Levorsen A I. Stratigraphic versus structural accumulation[J].AAPG Bull. 1936,20(5):521-530.
    [80]牛嘉玉,李秋芬,鲁卫华,等.关于“隐蔽油气藏”概念的若干思考[J] .石油学报,2005,26(2):122-126.
    [81]丁贵明,张一伟,金之钧,等.油气勘探工程[M].北京:石油工业出版社,1997,12-143.
    [82] Magara K. Geological model Predicting optimum sandstone Percent for oil accumulation[J].AAPG Bulletin,1978,26(3):287-302.
    [83]庞雄奇.排烃门限控油气理论与应用[M].北京:石油工业出版社,1995,248.
    [84] Tissot B.P and Welte D H. Petroleum formation and occurrence:a new approach to oil and gas exploration[M].Berlin:Springer-Verlag,1984,435.
    [85] Durand B. Kerogen–insoluble organic matter from sedimentary rocks[M]. Paris:Technop- Paris,1980,537.
    [86]赵文智,何登发.石油地质综合研究导论[M].北京:石油工业出版社,1999,578.
    [87]吴冲龙,何光玉.论油气系统与油气系统动力学[J].地球科学——中国地质大学学报,2000,25(6):604-610.
    [88]曾溅辉,王洪玉.疏导层和岩性圈闭中石油运移和聚集模拟实验研究[J].地球科学-中国地质大学学报,1999,24(2):193-196.
    [89] Hunt J.M. Generation and migration of petroleum from abnormally pressured fluid compartments[J].AAPG Bulletin,1990,74(l):l-12.
    [90] Dow W G. Application of oil correlation and source rock data to exploration in Williston basin[J].AAPG,1972,56:615.
    [91] Perrodon A,P Masse. Subsidence,sedimentation and Petroleum systems[J].Journal of Petroleum Geology,1984,7(l):5-26.
    [92] Perrodon A. Petroleum systems:models and applications[J].Journal of Petroleum Geology,1992,15(3):319-326.
    [93] Demaison G,Murris R J. Petroleum geochemistry and basin evaluation[M].AAPG Memoir 35,1974,426.
    [94]田世澄,陈建渝,张树林,等.论成藏动力学系统[J].勘探家,1996,1(2):20-24.
    [95]王英民,钱奕中,邓林,等.残余盆地成藏动力学过程研究方法[J].成都理工学院学报,1998,25(3):385-393.
    [96]刘晓峰,解习农.超压释放及其对油气运移和聚集的意义[J].地质科技情报,2001,20(4):51-55.
    [97]孙义梅,田世澄.断层对油气运移作用研究的新进展[J].地学前缘,2001,8(4):252.
    [98]郝芳,董伟良.沉积盆地超压系统演化、流体流动与成藏机理[J].地球科学进展,2001,16(1):79-85.
    [99]陈冬霞,庞雄奇,姜振学.透镜体油气成藏机理研究现状与发展趋势[J].地球科学进展,2002,17(6):871-876.
    [100]宋国奇,穆星,车燕,等.济阳坳陷溶解气运移释放成藏机理与模式[J].地学前缘,2000,7(4):555-560.
    [101]王永诗,张善文,曾溅辉,等.沾化凹陷上第三系油气成藏机理及勘探实践[J].油气地质与采收率,2001,8(6):32-35.
    [102]胡望水,吕炳全,张文军,等.松辽盆地构造演化及成盆动力学探讨[J].地质科学,2005,40(1):16-31.
    [103]迟元林,云金表,蒙启安.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社,2002,10-80.
    [104]云金表,金之钧,殷进垠.松辽盆地继承性断裂带特征及其在油气聚集中的作用[J].大地构造与成矿,2002,26(4):379-385.
    [105]高瑞琪,蔡希源.松辽盆地油气田形成条件与分布规律[J].北京:石油工业出版社,1997,12-40.
    [106]付晓飞,王朋岩,吕延防,等.松辽盆地西部斜坡北段构造特征及对油气成藏的控制[J].地质科学,2007.
    [107]殷进垠,刘和甫,迟海江.松辽盆地徐家围子断陷构造演化[J].石油学报,2002,23(2):26-29.
    [108]方立敏,李玉喜,殷进垠.松辽盆地断陷末期反转构造特征与形成机制[J].石油地球物理勘探,2003,38(2):190-193.
    [109]朱德丰,吴相梅,张庆晨.松辽盆地构造演化对油气运聚及成藏的控制作用[R].科研报告,2000:10-40.
    [110]罗笃清,云金表,李玉喜.松辽盆地的正构造反转及其形成机制探讨[J].大庆石油学院学报,1994,18(2):17-21.
    [111]陈昭年,陈布科.松辽盆地反转构造与油气聚集[J].成都理工学院学报,1996,23(4):50-56.
    [112]张功成,徐宏,刘和甫,等.松辽盆地反转构造与油气田分布[J].石油学报,1996,17(2):9-14.
    [113]侯贵廷,冯大晨,王文明,等.松辽盆地的反转构造作用及其对油气成藏的影响[J].石油与天然气地质,2004,25(1):49-53.
    [114]胡望水.松辽盆地北部正反转构造与油气聚集[J].天然气工业,1996,16(5):20-24.
    [115]厉玉乐.泰康——西超地区沉积相研究及隐蔽油气藏形成条件分析[D].中国地质大学(北京),2005,18-28.
    [116]云金表,金之钧,殷进垠.松辽盆地继承性断裂带特征及其在油气聚集中的作用[J].大地构造与成矿,2002,26(4):379-385.
    [117]高瑞琪,蔡希源.松辽盆地油气田形成条件与分布规律[M].石油工业出版社,北京:1997,12-40.
    [118]付晓飞,王朋岩,吕延防,等.松辽盆地西部斜坡北段构造特征及对油气成藏的控制[J].地质科学,2007,42(2):209-217.
    [119]陈昭年,陈发景.松辽盆地反转构造学运动特征[J].现代地质,10(30):390-396.
    [120] Cross T A. Stratigraphic Architecture、correlation concepts、volumetric partioning、facies differentiation、and reservoir compartmentalization from the perspective of high-resolution sequence stratigraphy[J].Research report of the genetic stratigraphy research group,DGGE,CSM,1994:28-41.
    [121] Cross T A,Lessenger M A. Sediment volume partitioning:rationale for stratigraphic model evaluation and high-resolution stratigraphic correlation[A].Gradstein F M,Sandvik K O,Milton N J,eds.Sequence Stratigraphy Concepts and Applications[M].NPF Special Publica- tion,1998,8:171-195.
    [122] Cross T A. Stratigraphic contrals on reservoir attributes in continental strata[J].Earth Science Frontiers.2000,7(4):322-350.
    [123]张尚锋.高分辨率层序地层学理论与实践[M].北京:石油工业出版社,2007.
    [124] Sloss L L. Integrated facies analysis[J].GSA Bulletin,1949:91-124.
    [125]尹太举,张昌民,尹艳树.高分辨率层序地层学在油田开发中的应用——以濮城油田为例[M].北京:石油工业出版社,2007.
    [126] Barrel J. Rhythms and the measurement of geologic time[J].GSA Bulletin,1917,28:745-904.
    [127] Wheeler H E. Baselevel,lithosphere surface and time-stratigraphy[J].GSA Bulletin ,1964,75:599-610.
    [128] Cross T A. Applications of high-resolution sequence stratigraphy to reservoir analysis[C].Proceedings of the 7th Exploration and Production Research Conference.1993:11-l3.
    [129]于兴河.碎屑岩系油气储层沉积学(第二版)[M].北京:石油工业出版社,2007.
    [130]刘宗堡.三肇凹陷扶余油层高分辨率层序地层学及油气成藏规律研究[D].东北石油大学,2010,15-30.
    [131]邓宏文,王红亮,祝永军,等.高分辨率层序地层学——原理及应用[M].地质出版社,2002,1-56.
    [132]李凤杰,王多云.鄂尔多斯盆地西峰油田延长组高分辨率层序地层学研究[J].天然气科学,2006,17(3):339-344.
    [133]郑荣才,尹世民,彭军.基准面旋回结构与叠加样式的沉积动力学分析[J].沉积学报,2000,18(3):369-375.
    [134]魏魁生,徐怀大,叶淑芬,等.松辽盆地白垩系高分辨率层序地层格架[J].石油与天然气地质,1997,18(1): 7-14.
    [135]郭巍,刘招君,董惠民,等.松辽盆地层序地层特征及油气聚集规律[J].地球科学——吉林大学学报,2004,34(2): 216-221.
    [136]朱建伟,刘招君,董清水,等.松辽盆地层序地层格架及油气聚集规律[J].石油地球物理勘探,2001,36(3): 339-344.
    [137]王璞珺,杜小弟,王俊,等.松辽盆地白垩纪年代地层研究及地层时代划分[J].地质学报,1995,69(4): 372-381.
    [138]梁江平,辛仁臣,王书恒,等.松辽盆地中部含油组层序地层格架及介形类特征的响应[J].地层学杂志,2005,29(4): 405-409.
    [139]解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成[J].地球科学——中国地质大学学报,1996,21(1): 28-33.
    [140]孙钰,钟建华,姜在兴,等.松辽盆地南部坳陷期层序地层研究[J].自然科学——中国石油大学学报,2006,30(5): 1-7.
    [141]刘宗堡,马世忠,孙雨,等.三肇凹陷葡萄花油层高分辨率层序地层划分及沉积特征研究[J].沉积学报,2008,26(3): 399-406.
    [142]刘媛,朱筱敏,袁红旗,等.三肇凹陷白垩系姚一段葡萄花油层浅水三角洲高分辨率层序地层新认识[J].自然科学——中国石油大学学报,2010,34(4): 7-13.
    [143]孙雨,马世忠,姜洪福,等.松辽盆地三肇凹陷葡萄花油层内部高频层序地层构型分析[J].地层学杂志,2010,34(4): 371-380.
    [144]梁积伟,李文厚.鄂尔多斯盆地东北部山西组高分辨层序地层学研究[J].沉积学报,2006,24(2):251-258.
    [145]赵红格,刘池洋.物源分析方法及研究进展[J].沉积学报,2003,21(3):409-413.
    [146] Haughton D W,Morton A C,Todd S P. Developments in Sedimentary Provenance Studies[M].London: Oxford University Press,1991.
    [147]汪正江,陈洪德,张锦泉.物源分析的研究与展望[J].沉积与特提斯地质,2000,20(4):104-110.
    [148]闫义,林舸,王岳军等.盆地陆源碎屑沉积物对源区构造背景的指示意义[J].地球科学进展,2002,17(1):85-90.
    [149]曹守连,陈发景.塔里木盆地东北部沉积充填序列的物源分析[J].新疆石油地质,1994,15(2):126-131.
    [150] Mclennan S M,Hemming S,McDanial D K, et al. Geochemical approaches tosedimentation,provenance,and tectonics[J].Geological Society of American Special Paper,1993,284: 21-40.
    [151] Taylor S R,Mclennan S M. The continental crust: its composition and evolution [M].Oxford: Blackwell Scientific Publication,1985.
    [152] Sherlock S C,Jones K A,Jones J A. A central European Variscide source for upper Carboniferous sediments in SW England:40Ar/39Ar detrital white mica ages from the Forest of Deanbasin[J].Journal of Geology Society,2000,157(5): 905-908.
    [153]高兴有.三肇凹陷葡萄花油层油气运聚成藏模式[J].大庆石油地质与开发,2008,27(2):9-11.
    [154]王秀娟,许建红,李恒双.大庆外围三肇凹陷沉积体系及其对储层质量的控制作用研究[J].自然科学——长江大学学报,2010,7(2):32-36.
    [155]侯启军,冯志强,冯子辉等.松辽盆地陆相石油地质学.石油工业出版社[M] ,2009,166-189.
    [156]吴小斌,孙卫,王进军.鄂尔多斯盆地陇东地区延长组的物源分析[J].沉积与特提斯地质,2008,28(4): 57-61.
    [157]徐亚军,杜远生,杨江海.沉积物物源分析研究进展[J].地质科技情报,2007; 26(3): 26-32.
    [158]孙小霞,李勇,丘东洲,等.黄骅坳陷新近系馆陶组重矿物特征及物源区意义[J].沉积与特提斯地质,2006,26(3):61-66.
    [159]赵俊兴,吕强,李凤杰,等.鄂尔多斯盆地南部延长组长6时期物源状况分析[J].沉积学报,2008,26(4):610-615.
    [160]袁静,杜玉民,李云南.惠民凹陷古近系碎屑岩主要沉积环境粒度概率累积曲线特征[J].石油勘探与开发,2003,30(3):103-106.
    [161] Journel A G,GundesoR,Gringarten E. Stochasticmodeling of a fluvial reservoir:a comparative review of algorithms[J].Journal of Petroleum Science and Engineering,1998,14(2):95-121.
    [162]宋子齐,杨金林,潘玲黎,等.利用粒度分析资料研究砾岩储层有利沉积相带[J].油气地质与采收率,2005,12(6):16-19.
    [163]张平,宋春晖,杨用彪,等.稳定湖相沉积物和风成黄土粒度判别函数的建立及其意义[J].沉积学报,2008,26(3):501-507.
    [164]姜在兴.沉积学[M].北京:石油工业出版社,2003,375-392.
    [165] Murray B M. Origin of Sedimentary Rocks[M].New Jersey:Prentice-hall Inc.,1980,71-90.
    [166]徐春华,孙涛,宋子齐,等.应用粒度分析资料建立洪积扇沉积环境判别模式——以克拉玛依油田七中东区克拉玛依组为例[J].新疆地质,2007,25(2): 187-191.
    [167]任庭广,缘宏.松辽盆地层序地层学特征及含油性[M].北京:石油工业出版社,1985,132-146.
    [168]王寿庆.扇三角洲沉积模式[M].北京:石油工业出版社,1993,30-50.
    [169]王建功,王天琦,卫平生,等.大型坳陷湖盆浅水三角洲沉积模式——以松辽盆地北部葡萄花油层为例.岩性油气藏[J].2007,19(2):28-34
    [170]霍秋立,冯子辉,付丽,等.松辽盆地三肇凹陷扶杨油层石油运移方式[J].石油勘探与开发,1999,26(3):25-27.
    [171]侯启军,冯子辉,霍秋立.海拉尔盆地乌尔逊凹陷石油运移模式与成藏期[J].地球科学——中国地质大学学报,2004,29(4):397-403.
    [172]张枝焕,吴聿元,俞凯,等.松辽盆地长岭地区烃源岩地球化学特征[J].新疆石油地质, 2002,23(6):501-506.
    [173]邹才能,贾承造,赵文智,等.松辽盆地南部岩性——地层油气藏成藏动力和分布规律[J].石油勘探与开发,2005,32(4):125-130.
    [174]付广,杜春国,孟庆芬.乌尔逊凹陷油气成藏与分布控制因素分析[J].西安石油大学学报,2005,20(1):8-13.
    [175]吴冲龙,周江羽,王根发,等.鄂尔多斯古构造应力场与中部大气田的联系[J].石油与天然气地质,1997,18(4):267-275.
    [176]董福湘,刘立,何兴华,等.松辽盆地南部十屋断陷古构造对营城组扇三角洲发育的控制[J].吉林大学学报(地球科学版),2003,33(4):464-468.
    [177]漆家福,杨桥,王子煜,等.关于编制盆地构造演化剖面的几个问题的讨论[J].地质论评,2001,47(4):388-392.
    [178]漆家福,杨桥,王子煜.编制盆地复原古构造图的若干问题的讨论[J].地质科学,2003,38(3):413-424.
    [179]张一伟,熊琦华,吴胜和.陆相油藏描述[M].北京:石油工业出版社,1997:103-107.
    [180]田在艺,张庆春.中国含油气沉积盆地论[M].北京:石油工业出版社,1996:223-249.
    [181]郝芳,邹华耀,姜建群.油气成藏动力学及其研究进展[J].地学前缘,2000,7(3):11-21.
    [182]迟元林,萧得铭,殷进垠.松辽盆地三肇地区上生下储“注入式”成藏机制[J].地质学报,2000,74(4):371-377.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700