脱细胞骨基质联合骨髓间充质干细胞修复动物骨缺损实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据统计,在中国每年大约有一千三百二十万人次发生骨折,其中有10-15%无法愈合,另外,每年因为做关节置换手术、外伤、骨骼发育异常,或是其它原因造成的骨科手术高达一百万例,而在这一百万个手术中,约有四十五万个手术是需要接受骨移植的。然而,骨移植的材料来源不论在数量上或是在质量上,却是明显不足的。骨科医师在临床上,经常碰到的问题,就是骨折的处理,一般人发生骨折之后,只要有适当的处理,大多会如期愈合。在正常愈合所需的时间过后,如果尚未愈合,就是延迟愈合。其原因包括骨折碎片间的间隙过大,固定不可靠,骨折碎片的血液供应不足,开放性骨折合并广泛软组织损伤及感染等等。传统上是解除原因,延长愈合时间持续治疗,但仍然不愈合,就是骨折不愈合。治疗骨折不愈合可用物理性刺激,或是使用骨移植手术的方法。临床上,通常骨移植物来源于自体骨移植:即”取”患者自己身上的骨来”种”到需要的部位,如:髂骨、腓骨或肋骨取下的骨头,移植到需要的部位。一般来说,自体骨移植块的效用最佳,且不会发生疾病传播及排斥反应问题,但由于数量有限,且未能提供够强的大块骨移植块,因此应用范围会受限。而异体骨移植,即取自其它人捐赠骨骼进行骨移植,须经过特殊处理(如低温冰冻、冷冻干燥、辐射处理等),降低其抗原性,以减小排斥现象,并且确定无感染病原后才可使用。但是异体移植骨来源有限,价格昂贵,必须在无菌状态下储存,且保存日期有限,依保存方法而有差异。异体骨移植块的缺点为可能传播肝炎病毒及艾滋病病毒,值得注意。此外,大块异体骨移植块通常会发生骨移植块与宿主骨骼间的融合延缓,以及骨移植块发生吸收或疲乏性骨折等问题。因此,本文研究的重点在于同种异体移植,即将同种骨经过Triton X-100处理后,去除主要的抗原成分,留下矿物质及部分有机成分,作为骨移植块使用。Meezan首先使用化学除垢剂制作了无细胞基底膜,Wilson又首先以Triton X-100为主脱去组织中的所有细胞、抗原、脂质、可溶性蛋白质和可溶性糖胺多糖等物质。其中他采用的除垢剂酶消化方法对狗颈总动脉行脱细胞处理,组织学及电镜观察无细胞成分存在,在基质中主要为胶原和弹性蛋白,结构保存良好。美国Lifecell公司用同样方法制作真皮基质获得了商业性的成功。Dahms对处理的膀胱脱细胞基质成分分析表明了其主要成分为Ⅰ型、Ⅲ型胶原和弹性蛋白。因此,就目前所用的脱细胞处理的方法而言,其基本上保留了促进细胞增殖生长的生物活性成分,为其植入体内修复及再生损伤或缺损的组织提供了物质基础。这样我们有理由相信采用同样方法制备的脱细胞骨基质能够提供渐进式替换作用的骨架,加上自体骨髓间充质干细胞的作用,在体外联合培养后,最终能够修复动物的骨缺损。
     本研究的主要方法和结果:
     1、脱细胞骨基质的制备
     实验联合应用过氧化氢、低渗Tris-Hcl和TritonX-100制备了脱细胞骨基质,之后通过HE染色见新鲜的大鼠松质骨组织切片中可见骨陷窝中含有大量细胞结构,胶原纤维排列整齐;处理组骨陷窝、骨小管中尚有嗜酸性物质残留;处理组标本可见细胞成分基本消失,骨陷窝、骨小管空虚,胶原纤维排列整齐。甲苯胺蓝染色见正常骨松质的骨小梁胶原纤维排列成行,骨细胞占据的骨陷窝分布在骨小梁。骨陷窝中骨细胞核清晰可见,大多数骨陷窝内只有一个骨细胞核。脱细胞骨的细胞外基质胶原纤维排列整齐,染色呈不同程度蓝色,椭圆形骨陷窝内空虚,无骨细胞核及其他结构。
     2、免疫组化染色
     免疫组化染色见实验组支架材料的纤维连接蛋白和层粘连蛋白的染色阳性部位在BAECM的骨陷窝周边部,染色较深,呈筛网状、线状分布,为清晰棕色。
     3、扫描电镜观察
     扫描电镜可见骨支架是由大量片状骨小梁连接而成的多孔网架,形似海绵状。骨小梁之间的孔隙直径在200-400μm之间,孔间隔厚度为60-100μm。孔隙率为60%,孔洞之间有连联。处理后的骨支架的孔隙内已无骨髓成分。扫描电镜下可见骨小梁上的许多平行排列的骨陷窝,且骨陷窝内已无细胞成分。
     4、透射电镜观察
     透射电镜可见脱细胞骨基质的骨陷窝多为低密度影像,有多处空白区,可见少量洗脱残留物质;对照新鲜骨基质的骨陷窝中明显含有细胞成分,并可见细胞核的核仁。免疫组织化学透射电镜可见在脱细胞骨基质的骨陷窝周边弥散存在阳性标记电子密度较高的DAB反应产物呈团块,网状分布,基质可见网状纤维结构,胶原纤维排列整齐。
     5、洗脱剂残留量测定
     洗脱剂TritonX-100残留量测定见对照品出峰时间分别为2.495、4.008、4.009min,峰面积948825、1652336、1645545。样品在3min左右无峰值出现。最低检出极限为0.5μl/ml。
     6、移植免疫分析
     移植免疫分析在术后4、8周各植入处理组的血清中均可检测出抗体,各时间处理检测组与其相应的无关抗原对照组之间差异非常显著(P<0.01),说明抗体是针对SD大鼠骨抗原的特异性抗体。统计学分析表明:新鲜骨移植组血清抗体相对OD值最高,与脱细胞骨基质差异非常显著(P<0.01)。淋巴细胞刺激实验中经两种移植物第一次体内致敏后,在体外用SD大鼠脾淋巴细胞二次刺激,新鲜骨移植组的淋巴细胞刺激指数最高,与脱细胞骨基质移植组有显著差异(P<0.01),植入SD大鼠两种移植物术后8周,再在体外给予相应移植物二次刺激组中,新鲜骨刺激淋巴细胞增殖,而脱细胞骨基质表现为对淋巴细胞增殖的抑制(P<0.01)。
     7、骨髓间充质干细胞的培养
     镜下观察见大鼠BMSCs的原代细胞刚接种时呈圆形,多数悬浮于培养液中,可见克隆形成。48h后大部分细胞都贴壁,换液除去未贴壁的细胞后,可见部分贴壁细胞形态不一,呈梭形的成纤维细胞样或多角形改变,核较大,位于细胞中央或边缘。3-4天开始出现散在的贴壁生长的成纤维样的细胞,再过2-3天,细胞呈现克隆样生长的集落,集落细胞增殖迅速,7天左右每个集落约含有100-200个细胞,细胞形态基本为纺锤形的成纤维细胞样,部分呈宽大扁平的多边形,约9-11天时融合成单层,一般能够达到70%-80%的细胞融合状态。
     8、流式细胞仪鉴定
     流式细胞仪检测见培养的第3代BMSCs均一表达CD90、CD44、CD106,阳性率分别为90.05%、95.48%、67.22%;而CD34、CD45、CD11b阴性,阳性率分别为1.02%、0.86%、0.32%。
     9、诱导后的细胞形态观察
     倒置显微镜下观察可见多数细胞形态发生明显变化,由梭形转化为圆形或方形,且胞体增大,胞核变大变圆,胞浆中可见较多细小黑色颗粒,胞核色较淡,胞浆色较深,胞核与胞浆对比明显。
     10、诱导后的细胞鉴定
     茜素红染色见部分细胞成聚集生长,形成矿化结节,茜素红染色显示为橘红色;钙钻法碱性磷酸酶染色显示胞浆中一些细小黑色颗粒为棕黑色;Ⅰ型胶原免疫荧光染色阳性,红色荧光(Cy3)表示Ⅰ型胶原在细胞内的分布,Ⅰ型胶原多在胞浆靠近胞核处,蓝色荧光(DAPI)为细胞核。
     11、扫描电镜观察联合培养的脱细胞骨基质与诱导后的成骨样细胞
     联合培养24,48,72h后,扫描电镜观察并未见脱细胞骨基质组和羟基磷灰石组之间的细胞形态有明显差异,细胞在两组材料上均生长良好,且分布均匀,细胞形态大小不一,但在两组材料中均可见大量的球形细胞黏附在材料上面,每个细胞直径在3-10μm之间,在个别部位还可见正在增殖中的细胞克隆,细胞生长状态良好。
     12、碱性磷酸酶检测
     随着培养时间的延长,脱细胞骨基质组和羟基磷灰石组的碱性磷酸酶表达活性都呈上升趋势。在浸提液培养12h和24h,两组之间差异无显著性意义(P>0.05);在培养48h和72h,脱细胞骨基质组和羟基磷灰石组之间差异有显著性意义(P<0.05)。
     13、复合细胞的天然脱细胞骨支架修复骨缺损实验
     成功制作大鼠股骨骨缺损模型后,将复合有细胞的脱细胞骨基质支架材料移植在缺损处,术后4周荧光显微镜见对照组羟基磷灰石支架在镜下显现为黑色条影,周边可见发出绿色荧光的新生骨组织,实验组天然脱细胞骨松质已经能够非常完好地与周边新生骨组织融合在一起,荧光显微镜下无法分辨出其间的差别。普通光镜观察见术后4周及8周的对照组羟基磷灰石显示为黑色条带阴影,而脱细胞骨基质支架之间已填满新生的骨组织,骨支架与新生骨组织很好的融合在一起。偶可见炎性细胞浸润;术后8周甲苯胺蓝染色可见对照组羟基磷灰石显示为黑色条带阴影,而对照组和实验组的支架之间都可以见到已形成的骨单位,新生骨组织已经比较成熟。
     研究结论:
     1、利用大鼠股骨成功制备了适于同种异体移植的组织工程骨基质;
     2、利用动物自身的骨髓间充质干细胞成功地诱导为成骨样细胞;
     3、制备的脱细胞骨基质在体外适于诱导而来的成骨样细胞的生长;
     4、联合培养的有细胞的脱细胞骨基质能够很好地修复大鼠股骨骨缺损,有望应用于临床骨缺损疾病的治疗。
According to statistics, there are about one thousand and three hundred million people suffer from bone fracture in China every year,10-15%of which won't be able to be cured.Moreover, the number of orthopedical operation from replacement arthroplasty, trauma,abnormal development of skeleton will be one million or so,about half of which need bone transplantation, but the materials of bone transplantation are insufficient whatever in number or quality. The question that orthopedists often face in most time is to deal with bone fracture in clinic. Most patients suffering from bone fracture will be cured if they are treated in time, but in defined time they aren't healed which are called delayed union. The reason of poor heal include oversize of interspace of fracture fragments, hypopexia, inadequate blood supply of fracture fragments, open fractures combined with widespread damage of soft tissue and so on. Methods to deal with these things are to keep continuous immobilization, but sometimes the state of patients suffering immobilization being not cured are called disunion. Ways of curing disunion maybe physical stimulation or bone transplantation. So far, most bone transplants originate from autograft, namely get a bone from himself or herself to transplant some required site in himself or herself. Generally speaking, autograft has a best effect on bone transplantation and has no disease transmission in clinic. But the number of autograft is inadequate to supply strong and gross bone mass. So the apply of autograft is limited. While allograft that getting bones from other donors need special handing(e.g. cryogenic freezing, freeze dehydration, irradiation treatment) to reduce the antigen to lower reject reaction.The most disadvantage of allograft is that it possible spread hepatitis virus and human immunodeficiency virus, which deserve paying attention.Therefore, the emphasis of this paper focus on xenograft.Namely, bones of other species are handled by Triton X-100 to get rid of antigen of these bones and leave minerals and some organic principle to apply as bone transplant mass, which are able to supply degradated bone scaffold, which are cultured in vitro with autoallergic bone marrow stromal stem cells(BMSCs) by ways of tissue engineering to be transplanted into the defect of animal bones finally to assess the repair effect. Meezan first used chemical detergents, to isolate morphological and chemical pure basement membranes from several tissues, Then, Wilson use Triton X-100 to get rid of cells, antigen, fat, resoluble protein and glucosamine to produce acellular matrix and apply SEM and microscopic observation to proved that no cells existed in the prepared acellular matrix of small caliber vascular prostheses of dog.Most collegen and plastic protein existed in this kind of matrix.American Lifecell Company used the same method to made a success in business. Dahms'results about acellular gallbladder indicated that type I and III collegen and plastic proteins would existed in the acellular matrx. Therefore, current method kept most bioactive components to promote the growth of cells and provided an effect resolution to repair tissue defect.We believed that used Triton X-100 and other associated drug to make bone scaffolds for tissue engineering to repair animal bone defect with own's bone marrow mesenchymal stem cells in vitro.
     Main methods and results:
     1. Preparation of acellular bone matrix
     Comparing with flesh spongy bone, appearance of ANECM is more shallow and white. We also use different concentration of TritonX-100 and time of cell extraction and Prove 30 days of cell extraction and 3%TritonX-100 to be most effective. Cell component isn't found under light and electron microscope. Under light microscope, collagen fibers of arrange uniformly. It's blankness in ellipse bone lacunas and there is no nucleus and other configuration. Osteocytes are in focus under scanning electron miscroscope of flesh spongy bone. No osteocyte and remnent is observed in ANECM. The wall of bone lacuna is smooth and regular. We surveyed the density and other parameters of histomorphology of bone lacunas. Those parameters have important significance to measure the bulk of osteocytes. We may estimate the cell number per volumn of bone tissue and provide the foundation for construction of engineering bone.
     2. Immunohistochemical staining
     LN and FN dyeing submit bolt and line shape in bone matrix around bone lacuna. Distinct brown provides negative. Negative comparisons have not brown granules.There are positive markers around bone lacuna and because high electron density distribution of DAB reaction production submits block and reticulation.
     3. SEM observation
     Scanning electron microscope displayed that different layers of acellular natural bone matrix connected loosely and presented amounts of pore space between layers.
     4. TEM observation
     Transmission electron microscope showed that no high density image appeared in lacuna area.
     5. Residul test of chemical detergents
     Apexes of comparition sample in result are 2.495,4.008,4.009min, and apex areas are 946825,1652336,1645545. Sample of bone acellular extra-cell matrix has not apex about 3min. The lowest examination limit is 0.5μl/ml.
     6. Transplantation immunological analysis
     Lymphocyte stimulation assay showed that immunological rejection of flesh bone was much greater than that of acellular natural bone matrix (p< 0.01).
     7. Culture of bone marrow mesenchymal stem cells
     The primary cells and the passage cells were mostly fusiform in shape, to be similar to fibroblast cell.
     8. Analysis of flow cytometr
     The flow cytometer analysis showed that the membrane mark CD44, CD90,CD106 were positive, CD34,CD45,CDllb were negative.
     9. Observation of the induced cells
     Most induced cells changed into round cells and square cells in shape,and their body became larger and many minite black pellet present in the cytoplasm of these cells.
     10. Identity of induced cells
     After BMSCs were induced, cell alizarin carmine staining showed that it was positive in osteogenetic cell, and ALP staining showed that black granules existed in induced cells. Immunohistochemisty staining showed that type I collagen existed in cytoplasm.
     11. SEM observation of acellular extra-cell matrix with induced cells
     Scanning electron microscopy displayed that osteoblast-like cells on the surface of acellular natural bone matrix aggregated together and grew as three-dimensional style.
     12. ALP detection
     Alkaline phosphatase detection kit analysis indicated that acellular natural bone matrix prepared with TritonX-100 were able to promote the growth of osteoblast-like cells compared with calcium hydroxyapatite after 48 hours of culture.
     13. Experiment on bone acelluar extra-cell matrix with induced BMSCs repair-ing aminal bone defect
     Both bone acelluar extra-cell matrix and calcium hydroxyapatite combined with osteoblast-like cells from BMSCs were implanted into the femural defect of rats after the defect models were made successfully. At the 4th week, fluorescence microscope showed that bar-like calcium hydroxyapatite and new bone with green fluorescence appear in scope of eyes in control group. Compared with the control group, experimental bone acelluar extra-cell matrix fused with peripheral new bone and we couldn't tell the differences with each other under flurescence microscope. At the 8th week, toluidine blue staining showed that osteon in new bone have formed whatever in control or test group.
     Conclusions:
     1. Prepare bone acelluar extra-cell matrix successfully.
     2. BMSCs were able to differentiate into osteoblast-like cells after the conditonal fluids was added.
     3. Prepared bone acelluar extra-cell matrix fit for the induced cells in vitro.
     4. Bone acelluar extra-cell matrix with osteoblast-like cells are able to repair femural defect of rats successfully.
引文
[1]刘玮,陆裕朴,胡蕴玉,等.异种植骨抗原性的免疫组织化学实验研究.中华骨科杂志,2009,9(1):53.
    [2]罗卓荆,胡蕴玉,王茜,等.异种松质骨移植抗原分布的免疫组化研究.中国矫形外科杂志,2008,5(6):539-540.
    [3]孙新君,王正国,朱佩芳,等.脱细胞异种骨基质植入后受体外周血T淋巴细胞亚型的变化.中国修复重建外科杂志,2005,19(4):322-325.
    [4]张建政,李亚非,骆洪涛,等.脱细胞保鲜异种骨移植免疫反应的实验研究.山西医科大学学报,2004,35(6):163-166.
    [5]Griffith LG. Eneerging design principles in biomaterials and scaffolds for tissue engineering. Ann NY Acad Sci,2008,961(1):83-95.
    [6]Chu TM, Holister SJ, Halloran JW, et al. Manufacturing and characterization of 3-D hydroxyapatite bone tissue engineering scaffolds.AnnNY Acad Sci,2002, 961(5):114-117.
    [7]Mizuno M, Shimdo M, Kobayashi, et al. Osteogenesis by bone marrow stromal cells maintained on type Ⅰ collegen matrix gels in vivo. Bone,2007,20(4): 101-107.
    [8]Angelova N, Hunkeler D. Rationalization the design of polymeric biomaterials. Trends biotecnol,2009,17(10):409-421.
    [9]董鸿铭,柏树令.小鼠骨髓基质干细胞与脱细胞基质骨联合培养的实验研究.中国矫形外科杂志,2005,19(2):124-126.
    [10]Sims CD, Butler PE, CaoYL, et al. Tissue engineered neocartilage using plasma derived polymer substrates and chodrocytes. Plast Reconstr Surg,2008,101(6): 1580-1585.
    [11]姚康德,尹玉姬,组织工程相关生物材料.北京:化学工业出版社,2003.
    [12]Oldham JB, Lu L, Zhu X, et al. Biological activity of rhBM-2 released from PLGA microspheres. J Biomech Eng,2000,122(2):289-292.
    [13]Sumner DR, Turner TM, Urban RM, et al. Locally delivered rhBMP-2 enhances bone ingrowth and gap healing in a canine model.J Orthopaedic Res,2004, 22(1):58-65.
    [14]Stephen F, Badylak, Kinam park, et al. Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Experimental Hematology,2001, 29(2):1310-1318.
    [15]张文斌.无细胞胶原基质的研究进展.国外医学生物医学工程分册,2004,27(2):127-130.
    [16]张旗涛,于有,杨林.人脱细胞骨复合骨髓基质细胞成骨活性的实验研究.中国骨质疏松杂志,2004,10(1):35-38.
    [17]陈铎,王学礼,祝佩琴.异体骨基质联合重组人骨形态发生蛋白-2与红骨髓修复兔骨缺损.解剖学杂志,2004,27(1):85-88.
    [18]孙新君,王正国,朱佩芳.重组人骨形态发生蛋白2/脱细胞骨基质材料复合移植修复兔骨缺损的研究.中华实验外科杂志,2005,22(3):287-289.
    [19]沙镝,姜英令,高景恒,等.猪长骨脱细胞骨细胞外基质的制备及生物力学、组织学性质的初步检测.实用美容整形外科杂志,2000,11(6):331-334.
    [20]Meezan E. A simple versatile nondisruptive method for the isolation of morphologically and chemical pure basement membranes from several tissues. LifeSci,1975,17(12):1721.
    [21]Wilson GJ, Courtman DW, Klement P, et al. Acellular matrix:a biomaterial approach for coronary artery bypass and heart valve replacement. Ann Thorac Surg,2005,60(5):353.
    [22]Wilson GJ, Yeger H, Klement P, et al. Acellular matrix allograft small caliber vascular prostheses. Trans Am Soc Artif Intern Organs,2000,36(5):340.
    [23]Livesey S, Atkinson Y, Call T, et al. An acellular dermal transplant processed from human allograft skin retains normal extracellular matrix components and ultrastructural characteristics. Poster tresented at the American Association of Tissue Banks Conference, August 20-24,2004.
    [24]Nela Angelova, David Hunkeler. Rationalizing the design of polymeric biomaterials. Trends biotechnol,2009,17(6):409-421.
    [25]沙摘,姜英令.猪长骨脱细胞骨细胞外基质的制备及生物力学和组织学性质的初步检测.实用美容整形外科杂志,2000,11(6):331-334.
    [26]Urist MR, Delange RJ, Finerman GA. Bone cell differentiation and growth factors. Science,2003,220(4598):680-686.
    [27]Cook SD, Baffes GC, Wolfe MW, et al. Recombinat human bone mo rphogenetic protein induces healing in a canine long bone segmental defect model. ClinOrthop,2004,301(3):302-312.
    [28]陆裕朴.实用骨科学[M].北京:人民军医出版社,2001.
    [29]AlbrektssonT, GottlowJ, Meirelles L, et al. Survival of Nobel Direct implants: an analysis of 550 consecutively placed implants at 18 different clinical centers. Clin Implant Dent Relat Res,2007,9(2):65-70.
    [30]Cook SD, Rueger DC. Osteogenic protein:Biology and applications. Clin O rthop,2006,324(1):29-38.
    [31]Vacanti CA,Vacanti JP. Bone and cartilage reconstruction with tissue engineering approaches. Otolaryngol Clin North Am,2004,27(1):263-276.
    [32]黄晓春,李泽兵.组织纤维连接蛋白在创伤修复中的作用,伤残医学杂志,2009,7(2):34.
    [33]徐彤.层粘连蛋白的结构及功能.国外医学免疫学分册,2006,19(5):253.
    [34]Miller C, Jeftinija S, Mallapragada S. Micropatterned schwann cell seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth. Tissue Eng,2001,7(6):705.
    [35]Biran R, W ebb K, Noble MD, et al. Surfactant immobilized fibronectin enhances bioactivity and regulates sensory neurite outgrowth. J Biomed Mater Res,2001, 55(1):123-128.
    [36]Kadiyala S, Young RG, Thiede MA, et al. Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant,2007,6(2):125-134.
    [37]Jaiswal N, Haynesworth SE, Caplan AI, et al. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem,2007,64(2):295-312.
    [38]Douglas R, Nancy R, Terri L, et al. Isolation and characterization of multipotential mesenchymal stem cells from feline bone marrow. Arthritis Rheum,2002,46(12):3349-3360.
    [39]Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature,2002,418(6893):41-49.
    [40]HeimM, Frank O, Kampmann G, et al. The phytoestrogen genistein enhances osteogenesis and represses adipogenic differentiation of human primary bone marrow stromal cells. Endocrinology,2004,145(2):848-859.
    [41]金丹,裴国献,王前,等.骨髓基质细胞体外培养骨发生潜能及条件研究.中国矫形外科杂志,2000,7(2):565-567.
    [42]Tamburstuen MV, ReppeS, SpahrA, et al. Ameloblastin promotes bone growth by enhancing proliferation of progenitor cells and by stimulating immunoregulators. Eur J Oral Sci,2010,118(5):451-459.
    [43]Hedberg Y, Gustafsson J, Karlsson HL, et al. Bioaccessibility, bioavailability and toxicity of commercially relevant iron-and chromium-based particles:in vitro studies with an inhalation perspective. Part Fibre Toxicol,2010,7(1):23-25.
    [44]Peng HT, Shek PN. Novel wound sealants:biomaterials and applications. Expert Rev Med Devices,2010,7(5):639-659.
    [45]Peng S, Liu XS, Wang T, et al. In vivo anabolic effect of strontium on trabecular bone was associated with increased osteoblastogenesis of bone marrow stromal cells. JOrthop Res.2010,28(9):1208-1214.
    [46]Muruganandan S, Roman AA, Sinal CJ. Role of chemerin/CMKLR1 signaling in adipogenesis and osteoblastogenesis of bone marrow stem cells. J Bone Miner Res,2010,25(2):222-234.
    [47]Gentile P, Chiono V, Boccafoschi F, et al. Composite films of gelatin and hydroxyapatite/bioactive glass for tissue-engineering applications. J Biomater Sci PolymEd,2010,21(8-9):1207-1026.
    [48]Kawahara H, Nakakita S, Ito M, et al. Electron microscopic investigation on the osteogenesis at titanium implant/bone marrow interface under masticatory loading. J Mater Sci Mater Med,2006,17(8):717-726.
    [49]Thomas KA, Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. JBiomed Mater Res,2010,19(8):875-901.
    [50]Buser D, Schenk RK, Steinemann S, et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs.JBiomedMaterRes,2001,25(7):889-902.
    [1]曹宜林.组织工程学.北京:科学出版社,2008.
    [2]奚廷斐,冯晓明.组织工程医疗产品的安全性评价和标准化研究.中华创伤骨科杂志,2000,(2)4:280-283.
    [3]CasabonaF, MartinI, Muraglia A, et al. Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery. Plast Reconstr Surg,1998,101(9):577-585.
    [4]Vacanti CA, Bonassar LJ, Vacanti MP, et al. Replacement of an avulsed phalanx with tissue-engineered bone. NEnglJMed,2001,344(14):1511-1514.
    [5]Robert P, Manduit J, Frank RM, et al. Biocompatibility and resorbability of apolyactic acid membrane for periodontal guided tissue regeneration. Biomate-rials,1993,14 (5):140-143.
    [6]曹谊林主编.组织工程学理论与实践.上海:上海科学技术出版社,2004.
    [7]Chan WD, Perinpanayagam H, Goldberg HA, et al. Tissue engineering scaffolds for the regeneration of craniofacial bone. J Can Dent Assoc,2009,75 (5): 373-377.
    [8]Valmikinathan CM, Wang J, Smiriglio S, et al. Magnetically Induced Protein Gradients on Electrospun Nanofibers. Comb Chem High Throughput Screen, 2009,12(11):1154-1159.
    [9]Jin Y, Hong WW. Cross-Linked Collagen-Chondroitin Sulfate-Hyaluronic Acid Imitating ECM as Scaffold for Dermal Tissue Engineering. Tissue Eng Part C Methods,2009,14(12):1456-1458.
    [10]Aydin HM, El Haj AJ, Piskin E, et al. Improving pore interconnectivity in polymeric scaffolds for tissue engineering. J Tissue Eng Regen Med,2009,4(4): 221-228.
    [11]Place ES, Evans ND, Stevens MM. Complexity in biomaterials for tissue engineering. Nat Mater,2009,8 (6):457-470.
    [12]PlaceES, George JH, Williams CK, et al. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev,2009,38 (4):1139-1151.
    [13]Torroni A. Engineered bone grafts and bone flaps for maxillofacial defects:state of the art. J Oral Maxillofac Surg,2009,67 (5):1121-1127.
    [14]Buxton DB. Nanomedicine for the management of lung and blood diseases. Nanomed,2009,4 (3):331-339.
    [15]Marquis ME, Lord E, Bergeron E, Bone cells-biomaterials interactions. Front Biosci,2009,14:1023-1067.
    [16]Malchesky PS. Artificial Organs 2008:a year in review. Artif Organs,2009, 33 (3):273-295.
    [17]周长忍.生物材料学.北京:中国医药科技出版社,2004.
    [18]Gorodetsky R. The use of fibrin based matrices and fibrin microbeads (FMB) for cell based tissue regeneration,2008,8 (12):1831-1846.
    [19]Mel A, Bolvin C, Edirisinghe M, et al. Development of cardiovascular bypass grafts:endothelialization and applications of nanotechnology. Expert Rev CardiovascTher,2008,6 (9):1259-1277.
    [20]TwardowskiT, FertalaA, OrgelJP, et al. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des,2007,13 (35): 3608-3621.
    [21]Daley WP, Peters SB, Larsen M.Extracellular matrix dynamics in development and regenerative medicine. J Cell Sci,2008,121 (3):255-264.
    [22]Cheng J, Grande J P. Transforming growth factor-B signal trans-duction and progressive renal disease. Experimental Biology Me-dicine,2002,227 (11): 943-956.
    [23]Heldin CH, Landstrom M, Moustakas A. Mechanism of TGF-beta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol,2009,21 (2):166-176.
    [24]Hao J, Varshney RR, Wang DA. TGF-beta3:A promising growth factor in engineered organogenesis. Expert Opin Biol Ther,2008,8 (10):1485-1493.
    [25]Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng RegenMed,2008,2 (1):1-13.
    [26]Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from laboratory to clinic, part Ⅱ (BMP delivery). J Tissue Eng Regen Med,2008,2 (2-3):81-96.
    [27]Ripamonti U, Reddi AH. Tissue engineering, morphogenesis, and regeneration of the periodontal tissues by bone morphogenetic proteins. Crit Rev Oral Biol Med,1997,8 (2):154-163.
    [28]Beenken A, Mohammadi M. The FGF family:biology, pathophysiology and therapy. Nat Rev Drug Discov,2009,8 (3):235-253.
    [29]Schneider MR, Wolf E. The epidermal growth factor receptor ligands at a glance. J Cell Physiol.2009,218 (3):460-466.
    [30]Lim TY, Poh CK, Wang W. Poly (lactic-co-glycolic acid) as a controlled release delivery device, J Mater Sci Mater Med,2009,13(12):1456-1462.
    [31]Borselli C, Ungaro F, Oliviero O, et al. Bioactivation of collagen.matrices through sustained VEGF release from PLGA microspheres. J Biomed Mater Res A,2009,4(5):258-269.
    [32]Wenk E, Meinel AJ, Wildy S. Microporous silk fibroin scaffolds embedding PLGA microparticles for controlled growth factor delivery in tissue engineering. Biomaterials,2009,30 (13):2571-2581.
    [33]Kodama N, Nagata M, Tabata Y, et al. A local bone anabolic effect of rhFGF2-impregnated gelatin hydrogel by promoting cell proliferation and coordinating osteoblastic differentiation. Bone,2009,44 (4):699-707.
    [34]Ciofani G, Raffa V, Menciassi A, et al. Magnetic alginate microspheres: system for the position controlled delivery of nerve growth factor. Biomed Microdevices,2009,11 (2):517-527.
    [35]Chen-Huan Lin, Shan-hui Hsu, Chi-En Huang, et al. A scaffold-bioreactor system for a tissue-engineered trachea. Biomatirals,2009,4(1):1-10.
    [36]Tissue-engineered endothelial and epithelial implants differentially and synergistically regulate airway repair. PNAS,2008,105 (19):7046-7051.
    [37]Eric L. Gotlieb, Peter E. Murray, et al. An Ultrastructural Investigation of Tissue-Engineered Pulp Constructs Implanted Within Endodontically Treated Teeth. J Am Dent Assoc,2009,12 (4):457-465.
    [38]鄂征,刘流主编.医学组织工程技术与临床应用.北京:北京出版社,2003.
    [39]姚康德,尹玉姬编著.组织工程相关生物材料.北京:化学工业出版社,2003.
    [40]T Ohki, M Yamato, D Murakami, et al. Treatment of oesophageal ulcerations using endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets in a canine model. GUT,2006,55(11):1704-1710.
    [41]Ryo Sudo, Toshihiro Mitaka, Mariko Ikeda, et al. Reconstruction of 3D stacked-up structures by rat small hepatocytes on microporous membranes. The FASEB Journal express article,2005,11(2):266-274.
    [42]Martine Magnan, Philippe Le'vesque, Robert Gauvin, et al. Tissue Engineering of a Genitourinary Tubular Tissue Graft Resistant to Suturing and High Internal Pressures. Tissue Engineering:Part A.2009,15 (1):197-202.
    [43]ChaoLi, Yue-MinXu, Lu-Jie Song, et al. Urethral Reconstruction Using Oral Keratinocyte Seeded Bladder Acellular Matrix Grafts. The Journal of Urology, 2008,180 (4):1538-1542.
    [44]Tracy.W. Cannon, Danielle.D. Sweeney, Deidre.A. Conway, et al. A tissue-engineered suburethral sling in an animal model of stress urinary incontinence. BJU International,2005,96 (9):664-669.
    [45]L'Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization. Nat Med,2006,12 (3):361-365.
    [46]Xu YG, Xu YS, Huang C et al. Development of a rabbit corneal equivalent using an acellular corneal matrix of a porcine substrate. Mol Vis.,2008,14 (18): 2180-2189.
    [47]K. Moharamzadeh, I. M. Brook, R. Van Noort, et al. Development, optimization and characterization of a full-thickness tissue engineered human oral mucosal model for biological assessment of dental biomaterials. J Mater Sci: Mater Med,2008,19 (15):1793-1801.
    [48]De Bartolo L., Jarosch-Von Schweder G., Haverich A., et al. A novel full-scale flat membrane bioreactor utilizing porcine hepatocytes:cell viability and tissue-specific functions. Biotechnol. Prog,2000,16(2):102-108.
    [49]Sonja Diekmann, Augustinus Bader, Stephanie Schmitmeier.Present and future developments in hepatic tissue engineering for liver support systems. Cytotechnology.,2006,50 (2):163-179.
    [50]NobuoAdachi, MitsuoOchi, YujiUchio, et al. Osteochondral lesion located at the lateral femoral condyle reconstructed by the transplantation of tissue-engineered cartilage in combination with a periosteum with bone block:a case report. Knee Surg Sports Traumatol Arthrosc,2004,12(6):444-447.
    [51]Dusan Pavcnik, Barry T. Uchida, Hans A. Timmermans. Percutaneous bioprosthetic venous valve:A long-term study in sheep. J Vase Surg,2002, 35 (9):598-602.
    [52]Amanda H.-H., Yen Paul T., Sharpe. Stem cells and tooth tissue engineering. Cell Tissue Res,2008,331 (4):359-372.
    [53]Yasuko Toshimitsu, Mitsuo Miyazawa, Takahiro Torii, et al. Tissue-Engineered Patch for the Reconstruction of Inferior Vena Cava During Living-Donor Liver Transplantation. Journal of Gastrointestinal Surgery,2005, 9 (6):789-793.
    [54]Hideki Yoshikawa, Akira Myoui. Bone tissue engineering with porous hydroxyapatite ceramics.JArtif Organs,2005,8 (1):131-136.
    [55]杨志明主编.组织工程.北京:化学工业出版社,2002.
    [56]TamaiN, Myoui A, TomitaT, et al. Novel hydroxyapatite ceramics with an inter-connective porous structure exhibit superior osteo conduction in vivo. J Biomed Mater Res,2002,59 (1):110-117.
    [57]L. Germain, M. Remy-Zolghadri, F. Auger. Tissue engineering of the vascular system:from capillaries to larger blood vessels. Med. Biol. Eng. Comput, 2000,382 (2):232-240.
    [58]L'Heureux, N, Paquet, S, Labbe, R, et al. A completely biological tissue-engineered human blood vessel'. FASEBJ,1998,12 (1):47-56.
    [59]Black, A. E, Berthod, E, Uheureux, N, et al. In vitro reconstruction of capillaxy-like network in a tissue-engineered skin equivalent. FASEB J,1998, 12 (12):1331-1340.
    [60]M. Sato; M. Kikuchi; M. Ishihara; et al. Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold). Med. Biol. Eng. Comput, 2003,41 (3):365-371.
    [61]杨志明.组织工程基础与临床.成都:四川科学技术出版社,2000.
    [62]金岩.组织工程学原理和技术.西安:第四军医大学出版社,2004
    [63]Allen TM, Cullis PR. Drug delivery systems:entering the mainstream. Science,2004,303 (15):1818-1822.
    [64]Bian YZ, Wang Y, Aibaidoula G, et al. Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials,2009,30(2):217-225.
    [65]Bozkurt A, Deumens R, Beckmann C, et al. In vitro cell alignment obtained with a Schwann cell enriched microstructured nerve guide with longitudinal guidance channels. Biomaterials,2009,30(2):169-179.
    [66]Chang CJ. The effect of pulse-released nerve growth factor from genipin-crosslinked gelatin in schwann cell-seeded polycaprolactone conduits on large-gap peripheral nerve regeneration. Tissue Eng Part A,2009,15 (3): 547-557.
    [67]Chen X, Wang XD, Chen G, et al. Study of in vivo differentiation of rat bone marrow stromal cells into schwann cell-like cells. Microsurgery,2006,26 (2): 111-115.
    [68]Chen XM, Yang YM, Wu J, et al. Biocompatibility studies of silk fibroin-based artificial nerve grafts in vitro and in vivo. Prog Nat Sci,2007,17 (9):1029-1034.
    [69]CuiL, Jiang J, Wei L, et al. Transplantation of embryonic stem cells improves nerve repair and functional recovery after severe sciatic nerve axotomy in rats. Stem Cells,2008,26 (5):1356-1365.
    [70]Ghasemi-Mobarakeh L, Prabhakaran MP, Morshed M, et al. Electrospun poly (epsilon-caprolactone) gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials,2008,29 (34):4532-4539.
    [71]Hu J, Zhu QT, Liu XL, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Exp Neurol,2007,204 (2):658-666.
    [72]Hu W, Gu JH, Deng AD, et al. Polyglycolic acid filaments guide Schwann cell migration in vitro and in vivo. Biotechnol Lett,2008,30 (11):1937-1942.
    [73]Huang J, Hu X, Lu L, et al. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A,2009,5(6): 458-469.
    [74]Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng,2004,10 (9-10): 1346-1358.
    [75]Jiang MR, Zhuge XM, Yang YM, et al. The promotion of peripheral nerve regeneration by chitooligosaccharides in the rat nerve crush injury model. Neurosci Lett,2009,454 (3):239-243.
    [76]冯晓明.组织工程医疗产品标准化研究的进展.现代康复,2001,5(6):16-17.
    [77]Lu L, Chen X, Zhang CW, et al. Morphological and functional characterization of predifferentiation of myelinating glia-like cells from human bone marrow stromal cells through activation of F3/Notch signaling in mouse retina. Stem Cells,2008,26 (2):580-590.
    [78]Oh SH, Kim JH, Song KS, et al. Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials, 2008,29 (11):1601-1609.
    [79]Piotrowicz A, Shoichet MS. Nerve guidance channels as drug delivery vehicles. Biomaterials,2006,27 (9):2018-2027.
    [80]Radtke C, Aizer AA, Agulian SK, et al. Transplantation of olfactory ensheathing cells enhances peripheral nerve regeneration after microsurgical nerve repair. Brain Res,2009,1254(1):7-10.
    [81]Terzis JK, Kostas I. Vein grafts used as nerve conduits for obstetrical brachial plexus palsy reconstruction. Plast Reconstr Surg,2007,120 (7):1930-1941.
    [82]Wang D, Liu XL, ZhuJK, et al. Bridging small-gap peripheral nerve defects using acellular nerve allograft implanted with autologous bone marrow stromal cells in primates. Brain Res,2008,1188(1):44-53.
    [83]奚廷斐.生物材料进展(一).生物医学工程与临床,2004,8(3):184-189.
    [84]Wang J, Ding F, Gu Y, et al. Bone marrow mesenchymal stem cells promote cell proliferation and neurotrophic function of Schwann cells in vitro and in vivo. Brain Res,2009,1262(1):7-15.
    [85]Wang XD, Hu W, Cao Y, et al. Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain,2005, 128 (8):1897-1910.
    [86]Yang YM, Chen XM, Ding F, et al. Biocompatibility evaluation of silk fibroin with peripheral nerve tissues and cells in vitro. Biomaterials,2007,28 (9): 1643-1652.
    [87]Yang YM, Ding F, Wu J, et al. Development and evaluation of silk fibroin-based nerve grafts used for peripheral nerve regeneration. Biomaterials, 2007,28 (36):5526-5535.
    [88]Yang Y, Liu M, Gu Y, et al. Effect of chitooligosaccharide on neuronal differentiation of PC-12 cells. Cell Biol Int,2009,33 (3):352-356.
    [89]Yuan Y, Zhang PY, Yang YM, et al. The interaction of Schwann cells with chitosan me mbranes and fibers in vitro. Biomaterials,2004,25 (18): 4273-4278.
    [90]Zhou SL, Yang YM, Gu XS, et al. Chitooligosaccharides protect cultured hippocampal neurons against glutamate-induced neurotoxicity. Neurosci Lett, 2008,444 (3):270-274.
    [91]奚廷斐,陈亮,赵鹏,等.组织工程医疗产品监督管理与标准研究.中国修复重建外科杂志,2003,17(6):480-487.
    [92]付小兵,王正国,吴祖泽.再生医学原理与实践.上海:上海科学技术出版社, 2008.
    [93]Margarita. Regeneration of periodontal tissue:cementogenesis revisited. Periodontology,2006,41(3):196-217.
    [94]Lauer G, Schimming R, Frankenschmidt A. Prelaminating the fascial radial forearm flap by using tissue-engineered mucosa:improvement of donor and recipient sites. Plastic And Reconstructive Surgery,2001,108(6):1565-1575.
    [95]Jonathan L, YoramA, SmadarC, et al. Cells, scaffolds, and molecules for myocardial tissue engineering. Pharm&Thera,2005,105(2):151-163.
    [96]JawadH, LyonAR, Harding SE, et al. Myocardial tissue engineering. Brit MedBull,2008,87(1):31-47.
    [97]Zimmermann WH, DidieM, DokerS, et al. Heart muscle engineering:an update on cardiac muscle replacement therapy. Cardiovasc Res,2006,71 (3): 419-429.
    [98]Check E. Cardiologists take heart from stem-cell treatment success. Nature, 2004,428 (6986):880.
    [99]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell,2003,114 (6): 763-776.
    [100]GuoXM, ZhaoYS, Chang HX, et al. Cells creation of engineered cardiac tissue in vitro from mouse embryonic stem cells. Circulation,2006,113 (5): 2229-2237.
    [101]Ivan Martin, David Wendt, Micahael Heberer. The role of bioreactors in tissue engineering. TRENDS in Biotechnology,2004,22 (2):80-86.
    [102]Carrier RL, Rupnick M, Langer R, et al. Perfusion improves tissue architecture of engineered cardiac muscle.. Tissue Eng,2002,8(2):175-188.
    [103]Bursac N, Papadaki M, Cohen RJ, et al. Cardiac muscle tissue engineering:toward an in vitro model for electrophysiological studies. Am J Physiol,1999,277 (2):433-444.
    [104]Fink C, Ergiin S, Kralisch D, et al. Chronic stretch of engineered heart tissue induces hypertrophy and functional improvement. FASEB J,2000,14 (5):669-679.
    [105]Dohmen PM, LembekeA, HostH, et al. Ross opeartion with a tissue-engineered heart valve. AnnThorae Surg,2002,74(15):1438-1442.
    [106]Dohmen PM, Ozkai S, Vehteken E, et al. Tissue engineering of an auto-xenograft pulmonary heart valve. Asian Cardiovasc Thoarc Ann,2002, 11(10):1025-1030.
    [107]GulbinsH, Goldemund A, Uhlig A, et al. Implantation of an autologously endothelialized homograft. J Thorac Cardiovasc Surg,2003,126(3):890-891.
    [108]Naito Y, Imai Y, Shinoka T, et al. Successful clinical application of tissue-engineering graft for extracardiac Fontan operation. J Thorac Cardiovasc Surg,2003,125(6):419-420.
    [109]N.P. Alexei, A.S. Eugene, Jihong Qu, et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation,2004,109 (4):506-512.
    [110]CaiJ, Lin G, Jiang H, et al. Transplanted neonatal cardiomyocytes as a potential biological pacemaker in pigs with complete atrioventricular block. Transplantation,2006,81 (7):1022-1026.
    [111]Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol,2009,5(12):685-697.
    [112]Kuzyk PR, Schemitsch EH, Davies JE. A biodegradable scaffold for the treatment of a diaphyseal bone defect of the tibia. J Orthop Res,2010,28(4): 474-480.
    [113]Yang Q, Peng J, Guo Q, et al. A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells. Biomaterials,2008,29(15):2378-2387.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700