基于缓释锌离子及仿细胞外基质的高生物响应性涂层制备和表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在医用金属基体表面设计、制备具有高生物学响应性的生物活性涂层是当前生物材料研究领域的热点之一。高生物响应性涂层应能从分子水平上调控生物材料与细胞间的相互作用,主动刺激成骨细胞活性,促进骨组织生长和修复。本研究根据植入体/骨组织界面作用机理,针对植入早期移植体表面羟基磷灰石(HA)涂层生物响应性不足、骨整合速率较慢以及涂层长期稳定性较差等问题,在钛金属基体表面设计并制备高生物响应性的生物活性涂层,达到加快植入体/骨组织整合速率的目的。
     含氟羟基磷灰石(FHA)与HA相比,具有相当的生物活性性和更好的抗溶解性。本研究设计首先采用溶胶凝胶法在钛金属表面制备一层FHA薄涂层作为底层,保证涂层的长期稳定性。然后,结合微量元素锌促进成骨的药理学作用,构建具有促进移植体周围骨组织早期生长的生物活性功能层:可缓释锌离子的FHA涂层。最后,采用电化学沉积的方法组装磷酸钙/胶原多孔复合层,该层与自然骨组织成分类似,具有仿细胞外基质的作用,既有利于成骨细胞的粘附,又能作为生物活性因子如骨形态蛋白的理想载体。本文主要研究内容和结果如下:
     (1)直接掺Zn的FHA(ZnFHA)涂层制备研究。采用Ca(NO_3)_2-P_2O_5-HPF_6-C_2H_5OH-Zn(NO_3)_2体系作为先驱体溶液,制备ZnFHA涂层。XRD谱图表明这种直接掺Zn的涂层为磷灰石相,Zn的掺入并没有改变涂层的晶相,但是掺Zn后涂层结晶度下降。涂层表面形貌致密且平整,厚度大约为2μm。ZnFHA涂层与基体界面结合牢固,划痕法测试结果显示涂层与基体的结合强度大约为480±13 mN。而且Zn的掺入对于涂层的结合强度并没有产生影响。XPS分析结果显示涂层表面Zn含量明显高于涂层内部20 nm处,即在涂层表面富集。Zn在ZnFHA涂层表面的富集以及涂层结晶度降低都有利于Zn离子的释放。
     (2)ZnFHA涂层表征研究。通过体外(in vitro)检测研究ZnFHA涂层的生物活性、Zn离子释放行为及其细胞相容性。ZnFHA涂层在模拟体液(SBF)中能够诱导磷灰石层的沉积。在Tris缓冲溶液中浸泡初期,Zn离子浓度迅速增加,之后随着浸泡过程的进行无明显变化。尽管ZnFHA涂层的Zn离子呈现早期快速释放规律,由于涂层中Zn离子载入量低,溶液中的Zn离子浓度仍在安全范围内,并没有产生细胞毒性。细胞体外相容性测试结果显示,较纯钛金属和FHA涂层,成骨样细胞在ZnFHA涂层表面能更快的增殖和铺展,表明ZnFHA涂层具有更好的生物相容性。
     (3)纳米含Zn的β-TCP(ZnTCP)粉末制备和表征研究。为了使涂层具有更好的Zn离子释放能力,本研究采用纳米ZnTCP粉末作为Zn离子载体,掺入到FHA涂层中。其纳米ZnTCP粉末采用水溶液共沉积方法制备,先形成含Zn无定形磷酸钙沉淀物为先驱体,然后在800℃下晶化可获得纳米含Zn的β-TCP(ZnTCP)粉末。XPS结果证明ZnTCP粉末中Zn离子进入β-TCP晶格中。SEM和TEM结果显示随着水溶液中Zn离子浓度的增加,合成的ZnTCP粉末中Zn含量随之增加,ZnTCP颗粒尺寸随之逐渐减小,尺寸范围为200~500 nm。
     (4)掺纳米ZnTCP颗粒的FHA(ZnTCP/FHA)涂层制备和表征研究。本研究设计两种方式调节涂层中的Zn载入量,以期获得最佳的Zn离子释放行为:(系列1)将不同质量的ZnTCP颗粒加入到涂膜液中,调节涂层中Zn的载入量;(系列2)在ZnTCP添加量相同且合适的条件下,通过改变ZnTCP中Zn含量,调节涂层中Zn的载入量。SEM结果显示ZnTCP/FHA涂层表面形貌粗糙,由FHA基质及分散在其中的“岛状”的ZnTCP团聚体构成。系列2涂层样品中表现出具有更均匀的表面形貌。Zn在两种系列涂层中的分布并不均匀,只存在于“岛状”ZnTCP团聚体中。系列2涂层的Zn离子释放源于ZnTCP相的溶解,涂层样品浸泡275小时后仍能释放出Zn离子。因此,系列2涂层中的Zn离子释放是一个缓慢而持续的过程。通过改变涂层中ZnTCP含量或ZnTCP粉末中Zn含量这两种方式都可以调控涂层的Zn释放行为。
     (5) ZnTCP/FHA涂层生物学评价研究。对系列2涂层样品进行体外细胞检测,结果表明可缓释Zn离子的ZnTCP/FHA双相复合涂层与不含Zn的TCP/FHA涂层或FHA涂层相比,能有效促进成骨样细胞的增殖和生长。涂膜液中ZnTCP(Zn含量6.1 wt%)添加量为67.21 mg/ml可获得均匀的、缺陷少的、具有持续缓释Zn离子能力的ZnTCP/FHA涂层(系列2)。选择该样品并植入兔子胫骨部位12周后组织切片显示,纯钛合金被纤维组织包裹,FHA涂层与骨组织形成不连续的整合界面,而可缓释Zn离子的ZnTCP/FHA双相复合涂层与骨组织形成完整的、连续的骨结合界面。四环素荧光标记图片中清晰的双标线也表明植入体表面通过接触成骨的方式形成新骨。动物体内实验结果表明ZnTCP/FHA涂层具有良好的生物响应性,能有效促进早期骨生长及骨整合。
     (6)在钛金属表面电化学沉积磷酸钙/胶原多孔仿细胞外基质层研究。实验采用化学处理改变钛阴极表面氧化物层性质,系统地研究了不同电化学参数下获得涂层的形貌。结果显示存碱热处理后具有多孔氧化物表面的钛基体上能获得不同矿化程度的、均匀的磷酸钙/胶原多孔层。涂层中磷酸钙晶相随沉积条件的改变而变化,沉积电压为3.0 V,电解质溶液pH为3.6,离子浓度Ca~(2+):4.5 mM,PO_4~(3-):9 mM时,为OCP相;沉积电压为3.0 V,电解质溶液pH为3.6,离子浓度Ca~(2+):2.5 mM,PO_4~(3-):5 mM时,为无定型相。本研究还对电化学沉积磷酸钙/胶原层机理进行探讨,认为该复合层是磷酸钙相电解沉积和胶原分子束电泳沉积两种不同的电化学行为共同作用的结果。体外细胞测试结果表明磷酸钙/胶原层具有良好的细胞相容性。
The research on metallic implants surface modification using bioactive coatings and their cell and tissue response is one of the most attractive aspects of biomaterials.Bioactive coatings with high biological response should be able to modulate materials/cell interfical reactions at the molecular level and initiatively stimulate cell activity to promote bone growth.Hydroxyapatite(HA) coating has been widely used to improve implant/bone tissue bonding.However,the clinical application of HA coatings shows limited bioactivity and relatively large dissolution or resorption rates after implantation,which may result in slow osteointegration in the early stage and poor long-term effectiveness.In this dissertation,based on the interface reactions between implant and bone,we proposed one bioactive functional coating on titanium substrate.
     Compared with HA,fluoridated hydroxyapatite(FHA) has comparable bioactivity and better dissolution resistance.In this study,a dense and stable bottom layer was first applied on titanium to promise the long-term stability.Then, based on this bottom layer,we designed one bioactive coating with zinc ions release ability to stimulate bone formation in the early stage.Finally,an extracellular matrix(ECM) mimicked layer composed of calcium phosphate/collagen was assembled,which might facilitate osteoblasts adhesion and also act as carrier of bioactive molecules such as bone morphogenetic proteins.The researches are summarized as followings:
     (1) Ca(NO_3)_2-P_2O_5-HPF_6-C_2H_5OH system was selected as precursors and Zn(YO_3)_2 was added to prepare zinc containing FHA coating.The XRD results demonstrated the crystal phase was still apatite,but the crystalinity decreased after zinc incorporation.The coating was dense and the thickness was about 2μm.The scratch test demonstrated that the bonding strength between the coating and the substrate was strong,which was about 480±13 mN.The XPS results showed the content of zinc on the coating surface was obviously higher than that in the coating, indicating zinc enrichment on the coating surface.
     (2) Characterization of ZnFHA coating.The ZnFHA coating could induce apatite layer formation on its surface when soaked in SBF solution,indicating the coating was bioactive.The samples were also soaked in Tris buffered solution to investigate their zinc release property.The zinc content tested in the solution increased dramatically in the first 12 hours and then tapered off.In vitro cell viability was tested in term of MTT absorbance.Comparatively,the cell counts on the zinc containing FHA coatings showed statistically significantly higher optical density value than those on titanium substrate and FHA coating.
     (3) Preparation and characterization of Nano ZnTCP particles.In this study, ZnTCP particles were used as zinc carriers.ZnTCP were successfully synthesized through crystallization of zinc containing amorphous calcium phosphate(ACP) at 800℃.The structural analysis proved that zinc ions had entered the calcium sites in theβ-TCP lattice.The zinc content in ZnTCP increased with increasing zinc concentration in the Ca(NO_3)_2-Zn(NO_3)_2-(NH_4)_2HPO_4-PEG system.SEM and TEM results showed that the particle size of ZnTCP decreased with increasing zinc content in the particle,about 200~500 nm.
     (4) Preparation and characterization of ZnTCP/FHA coating.The nano ZnTCP particles were added to prepare ZnTCP/FHA biphasic coating on titanium substrate.We used two ways to regulate the zinc content in the coating:add different amount of ZnTCP particles in the colloidal solution(Series 1);add the same amount of ZnTCP particles in the colloidal solution(Series 2).The obtained coating from the colloidal solution is composed of two phases:HA and TCP.All the coatings exhibited a heterogeneous surface with micro-scaled roughness.The EDX results showed that there existed an obvious amount of zinc in the agglomerated ZnTCP particles.The zinc release behavior of ZnTCP/FHA coating was slow and sustained for up to tens of days.Moreover,the zinc release process could be regulated by changing zinc content in the coating.
     (5) In vitro and in vivo test of ZnTCP/FHA coating.The ZnTCP/FHA coating (Series 2) could support osteoblasts growth and showed statistically increase in cell viability in comparison with the TCP/FHA coating and FHA coating.In vivo results showed new bone formed in the gap created at the implantation site,and was in direct contact with the ZnTCP/FHA coating after 12 weeks implantation. These evaluations demonstrated that the ZnTCP/FHA coating had good cytocompatibility,the capability of accelerating bone formation and osteointegration with the implant.
     (6) Electrochemical deposition of calcium phosphate/collagen extracellular matrix(ECM) mimicked layer composed of calcium phosphate/collagen was assembled on titanium substrates using electrolytic deposition method.The oxidized titanium substrates were used to simulate those with FHA bottom layers in this research.We systematically investigated the micro-structure of the layer under different parameters and the ECM mimicked layer formation mechanisms were discussed.The crystal phase of Calcium phosphate changed with the deposition parameters:at 3.0 V,pH:3.6,Ca~(2+):4.5 mM,pO_4~(3-):9 mM,the crystal was OCP;at 3.0 V,pH:3.6,Ca~(2+):4.5 mM,PO_4~(3-):9 mM,forming amorphous phase. The formation of the calcium phosphate/collagen layer involved two different electro-chemical behaviors:electrolytic deposition of Ca-P and electrophoretic deposition of collagen molecules.It is believed that the simultaneously occurrence of these two kinds of deposition was crucial to form a homogenous layer.The calcium phosphate/collagen coating showed good osetoblast cells biocompatibility.
引文
[1]Gross KA,Walsh W,Swarts E,Analysis of retrieved hydroxyapatite-coated hip prostheses.Journal of Thermal Spray Technology.2004;13(2):190-199.
    [2]Hench LL,Polak JM,Third-Generation Biomedical Materials.Science.2002;295:1014-1017.
    [3]顾汉卿,徐国风,生物医学材料学.天津科技翻译出版公司.天津.1993.
    [4]Weiner S,Wagner HD,The materials bone:structure-mechanical function relations.Annu.Rev.Mater.Sci.1998;28:271-298.
    [5]http://en.wikipedia.org/wiki/File:Illu_compact_spongy_bone.jpg
    [6]Veis A,A window on biomineralizatioin.Science.2005;307:1419-1420.
    [7]Stevens MM,George JH.Exploring and Engineering the cell surface interface.Science.2003;310:1135-1138.
    [8]Kalfas IH,Principles of bone healing.Neurosurg Focus.2001;10:1-4.
    [9]Schneider GB,Zaharias R,Stanford C,Osteoblast integrin adhesion and signaling regulate mineralization.2001;80:1540-1544.
    [I0]Harada SI,Rodan GA,Control of osteoblast function and regulation of bone mass.Nature.2003;423:349-355.
    [11]Sikavitas VI,Temenoff JS,Mikos AG,Biomaterials and bone mechano-stransduction.Biomaterials.2001;22:2581-2593.
    [12]Aubin JE,Turksen K,Heersch JNM,Osteoblastic cell lineage.In:Noda M,editor.Cellular and molecular biology of bone.Tokyo:Academic Press Inc,1993,1-45.
    [13]Puleo DA,Nanci A,Understanding and controlling the bone-implant interface.Biomaterials.1999;20:2311-2321.
    [14]Kasemo B,Gold J,Implant surface and interface processes.Adv Dent Res.1999;13:8-20.
    [15]Thull R,Physicochemical principles of tissue material interactions.Biomolecular Engineering.2002;19:43-50.
    [16]Kenley,Yim K,Abrams J,Ron E,Turek T,Marden L J,Hollinger JO.Biotechnology and bone graft substitutes.Pharmaceutial Research.1993.10:1393-1401.
    [17]Taylor D,Hazenberg JG,Clive Lee AT,Living with cracks:Damage and repair in human bone.Nature Materials.2007;6:263-268.
    [18]Meyer U,B(u|¨)chter,Wiesmann HP,Joos U,Jones DB,Basic reactions of osteoblasts on structured material surfaces.European Cells and Materials.2005;9:39-49.
    [19]Davies JE,Mechanisms of endosseous integration.International Journal of Prosthodontics,1998;11:391-401.
    [20]张婷,王贻宁,夏海斌,成骨细胞在骨内种植体表面的粘附机制,国外医学口腔医学分册,2005:32:118-119.
    [21]Willmann G,Coating of implants with hydroxyapatite material connections between bone and metal.Advanced Engineering Materials.1999;2:95-105.
    [22]Kohn DH,Metals in medical applications.Current Opinion in Solid State & Materials Science.1998;3:309-316.
    [23]于思荣,生物医学钛合金的研究现状及发展趋势,材料科学与工程.2000;18:131-134.
    [24]Vani Vasudev D,Ricci JL,Sabatino C,Li P,Russell Parsons J,In vivo evaluation of a biomimetic apatite coating grown on titanium sufaces.J Biomed Mater Res.2004;69A:629-636.
    [25]Greenspan DC,Bioactive ceramic implant materials,Current Opinion in Solid State and Materials Science.1999;4:389-393.
    [26]Walsh WR,Vizesi F,Michael D,Auld J,Langdown A,Oliver R,Yu Y,Irie H,Bruce W, β-TCP bone graft substitutes in a bilateral rabbit tibial defect model.Biomaterials.2008;29:266-271.
    [27]Nandi SK,Ghosh SK,Kundu B,De DK,Basu D,Evaluation of new porous β-tri-calcium phosphate ceramic as bone substitute in goat model.Small Ruminant Research.2008;75:144-153.
    [28]Takeshita F,Iyama S,Ayukawa Y,Akedo H,Suetsugu T,Study of bone formation around dense hydroxyapatite implants using light microscopy,image processing and confocal laser scanning microscopy.Biomaterials.1997;18:317-322.
    [29]Zhang XS,Revell PA,Evans SL,Tuke MA,Gregson PJ,in vivo biocompatibility and mechanical study of novel bone-bioactive materials for prosthetic implantation.J Biomed Mater Res.1999;46:279-286.
    [30]Nandi SK,Kundu B,Datta S,De DK,Basu D,The repair of segmental bone defects with porous bioglass:An experimental study in goat.Research in Veterinary Science.2009;86:162-173.
    [31]Gu YW,Khor KA,Cheang P,In vitro studies of plasma-sprayed hydroxyapatite/Ti-6Al-4V composite coatings in simulated body fluid(SBF).Biomaterials.2003;24:1603-1611.
    [32]Gu YW,Khor KA,Cheang P,Bone-like apatite layer formation on hydroxyaptite prepared by spark plasma sintering(SPS).Biomaterials.2004;25:4127-4134.
    [33]Shibuya K,Kurosawa H,Takeuchi H,Niwa S,The medium-term results of treatment with hydroxyapatite implants.J Biomed Mater Res.2005;75B:405-413.
    [34]Clemens JAM,Klein CPAT,Vriesde RC,Rozing PM,Groot K,Healing of large(2 mm)gaps around calcium phosphate-coated bone implants:a study in goats with a follow-up of 6 months.J Biomed Mater Res.1998;40:341-349.
    [35]Nunes CR,Simske SJ,Sachdeva R,Wolford LM,Long-term ingrowth and apposition of porous hydroxylapatite implants.J Biomed Mater Res.1997;36:560-563.
    [36]Boyde A,Corsi A,Quarto R,Cancedda R,Bianco P,Osteoconduction in large macroporous hydroxyapatite ceramic implants:evidence for a complementary integration and disintegration mechanism.Bone.1999;24:579-589.
    [37]Lee TM,Wang BC,Yang YC,Chang E,Yang CY,Comparison of plasma-sprayed hydroxyapatite coatings and hydroxyapatite/tricalcium phosphate composite coatings:In vivo study.J Biomed Mater Res.2001;55:360-367.
    [38]Xue W,Tao S,Liu X,Zheng X,Ding C,In vivo evaluation of plasma sprayed hydroxyapatite coatings having different crystallinity.Biomaterials.2004;25:415-421.
    [39]魏杰,刘昌胜,洪华,袁媛,陈芳萍,可降解自固化类骨磷灰石支架的研究.无机化学学报.2006;22:765-770.
    [40]Liu C,Shen W,Effect of crystal seeding on the hydration of calcium phosphate cement.J Mater Sci Mater Med.1997;8:803-807.
    [41]Hasegawa S,Ishii S,Tamura J,Furukawa T,Neo M,Matsusue Y,Shikinami Y,Okuno M,Nakamura T,A 5-7 year in vivo study of high-strength hydroxyapatite/poly composite rods for the internal fixation of bone fractures.Biomaterials.2006;27:1327-1332.
    [42]Furukawa T,Matsusue Y,Yasunaga T,Shikinami Y,Okuno M,Nakamura T,Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures.Biomaterials.2000;21:889-898.
    [43]Kellom(a|¨)ki,Niiranen H,Puumanen K,Ashammakhi N,Waris T,T(o|¨)rm(a|¨)l(a|¨),Bioadsorbable scaffolds for guided bone regeneration and generation.Biomaterials.2000;21:2495-2505.
    [44]曹德勇,宋雪峰,陈亦平,卢绍杰,姚康德,骨水泥生物材料研究与开发进展.化学工业与工程.2003;20:303-309.
    [45]Rosso F,Marino G,Giordano A,Barbarisi M,Parmeggiani D,Barbarisi A,Smart materials as scaffolds for tissue engineering.Journal of Cellular Physiology.2005;203:465-470.
    [46]Chau DYS,Collighan RJ.Verderio EAM,Addy VL,Griffin M,The cellular response to transglutaminase cross linked collagen.Biomaterials.2005;26:6518-6529.
    [47]Lynch MP,stein JL,Stein GS,Lian JB,The influence of Type Ⅰ collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts:modification of expression of genes supporting cell growth,adhesion and extracellular matrix mineralization.Experimental Cell Research.1995;216:35-45.
    [48]Liu Y,Enggist L,Kuffer AF,Buser D,Hunziker EB,The influence of BMP-2 and its mode of delivery on the osteoconductivity of implant surfaces during the early phase of osseointegration.Biomaterials.2007;285:1028-1032.
    [49]Wickner W,Schekman R,Protein translocation across biological membranes.Science.2005;310:1452-1456.
    [50]Schneider GB,Zaharias R,Standord C,Osteoblast integrin adhesion and signaling regulate mineralization.J Dent Res.2001;80:1540-1544.
    [51]Aspenberg P,Jeppsson C,Wang JS,Bostr(o|¨)m M,Transforming growth factor beta and bone morphogenetic protein 2 for bone ingrowth:a comparison using bone chambers in rats.Bone.1996;19:499-503.
    [52]Wozney JM Seeherman HJ,Protein-based tissue engineering in bone and cartilage repair.Current Opinion in Biotechnology.2004;15:392-398.
    [53]Boontheekul T,Mooney DJ,Protein-based signaling systems in tissue engineering.Current Opinion in Biotechnology.2003;14:559-565.
    [54]Mishra L,Derynck R,Mishra B,Transforming growth factor-β signaling in stem cells and cancer.Science.2005;310:68-71.
    [55]Sykaras N,Opperman LA,Bone morphogenetic protein:how do they function and what can they offer the clinician? Journal of Oral Science.2003;45:57-73.
    [56]黄晖,杨志,骨形态发生蛋白在骨组织工程中的临床应用.中国组织工程研究与临床康复.2007;11:340-343.
    [57]Schmidmaier G,Wildemann B,Cromme F,Kandziora F,Haas NP,Raschke M,Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment:a biomechanical and histological study in rats.Bone.2002;30:816-822.
    [58]Liu Y,de Groot K,Hunziker EB,BMP-2 liberated from biomimetic implant coatings induces and sustains direct ossification in an ectopic rat model.Bone.2005;36:745-757.
    [59]Liu Y,Enggist L,Kuffer AF,Buser D,Hunziker EB,The influence of BMP-2 and its mode of delivery on osteoconductivity of implant surfaces during the early phase of osseointegration.Biomaterials.2007;28:2677-2686.
    [60]Keselowsky BG,Collard DM,Garcia A J,Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation.PNAS.2005;102:5953-5957.
    [61]Giancotti FG,Ruoslahti E,lntegrin signaling,Science.1999;285:1028-1032.
    [62]Hoshino M,Egi T,Terai H,Namikawa T,Takaoka K,Repair of long intercalated rib defects using porous beta-tricalcium phosphate cylinders containing recombinant human bone morphogenetic protein-2 in dogs.Biomateriais.2006;27:4934-4940.
    [63]李毅,孟国林,刘建,刘昌胜,袁志,昌荣,MPC骨水泥纤维蛋白胶复合BMP人工骨支架材料对山羊松质骨缺损的修复.科学技术与工程.2008;8:1414-1418.
    [64]王磊,潘可风,黄远亮,刘昌胜,蒋欣泉,多孔磷酸钙人工骨复合BMP-2/bFGF成骨的实验研究.中国美容整形外科杂志.2008;19:459-462.
    [65]Xue W,Moore JL,Hosick HL,Bose S,Bandyopadhyay A,Lu WW,Cheung KMC,Luk KDK,Osteoprecursor cell response to strontium-containing hydroxyaptite ceramics.J Biomed Mater Res.2006;79A:804-814.
    [66]Peretz A,Papadopoulos T,Willems D,Zinc supplementation increases bone alkaline phosphatase in healthy men.J Trace Elem Med Biol.2001;15:175-178.
    [67] Tapiero H, Tew KD, Trace elements in human physiology and pathology: zinc and metallothioneins. Biomed Pharmacother. 2003;57:399-411.
    
    [68] Ovesen J, M(?)ller-Madsen B, Thomsen JS, Danscher G. The positive effects of zinc on skeletal strength in growing rats. Bone. 2001;29:565-570.
    
    [69] Da Cunha Ferreira RMC, Marquiegui IM, Elizatga IV. Teratogenicity of zinc deficiency in the rat: Study of the fetal skeleton. Exp Teratol. 1989;39:181-194.
    
    [70] Da Cunha Ferreira RMC, Gonzalez JIR, Marquiegui IM. Changes in the fetal tibial growth plate secondary to maternal zinc deficiency in the rat: A histological and histochemical study. Teratology. 1991;44:441-451.
    
    [71] Eberle J, Schmid Mayer S, Erben RG. Skeletal effects of zinc deficiency in growing rats. J Trace Elem Med Boil. 1999; 13:21-26.
    
    [72] Yamaguchi M. Role of zinc in bone formation and bone resorption, J Trace Elem Exp Med. 1998;11:119-135.
    
    [73] Kishi S, Yamaguchi M. Inhibitory effect of zinc compounds on osteoclast-like cell formation in mouse marrow culture. Biochem Pharmacol. 1994;48: 1225-1230.
    
    [74] Moonga BS, Dempster DW. Zinc is potent inhibitor of osteoclastic bone resorption in vitro. J Bone Miner Res. 1995; 10:453-457.
    
    [75] Igarashi A, Yamaguchi M. Stimulatory effect of zinc acexamate administration on fracture healing of the femoral-diaphyseal tissues in rats. General Pharmacology. 1999;32:463-469.
    
    [76] Ito A, Ojima K, Naito H. Preparation, solubility, and cytocompatibility of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res. 2000;50A: 178-183.
    
    [77] Ikeuchi M, Ito A, Dohi Y. Osteogenic differentiation of cultured rat and human bone marrow cells on the surface of zinc-releasing calcium phosphate ceramics. J Biomed Mater Res. 2003;67A:l 115-1122.
    
    [78] Otsuka M, Ohshita Y, Marunaka S. Effect of controlled zinc release on bone mineral density from injectable Zn-containing P-tricalcium phosphate suspension in zinc-deficient diseased rats. J Biomed Mater Res. 2004;69A: 552-560.
    
    [79] Kawamura H, Ito A, Miyakawa S. Stimulatory effect of zinc-releasing calcium phosphate implant on bone formation in rabbit femora. J-Biomed Mater Res. 2000;50:184-190.
    
    [80] van Moerkerk HTB, Uijtdewilligen PJE, Smits P, Daamen WF, van Kuppevelt TH, Preparation of a growth factor gradient in porous collagen scaffolds and its effect on cell growth proliferation. Journal of controlled Release. 2006; 116:87-88.
    
    [81] Casper CL., Yang W, Farach-Carson MC, Rabolt JF, Coating Electrospun Collagen and Gelatin Fibers with Perlecan Domain I for Increased Growth Factor Binding. Biomacromolecules. 2007;8:1116-1123.
    
    [82] Douglas T, Hempel U, Mietrach C, Heinemann S, Scharnweber D, Worch H, Fibrils of different collagen types containing immobilized proteoglycans (PGs) as coatings: Characterisation and influence on osteoblast behaviour, Biomolecular Engineering. 2007;24:455-458.
    
    [83]沈铁城,黄永辉,徐晓峰,崔福斋,李艳,任永娟,纳米品胶原基骨材料在临床上的应用.医学研究杂志.2006:35:70-73.
    
    [84] Zhang W, Liao SS, Cui FZ, Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials. 2003;15:3221-3226.
    
    [85] Wang YJ, Yang CR, Chen XF, Development and characterization of novel biomimetic composite scaffolds based on bioglass-collagen-hyaluronic acid-phosphatidylserine for tissue engineering applications. Macromolecular Materials and Engineering. 2006;291:254-262.
    
    [86] Muller R, Abke J, Schnell E, Macionczyk F, Gbureck U, Mehrl R, Ruszczak Z, Kujat R, Englert C, Nerlich M, Angele P, Surface engineering of stainless steel materials by covalent collagen immobilization to improve implant biocompatibility. Biomaterials. 2005;26:6962-6972.
    [87]Rammelt S,Schulze E,Bernhardt R,Hanisch U,Scharnweber D,Worch H,Zwipp H,Biewener A,Coating of titanium implants with type-Ⅰ collagen.Journal of Orthopaedic Research.2004;22:1025-1034.
    [88]Morra M,Cassinelli C,Cascardo G,Mazzucco L,Borzini P,Fini M,Giavaresi G,Giardino R,Collagen I-coated titanium surfaces:mesenchymal cell adhesion and in vivo evaluation in trabecular bone implants.J Biomed Mater Res.2006;78A:449-458.
    [89]Geiβler U,Hempel U,Wolf C,Scharnweber D,Worch H,Wenzel KW,Collagen type Ⅰ-coating of Ti6Al4V promotes adhesion of osteoblasts.J Biomed Mater Res.2000;51:752-760.
    [90]Manara S,Paolucci F,Palazzo B,Marcaccio M,Foresti E,Tosi G,Sabbatini S,Sabatino P,Altankov G,Roveri N,Electrochemically-assisted deposition of biomimetic hydroxyapatite-collagen coatings on titanium plate,Inorganica Chimica Acta.2008;361:1634-1645.
    [91]Elmengaard B,Bechtoid JE,Soballe K,in vivo effects of RGD-coated titanium implants inserted in two bone-gap models.J Biomed Mater Res.2005;75A:249-255.
    [92]Rowley JA,Mooney DJ,Aiginate type and RGD density control myoblast phenotype.J Biomed Mater Res.2002;60:217-223.
    [93]Sawyer AA,Weeks DM,Kelpke SS,McCracken MS,Bellis SL,The effect of the addition of a polyglutamate motif to RGD on peptide tethering to hydroxyapatite and the promotion of mesenchymal stem cell adhesion.Biomaterials.2005;26:7046-7056.
    [94]赵晓飞,王迎军,卢玲,任力,陈晓峰,葛坚,壳聚糖膜固定生物活性短肽RGDS 的研究.化学研究与应用.2006:18:1369-1374.
    [95]饶桦强,冯波,鲁雄,汪建新,江旭,翁杰,钛表面固定纤维连接蛋白及体外细胞培养.复合材料学报.2008:25:67-71.
    [96]Puleo DA,Kissling RA,Sheu MS,A technique to immobilize bioactive proteins,including bone morphogenetic protein-4(BMP-4) on titanium alloy.Biomaterials.2002;23:2079-2087.
    [97]Lee Y,Ko JS,Kim H,The role of cell signaling defects on the proliferation of osteoblasts on the calcium phosphate apatite thin film.Biomateriais.2006;27:3738-3744.
    [98]Jaffe WL,Scott.DF,Current concepts review-total hip arthroplasty with hydroxyaptite-coated prostheses.J bone Joint Surg Am.1996;78:1918-1934.
    [99]Sampathkumaran U,De Guire MR,Wang R,Hydroxyaptite coatings on titanium.Advanced Engineering Materials.2001;3:401-405.
    [100]Dumbleton J,Manley MT,Hydroxyaptite-coated prostheses in total hip and knee arthroplasty,J Bone Joint Surg Am.2004;86:2526-2540.
    [101]肖联平,人工髋关节翻修术中骨缺损的修复与重建,国外医学生物医学工程分册.2003:26:93-96.
    [102]Xue W,Tao S,Liu X,Zheng XB,Ding C,In vivo evaluation of plasma sprayed hydroxyaptite coatings having different crystallinity.Biomaterials.2004;25:415-421.
    [103]Clemens JAM,Wolke JGC,Klein CPAT,de Groot K,Fatigue behavior of calcium phosphate coatings with different stability under dry and wet conditions.J Biomed Mater Res.1999;48:741-748.
    [104]Kim HW,Kim HE,Salih V,Knowles JC,Sol-gel modified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses.J Biomed Mater Res.2005;74A:294-305.
    [105]Weng W J,Baptista JL,The preparation and characterization of hydroxyapatite coatings on Ti6Al4V alloy by a sol-gel method.J Am Ceram Soc.1999;82:27-32.
    [106]Cheng K,Weng W J,Qu HB,Du PY,Shen G,Han GR,Yang J,Ferreira JMF,Sol-gel preparation and in vitro test of fluorapatite/hydroxyapatite films.J Biomed Mater Res.2004;69B:33-37.
    [107] Cheng K, Weng WJ, Wang H, Zhang S, In vitro behavior of osteoblast-like cells on fluoridated hydroxyaptite coatings. Biomaterials. 2005;26:6288-6295.
    
    [108] Cheng K, Shen G, Weng WJ, Han GR, Ferreira JMF, Yang J, Synthesis of hydroxyapatite/fluoroapatite solid solution by a sol-gel method. Materials Letters. 2001;51:37-41.
    
    [109] Nishiguchi S, Kato H, Neo M, Oka M, Kim HM, Kokubo T, Nakamura T, Alkali- and heat-treated porous titanium for orthopedic implants. J Biomed Mater Res. 2001 ;54:198-208.
    
    [110] Nishiguchi S, Nakamura T, Kobayashi M, Kim HM, The effect of heat treatment on bone-bonding ability of alkali-treated titanium. Biomaterials. 1999;20:491-500.
    
    [111] Nishiguchi S, fujibayashi S, Kim HM, Kokubo T, Nakamura T, Biology of alkali- and heat-treated titanium implants. J Biomed Mater Res. 2003;67A:26-35.
    
    [112] Takadama H, Kim HM, Kokubo T, Nakamura T, TEM-EDX study of mechanism of bonelike apatite formation on bioactive titanium metal in simulated body fluid. J Biomed Mater Res. 2001 ;57:441 -448.
    
    [113] Peng P, Kumars, Voelcker NH, Szili E, Smart RSC, Griesser HJ, Thin calcium phosphate coatings on titanium by electrochemical deposition in modified simulated body fluid. J Biomed Mater Res. 2006;76A:347-355.
    
    [114] Kuo MC, Yen SK, The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Materials Science and Engineering C. 2002;20:153-160.
    
    [115] Ban S, Maruno S, Arimoto N, Harada A, Hasegawa J, Effect of electrochemically deposited apatite coating on bonding of bone to the HA-G-Ti composite and titanium. J Biomed Mater Res. 1997;36:9-15.
    
    [116] Shih WJ, Chen YH, Wang SH, Li WL, Hon MH, Wang MC, Effect of NaOH treatment on the phase transformation and morphology of calcium phosphate deposited by an electrolytic method. Journal of Crystal Growth. 2005;285:633-641.
    
    [117] Cheng X, Filiaggi M, Roscoe SG, Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials. 2004;25:5395-5403.
    
    [118] Fan Y, Sun Z, Wang R, Abbott C, Moradian-Oldak J, Enamel inspired nanocomposite fabrication through amelogenin supramolecular assembly. Biomaterials. 2007;28:3034-3042.
    
    [119] Fan Y, Duan K, Wang R, A composite coating by electrolysis-induced collagen self-assembly and calcium phosphate mineralization. Biomaterials. 2005;26:1623-1632.
    
    [120] Pang X, Zhitomirsky I, Electrodeposition of composite hydroxyapatite chitosan films. Materials Chemistry and Physics. 2005;94:245-251.
    
    [121] Ryu HS, Hong KS, Lee JK, Kim DJ, Lee JH, Chang BS, Lee D, Lee CK, Chung SS, Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials. 2004;25:393-401.
    
    [122] Cheng K, Zhang S, Weng W, Zeng X, The interfacial study of sol-gel derived fluoridated hydroxyapatite coatings. Surface & Coating Technology. 2005; 198:242-246.
    
    [123] Yamamoto A, Honma R, Sumita M, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res 1998;39:331-340.
    
    [124] Bigi A, Foresti E, Gandolfi M, Gazzano M, Roveri N, Inhibiting effect of zinc on hydroxyapatite crystallization. Journal of Inorganic Biochemistry. 1995;58:49-58.
    
    [125] Barrea RA, Perez CA, Ramos AY, Sanchez HJ, Grenon M, Distribution and incorporation of zinc in biological calcium phosphates. X-Ray Spectrometry. 2003;32:387-395.
    
    [126] Rabiei A, Thomas B, Jin C, Narayan R, Cuomo J, Yang Y, Ong JL, A study on functionally graded HA coatings processed using ion beam assisted deposition with in witu heat treatment. Surface & Coating Technology. 2005;200:6111-6116.
    [127] Ozeki K, Yuhta T, Fukui Y, A fuctionally graded titanium/hydroxyapatite film obtained by sputtering. Journal of Materials Science: Materials in Medicine. 2002; 13:253-258.
    
    [128]冯爱新,张永康,谢华琨,范真,划痕试验法表征薄膜涂层界面结合强度.江苏大学学报.2003:24:60-64.
    
    [129] Kokubo T, Takadama H, How useful in SBF in prediction in vivo bone bioactivity. Biomaterials. 2006;27:2907-2915.
    
    [130] Walsh WR, Bizesi F, Michael D, Auld J, Langdown A, Oliver R, Yu Y, Irie H, Bruce W, β-TCP bone graft substitutes in a bilateral rabbit tibial defect model. Biomaterials. 2008;29:266-271.
    
    [131] Zou C, Weng W, Cheng K, Du P, Sheng G, Han G, Preparation of nanosized beta-tricalcium phosphate particles with Zn substitution. Journal of Materials Science: Materials in Medicine. 2008; 19:1133-1136.
    
    [132] Que L, Topoleski LDT, Parks NL, Surface roughness of retrieved CoCrMo alloy femoral components from PCA artificial total knee joints. J Biomed Mater Res. 2000;53:111-118.
    
    [133] Assender H, Bliznyuk V, Porfyrakis K, How surface topography relates to materials' properties. Science. 2002;297:973-976.
    
    [134] Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE, Geometric control of cell life and death. Science. 1997;276:1425-1428.
    
    [135] Yamamoto A, Honma R, Sumita M, Cytotoxicity evaluation of 43 metal salts using murine fibroblasts and osteoblastic cells. J Biomed Mater Res. 1998;39:331-340.
    
    [136] Lutolf MP, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, Hubbell JA, repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nature Biotechnology. 2003;21:513-518.
    
    [137] Rosso F, Marino G, Giordano A, Barbarisi M, Parmeggiani D, Barbarisi A, Smart materials as scaffolds for tissue engineering. Journal of Cellular Physiology. 2005;203:465-470.
    
    [138] Lynch MP, Stein JL, Stein GS, Lian JB, The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Experimental Cell Research. 1995;216:35-45.
    
    [139] Hodgson AWE, Mueller Y, Forster D, Virtanen S, Electrochemical characterization of passive films on Ti alloys under simulated biological conditions. Electrochimica Acta. 2002;47:1913-1923.
    
    [140] Zhang Q, Leng Y, Electrochemical activation of titanium for biomimetic coating of calcium phosphate. Biomaterials. 2005;26:3853-3859.
    
    [141] Kim HM, Kokubo T, Fujibayashi S, Nishiguchi S, Nakamura T, Bioactive macroporous titanium surface layer on titanium substrate. J Biomed Mater Res. 2000;52:553-557.
    
    [142] García C, Ceré S, Durán A, Bioactive coatings deposited on titanium alloys. Journal of Non-Crystalline Solids. 2006;352:3488-3495.
    
    [143] Ban S, Maruno S, Deposition of calcium phosphate on titanium by electrochemical process in simulated body fluid. Jpn. J. Appl. Phys. 1993;32:1577-1580.
    
    [144] Narayanan R, Seshadri SK, Kwon TY, Kim KH, Electrochemical nano-grained calcium phosphate coatings on Ti-6A1-4V for biomaterial applications. Scripta Materialia. 2007;56:229-232.
    
    [145] Hu HB, Lin CJ, Hu R, Leng Y, A study on hybrid bioceramic coatings of HA/poly(vinyl acetate) co-deposited electrochemically on Ti-6A1-4V alloy surface. Materials Science and Engineering C. 2002;20:209-214.
    
    [146] Ban S, Maruno S, pH distribution around the electrode during electrochemical deposition process for producing bioactive apatite. Jpn. J. Appl. Phys. 1999;38:537-539.
    [147] Kokubo T, Miyaji F, Kim HM, Spontaneous formation of bonelike apatie layer on chemically treated titanium metals. J. Am. Ceram. Soc. 1996;79:1127-1129.
    
    [148] Redepenning J, Schlessinger T, Burnham S, Lippiello L, Miyano J, Characterizaiton of electrolytically prepared brushite and hydroxyapatite coatings on orthopedic alloys. Journal of Biomedical Materials Research. 1996;30:287-294.
    
    [149] Ban S, Hasegawa J, Morphological regulation and crystal growth of hydrothermal electrochemically deposited apatite. Biomaterials. 2003;23: 2965-2972.
    
    [150] Cheng X, Filiaggi M, Roscoe SG, Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy. Biomaterials. 2004;25:5395-5403.
    
    [151] Shen S, Liu W, Huang Z, Liu X, Zhang Q, Lu X, The simulation of the electrochemical cathodic Ca-P deposition process. Materials Science and Engineering C. 2009;29:108-114.
    
    [152] Wang J, Layrolle P, Stigter M, de Groot K, Biomimetic and electrolytic calcium phosphate coatings on titanium alloy: physicochemical characteristics and cell attachment. Biomaterials. 2004;25:583-592.
    
    [153] Lu X, Leng Y, Theoretical analysis of calcium phosphate precipitation in simulated body fluid. Biomaterials. 2005;26:1097-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700