关节软骨细胞外基质源性取向支架的制备及其相关软骨组织工程的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:因创伤、炎症、退变、肿瘤切除等原因导致的关节软骨损伤是临床上常见的疾病。关节软骨再生及修复能力极为有限,一旦损伤后,难以自身修复,病情继续发展,必然导致骨性关节炎。目前的治疗方法,如微骨折术、自体或异体组织(骨膜、软骨膜、骨软骨块)移植等,存在种种缺陷从而限制了其临床应用。自体软骨细胞移植技术(autologous chondrocyteimplantion ACI)和十九世纪早期出现的组织工程表明了软骨修复是可能的,从而出现了许多的修复或者替代损伤软骨的方法。在众多的方法中,将种子细胞培养在生物材料支架上然后移植到缺损部位,形成新的软骨组织,经过重塑形并与机体组织整合在一起,是软骨组织工程修复软骨损伤的基本方式,而将软骨细胞复合到一个三维的,多孔的支架上形成软骨组织是关键内容。组织工程支架的生物学、生物化学、力学以及结构特性都是非常重要的。支架材料除了提供工程化软骨样组织的三维几何形状,还为细胞提供了生存的微环境(人造临时细胞外基质),支持细胞的粘附、增殖、分化并最终形成新的软骨组织。软骨组织工程支架的特性与天然关节软骨细胞外基质的特性相似程度越高,越有利于成功构建组织工程软骨。当然,完全具有软骨细胞外基质的各种特性的支架是不可能的也没有意义的。实际上,研究表明,天然的软骨组织并不是软骨组织工程应用的理想的支架,因为成熟的软骨组织没有高度的相互联通的孔隙结构以利于快速的、均匀的细胞分布。因此,理想的软骨组织工程支架仍是人工设计、具有天然软骨细胞外基质的某些特性的支架。我们前期研究工作将关节软骨湿法粉碎,获得天然软骨细胞外基质材料,其在生化组成上完全类似于天然关节软骨细胞外基质,再利用冷冻干燥技术,制备出适宜于软骨组织工程需要的多孔海绵样结构支架,体外实验及犬关节软骨损伤修复动物实验研究均取得了良好的效果。然后,在此基础上,我们再从天然关节软骨细胞外基质的各向异性的力学结构特性出发,拟从结构上仿生天然关节软骨细胞外基质,制备从生化组成及结构特性上仿生的软骨组织工程支架。另一方面,前期我们实验室的研究是利用人的关节软骨制备软骨细胞外基质材料,来源不算充分,考虑到猪与人的同源性高,且来源丰富,故利用猪的关节软骨作为材料来源进行本研究。
     本研究的目的是进一步完善提取天然软骨细胞外基质材料的工艺和流程,利用天然软骨细胞外基质材料制备软骨组织工程取向性支架、从生化组成及结构特性上仿生天然关节软骨组织的特点,对其理化性质进行检测,并探讨其对种子细胞生物学行为的影响以及与自体骨髓基质干细胞复合修复兔膝关节全层关节软骨缺损的效果。
     方法:(1)将天然猪软骨超微湿法粉碎,充分稀释后利用差速离心及有机溶剂沉淀的方法收集无细胞的软骨细胞外基质纳米纤维材料,用pH=3.2的稀盐酸配成2%溶液,然后利用定向结晶技术及冷冻干燥技术,采用物理/化学方法交联,得到软骨细胞外基质来源的三维多孔定向取向支架(orientedscaffold,OS),传统冷冻干燥技术制备非取向三维多孔支架(nonorientedscaffold,NOS),对支架材料进行组织学、生化分析,对取向和非取向支架的理化特性进行比较研究。(2)分离培养兔关节软骨细胞接种在支架上体外培养,评价两种支架对负载软骨细胞的生物学行为的影响。(3)将体外培养1w的兔软骨细胞复合关节软骨细胞外基质源性取向和非取向支架,植入裸鼠背部皮下,4w取材,进行组织学检测,评价两种支架异位成软骨的能力。(4)抽取自体骨髓分离、培养、扩增骨髓基质干细胞(BMSCs),用含10ng/ml TGF-β1,10ng/ml bFGF,10~(-7)M地塞米松的条件培养基成软骨诱导1w后,观察诱导后细胞的形态和组织学特性变化,然后接种到关节软骨细胞外基质源性OS和NOS上,体外观察BMSCs在两种支架上的分布排列方式。在兔膝关节髌股关节沟造一直径4.0mm,深及软骨下骨的全层软骨缺损,分别植入取向支架加自体BMSCs(组1),非取向支架加自体BMSCs(组2),空白取向支架(组3),空白非取向支架(组4),旷置空白缺损(组5);分别在3,6,12月取材,从修复组织的大体,组织学,生物化学等方面进行评估。
     结果:(1)组织学显示提取的关节软骨细胞外基质材料和制备的支架中无软骨细胞残留,甲苯胺蓝染色、阿新蓝、蕃红花“0”、Ⅱ型胶原免疫组织化学染色呈阳性;生化定量结果表明支架保留了大部分的细胞外基质成分;扫描电镜结果显示取向支架具有平行排列的柱状的孔道结构,非取向支架内孔洞呈海绵状;孔径(100~200μm)和孔隙率(≥95%)均满足软骨组织工程需要;吸水性能(吸水膨胀率≥96%)良好,取向支架的纵向压缩模量(2.02±0.02MPa)远大于横向上的压缩模量(0.36±0.02MPa),非取向支架的压缩模量(1.07±0.05 MPa)介于取向支架的纵向和横向压缩模量之间,但远小于取向支架的纵向压缩模量。取向支架纵向上拉伸模量(22.10±0.67MPa)也远大于非取向支架的拉伸模量(5.104±0.45MPa)。差异具有统计学意义(p<0.05)。(2)组织学、倒置显微镜、扫描电镜观察显示细胞在两种支架上均能良好粘附、增殖,用CCK-8试剂盒检测显示软骨细胞在取向支架上的生长情况,结果显示软骨细胞增殖明显比在非取向支架上快,差异具有统计学意义(p<0.05)。细胞在取向支架内部的数量明显比非取向支架多。(3)大体观察及组织学结果显示兔软骨细胞复合取向支架及非取向支架在裸鼠皮下均能构建类软骨组织,在取向支架中,种子细胞沿着支架的孔道结构排列形成柱状排列的类软骨样组织,而在非取向支架中则呈无序的随机排列。(4)将BMSCs接种在取向和非取向两种支架上体外软骨诱导培养经PKH26荧光标记,可见BMSCs在取向支架内部也是沿着支架孔道结构分布排列,电镜结果也证实这一点,组织学结果表明蕃红花“0”、Ⅱ型胶原免疫组化染色阳性。在修复兔膝关节骨软骨缺损的实验中,组织学评分表明BMSCs复合取向支架和非取向支架组结果均优于空白支架和空白旷置组,差异具有统计学意义。细胞复合取向支架优于非取向支架组,差异具有统计学意义。
     结论:
     利用差速离心方法可以有效去除湿法粉碎后关节软骨细胞外基质浆料中的大颗粒及软骨细胞,利用有机溶剂沉淀可以收集到大部分的细胞外基质成分。
     利用定向结晶及冷冻干燥技术,制备了结构,力学和生物化学特性类似于自然软骨的组织工程支架,管道孔的结构和直径分布均匀,在一定程度上类似于自然关节软骨。
     支架细胞复合物在体外培养3天后就呈现出其排列类似于天然软骨表层的平行表面排列,深层的柱状排列。
     关节软骨细胞外基质源性支架有助于种子细胞的粘附和增值,相对于非取向支架,取向支架更有利于细胞的进入及增值。
     关节软骨细胞外基质源性取向支架复合自体骨髓基质细胞可用于关节软骨损伤的修复。
BACKGROUND Degenerative and rheumatic diseases,traumatic events and excision of tumors are the main reasons for articular cartilage impairs.By itself,cartilage has very limited capabilities of regeneration,if not treated,they extend to be osteoarthritis.Nowadays,numerous strategys have been made to promote reparation of the cartilage defect such as drilling,microfracture,autograft of periosteum,perichondrium and osteochondral autogratt.However all of these generally leads to a mechanical and biological inferior repair tissue based on fibrocartilage.Moreover there is a shortage of autogenous donor sources for grafting.However,the development of the ACI technique and the progress in the tissue-engineering field in the early nineties,have suggested that the repair of cartilage actually might be feasible,leading to the development of numerous strategies to repair or replace the damaged surfaces.In many approaches,cells are grown on biomaterial scaffolds and then implanted into the defect,where new functional tissue is formed,remodelled and integrated into the body.In a typical cartilage tissue engineering approach,to control cartilage repair tissue formation in three dimensions(3D),a highly porous scaffold is critical.And the biological, biochemical,mechanical,and structural properties of scaffolds for cartilage tissue engineering are known to be of great importance.However most materials currently investigated lack a scaffold-structure similar to that of native cartilage and they strongly differ in their biological and biochemical composition.In addition to defining the 3D geometry for the tissue to be engineered,the scaffold provides the microenvironment(synthetic temporary extracellular matrix) for regenerative cells,supporting cell attachment,proliferation,differentiation,and neo tissue genesis.Therefore,the chemical composition,physical structure,and biologically functional are all important attributes to biomaterials for tissue engineering.To serve as the temporary extracellular matrix(ECM) for regenerative cells,it may be beneficial for the scaffold to emulate certain advantageous features of the natural cartilage ECM.However,it is likely unnecessary and impractical for a scaffold to entirely duplicate the cartilage ECM. A natural cartilage ECM may actually not be the ideal scaffold for cartilage tissue engineering applications because mature cartilage tissue matrix often does not possess the highly interconnected macro-or micro-pore structures to allow for quick and uniform cell population throughout,which is essential for a tissue engineering/repair process.Therefore optimal cartilage tissue engineering scaffold should have certain artificially designed scaffold features(such as porosity,pore size,interpore connectivity,etc.) Based on the above discussion,we previously shattered the natural cartilage and collected the nano-material derived cartilage extracellular matrix which biochemical composition mimic the native cartilage ECM,and by freeze-dry technique,we fabricated a porous scaffold,and the scaffold were proved to be sure for supporting the cartilage regenerating in vitro and in vivo.Base on our previous research,considered the structured feature of the native cartilage tissue,we attempt to fabricate the oriented scaffolds that characterized by a perpendicular pore channel structure and biomechanical properties similar to native cartilage tissue.And on the other hand,our previously cartilage materials were human cartilage,which were shortage of donor sources, so in this study we use the porcine cartiage to fabricate the scaffolds,because the porcine cartilage is economic and its homology is similar to human.
     OBJECTIVE This study aims to further promote the technology and procedure of collecting the native cartilage ECM material.To fabricate oriented scaffold and investigate the charactarization of the scaffolds.To investigate the effect of the oriented scaffold on the the attachment,proliferation,distribution and alignment of chondrocytes seeded in the scaffolds cultured in vitro.And to test the clinical applicability of the scaffolds,we repaired rabbit osteochondral defect using OS and NOS combined the autologous BMSCs.
     METHOD①Cartilage slices were shattered in sterile phosphate-buffered saline(PBS),and the suspension were differentially centrifugated untill the micro-fiber of the acellular articular cartilage extracellular matrix were divided from the residue cartilage fragments.At last the supernatant were centrifugated, the precipitation were collected and were made into 2~3%suspension.Using unidirectional solidification as a freezing process and freeze-dried method the articular cartilage extracellular matrix derived oriented scaffolds were fabricated. The scaffolds were then cross-linked by exposure to ultraviolet radiation and immersion in a carbodiimide solution.And the cartilage articular cartilage extracellular matrix scaffolds with random and spherical pores were prepared as a control at the same time.②Oriented cartilage extracellular matrix derived scaffolds were fabricated by using unidirectional solidification as a freezing process and freeze-dried method.After being labeled with PKH26,rabbits chondrocytes were seeded onto the scaffolds and incubated for 1,3,5 and 7 days. Attachment,proliferation and viability of the cells were measured by mitochondrial dehydrogenase activity(CCK-8 assay),the morphology, distribution and alignment of the chondrocytes in the scaffolds was analyzed by invert microscopy,fluorescent microscopy,scanning electron microscopy and H&E staining.Chondrocytes seeded into nonoriented cartilage extracellular matrix derived scaffolds were used as controls.③The chondrocytes/scaffold compounds were incubated for 1 week at 37℃,5%CO2 incubator,divided into two groups:chondrocytes/OS,chondrocytes/NOS.And then implanted respectively into subcutaneous pockets on the backs of 6 athymic nude mouse. The composites were harvested and examined with histology at 4weeks after implantation.④A full-thickness articular-cartilage defect(4ram in diameter) was created in the patellar grove of distal femur of rabbits.The rabbits were divided into five groups:(A) the defects were left empty.(B) filled with OS.(C) filled with NOS.(D) filled with BMSCs/OS.(E) filled with BMSCs/NOS.Specimens were harvested at 3,6 and 12 months postoperatively,and assessing the reconstituted defects grossly,histologically,biochemically and biomechanically.
     RESULTS:There were no cells in the cartilage extracellular matrix fabricated from the shattered cartilage slices;and the fiber size of the acellular articular cartilage extracellular matrix was nano scale.The histological staining showed that toluidine blue,safranin O,alcian blue and anti-collagenⅡimmunohistochemistry staining of acellular articular cartilage extracellular matrix fabricated from the shattered cartilage slices were positive.By SEM analysis a perpendicular pore-channel structures in the scaffolds were verified with channel diameters about 100μm.The porosity and the water uptake had no difference between the oriented scaffolds and the nonoriented scaffolds(p>0.05).Mechanical testing showed that compression modulus and tension modulus of the oriented scaffolds were much higher than those of the nonoriented scaffolds(p<0.05). Chondrocytes seeded in both scaffolds showed good attachment and viability from day 1 to day 7,most of the cells in both scaffolds were spheric morphology. However,proliferation of chondrocytes seeded in oriented scaffolds(OS) was higher than that of chondrocytes seeded in nonoriented scaffolds(NOS).Moreover, chondrocytes seeded in the OS widely distributed within the scaffolds and aligned themselves along the oriented pore mimic a columnar arrangement whereas chondrocytes seeded in the NOS randomly distributed within the scaffolds and its amount was less.In nude mice model,histological examination showed that both of OS and NOS support the chondrogenisis in that toluidine blue,safranin O, alcian blue and anti-collagenⅡimmunohistochemistry staining of the chondrocytes/scaffolds constructs were positive and there were large mount extracellular matrix around the cells.The difference of the two kinds of scaffolds was that chondrocytes seeded in OS and the collagen aligned mimic a columnar arrangement whereas chondrocytes seeded in the NOS and collagen randomly distributed within the scaffolds.In animal experimental,results indicated that every group have been repaired by fibrocartilage or hyaline cartilage in different degree.By histological and histochemical grading scale evaluation of area of defect,the group filled with BMSCs/OS or BMSCs/NOS was better to repair full-thicks cartilage defect than the others.And the score of BMSCs/OS groups were higher than that of the BMSCs/NOS groups.There was significance between the BMSCs/OS and BMSCs/NOS groups,especially in early stage after the implantation.
     CONCLUSION The ACECM derived oriented scaffolds have promising composition,and structural,mechanical properties similar to that of nature cartilage,can support the chondrocytes to accommodate and guide their growth into cartilagous tissue,and can repair articular cartilage defects when combined with BMSCs.This optimized scaffold might be a ideal cartilage tissue engineering scaffolds for cartilage defect regeneration.
引文
1.Kopec JA RM,Sayre EC,et al.Trends in physician-diagnosed osteoarthritis incidence in an administrative database in British Columbia,Canada,1996-1997 through 2003-2004.Arthritis Rheum,2008;59:929-934.
    2.张乃峥,曾庆馀,张凤山,等.中国风湿性疾病流行情况的调查研究..中华风湿病学杂志1997:1:31-35.
    3.朱宝玉,王万春,贺达仁.浅析骨关节炎的几个认识误区..医学与哲学(临床决策论坛版),2007;28:63-64.
    4.Minas T.The role of cartilage repair techniques,including chondrocyte transplantation,in focal chondral knee damage.Instructional course lectures 1999;48:629-643.
    5.Steadman JR,Rodkey WG,Briggs KK.Microfracture to treat full-thickness chondral defects:surgical technique,rehabilitation,and outcomes.The journal of knee surgery 2002;15(3):170-176.
    6.Steadman JR,Rodkey WG,Rodrigo JJ.Microfracture:surgical technique and rehabilitation to treat chondral defects.Clinical orthopaedics and related research 2001(391 Suppl):S362-369.
    7.Minas T,Nehrer S.Current concepts in the treatment of articular cartilage defects.Orthopedics 1997;20(6):525-538.
    8.Gill T,MacGillivray,JD The technique of microfracture for the treatment of articular cartilage defects in the knee.Operative Techniques in Orthopaedics,.2001;11:105-107.
    9.Steadman J,Briggs,KK.,Rodrigo,JJ.,et al..Outcomes of microfracture for traumatic chondral defects of the knee:average 11-year follow-up..Arthroscopy 2003;19:477-484.
    10.Hunziker EB.Articular cartilage repair:basic science and clinical progress.A review of the current status and prospects.Osteoarthritis and cartilage/OARS,Osteoarthritis Research Society 2002;10(6):432-463.
    11.Caplan AI,Elyaderani M,Mochizuki Y,Wakitani S,Goldberg VM. Principles of cartilage repair and regeneration.Clinical orthopaedics and related research 1997(342):254-269.
    12.Rose T,Lill H,Hepp P,Josten C.Autologous osteochondral mosaicplasty for treatment of a posttraumatic defect of the lateral tibial plateau:a case report with two-year follow-up.Journal of orthopaedic trauma 2005;19(3):217-222.
    13.Hangody L,Fules P.Autologous osteochondral mosaicplasty for the treatment of full-thickness defects of weight-bearing joints:ten years of experimental and clinical experience.J Bone Joint Surg Am 2003;85-A Suppl 2:25-32.
    14.Gudas R.[Autologous osteochondral transplantation(mosaicplasty)in the treatment of femoral condyle defects].Medicina(Kaunas,Lithuania)2002;38(1):52-57.
    15.Bodo G,Hangody L,Szabo Z,Peham C,Schinzel M,Girtler D,et al.Arthroscopic autologous osteochondral mosaicplasty for the treatment of subchondral cystic lesion in the medial femoral condyle in a horse.Acta veterinaria Hungarica 2000;48(3):343-354.
    16.Buckwalter JA,Mankin HJ.Articular cartilage repair and transplantation.Arthritis and rheumatism 1998;41(8):1331-1342.
    17.Minas T NS.Current concepts in the treatment of articular cartilage defects..Orthopedics 1997 20 525-538.
    18.Brittberg M LA,Nilsson A,Ohlsson C,Isaksson O,Peterson L Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation..N Engl J Med 1994;331:889-895.
    19.Peterson L BM,Kiviranta I,Akerlund EL,Lindahl A:.Autologous chondrocyte transplantation.Biomechanics and long-term durability.Am J Sports Med 2002;30:2-12.
    20.Peterson L MT,Brittberg M,Lindahl A.Treatment of osteochondritis dissecans of the knee with autologous chondrocyte transplantation:results at two to ten years.J Bone Joint Surg Am 2003;85-A(Suppl 2):17-24.
    21.Wood JJ MM,Frassica FJ,Polder JA,Mohan AK,Bloom ET,Braun MM,Cote TR:.Autologous cultured chondrocytes:adverse events reported to the United States Food and Drug Administration.J Bone Joint Surg Am 2006;88:503-507.
    22.Marlovits S ZP,Singer P,Resinger C,Vecsei V.Cartilage repair:generations of autologous chondrocyte transplantation.Eur J Radiol 2006,;57:24-31.
    23.Henderson IJ TB,Connell D,Oakes B,Hettwer WH.Prospective clinical study of autologous chondrocyte implantation and correlation with MRI at three and 12 months.J Bone Joint Surg Br 2003;85:1060-1066.
    24.Dozin B MM,Cancedda R,Bruzzi P,Calcagno S,Molfetta L,Priano F,Kon E,Marcacci M.Comparative evaluation of autologous chondrocyte implantation and mosaicplasty:a multicentered randomized clinical trial.Clin J Sport Med 2005;15:220-226.
    25.Knutsen G EL,Ludvigsen TC,Drogset JO,Grontvedt T,Solheim E,Strand T,Roberts S,Isaksen V,Johansen O.Autologous chondrocyte implantation compared with microfracture in the knee.A randomized trial.J Bone Joint Surg Am 2004;86-A:455-464.
    26.Bentley G BL,Carrington RW,Akmal M,Goldberg A,Williams AM,Skinner JA,Pringle J.A prospective,randomized comparison of autologous chondrocyte implantation versus mosaicplasty for osteochondral defects in the knee.J Bone Joint Surg Br 2003;85:223-230.
    27.Bartlett W SJ,Gooding CR,Carrington RW,Flanagan AM,Briggs TW,Bentley G.Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee:a prospective,randomised study.J Bone Joint Surg Br 2005;87:640-645.
    28.Hunziker.Articular cartilage repair:basic science and clinical progress:a review of the current status and prospects..Osteoarthritis and Cartilage 2002;10:432-463.
    29.Bouwmeester SJ BJ,Kuijer R,et al.Long-term results of rib perichondrial grafts for repair of cartilage defects in the human knee.Int Orthop 1997;21:313-317.
    30.Hendrickson DA NA,Grande DA,et al.Chondrocytefibrin matrix transplants for resurfacing extensive articular cartilage defects.J Orthop Res 1994;12:485-497.
    31.Rahfoth B WJ,Sternkopf F,et al.Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits.Osteoarthritis Cartilage 1998;6:50-65
    32.Chenite A CC,Wang D,et al.Novel injectable neutral solutions of chitosan form biodegradable gels in situ.Biomaterials 2000;21:2155-61.
    33.Fuss M EE,Russlies M,et al.Characteristics of human chondrocytes,osteoblasts and fibroblasts seeded onto a type Ⅰ/Ⅲ collagen sponge under different culture conditions.A light,scanning and transmission electron microscopy study.Anat Anz 2000;182:303-310.
    34.Nehrer S BH,Ramappa A,et al.Canine chondrocytes seeded in type I and type II collagen implants investigated in vitro.J Biomed Mater Res 1997;38:95-104.
    35.Ronziere MC RS,Gouttenoire J,et al.Ascorbate modulation of bovine chondrocyte growth,matrix protein gene expression and synthesis in three-dimensional collagen sponges.Biomaterials 2003;24:851-61.
    36.Toolan BC FS,Pachence JM,et al.Effects of growth-factor-enhanced culture on a chondrocyte-collagen implant for cartilage repair.J Biomed Mater Res 1996;31:273-80.
    37.Wakitani S GT,Pineda SJ,et al.Mesenchymal cellbased repair of large,full-thickness defects of articular cartilage.J Bone Joint Surg Am 1994;76:579-92.
    38. Samuel RE LC,Ghivizzani SC,et al.Delivery of plasmid DNA to articular chondrocytes via novel collagen glycosaminoglycan matrices.Hum Gene Ther 2002;13:791-802.
    39.Baragi VM RR,Qiu L,et al.Transplantation of adenovirally transduced allogeneic chondrocytes into articular cartilage defects in vivo.Osteoarthritis Cartilage 1997;5:275-82.
    40.Grigolo B RL,Fiorini M,et al.Transplantation of chondrocytes on a hyaluronan derivative(Hyaff-11)into cartilage defects in rabbits.Biomaterials 2001;22:2417-24.
    41.Gao J DJ,Solchaga LA,et al.Repair of osteochondral defect with tissue-engineered two-phase composite material of injectable calcium phosphate and hyaluronan sponge.Tissue Eng 2002;8:827-37.
    42.Solchaga LA GJ,Dennis JE,et al.Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle.Tissue Eng 2002;8:333-47.
    43.Frenkel S,Cesare P.Scaffolds for articular cartilage repair.Ann Biomed Eng 2004;32:26-34.
    44.Caterson EJ LW,Nesti LJ,et al.Polymer/alginate amalgam for cartilage-tissue engineering.Ann N Y Acad Sci 2002;961:134-8.
    45.Iwasa J,Engebretsen L,Shima Y,Ochi M.Clinical application of scaffolds for cartilage tissue engineering.Knee Surg Sports Traumatol Arthrosc 2008.
    46.van der Kraan PM BP,van Kuppevelt T,van den Berg WB.Interaction of chondrocytes,extracellular matrix and growth factors:relevance for articular cartilage tissue engineering.Osteoarthritis Cartilage 2002;10:631-7.
    47.Kujawa MJ.Hyaluronic acid bonded to cell-culture surfaces stimulates chondrogenesis in stage 24 limb mesenchyme cell cultures.Dev Biol 1986:114:504-118.
    48.Lind M,Larsen A.Equal cartilage repair response between autologous chondrocytes in a collagen scaffold and minced cartilage under a collagen scaffold:an in vivo study in goats.Connective tissue research 2008;49(6):437-442.
    49.Lu Y,Dhanaraj S,Wang Z,Bradley DM,Bowman SM,Cole BJ,et al. Minced cartilage without cell culture serves as an effective intraoperative cell source for cartilage repair.J Orthop Res 2006;24(6):1261-1270.
    50.McCormick F,Yanke A,Provencher MT,Cole BJ.Minced articular cartilage—basic science,surgical technique,and clinical application.Sports medicine and arthroscopy review 2008;16(4):217-220.
    51.王彦君,孔维佳,毕胜斌.耳廓软骨天然生物支架材料的制备及初步研究.[J]中华耳科学杂志2005;03.
    52.张晨 王,高景恒.人耳软骨移植抗原性及脱细胞处理对其的影响.[J]中国修复重建外科杂志2003;(03).
    53.张建党,卢世璧,黄靖香等.人关节软骨脱细胞基质的制备.[J]中国矫形外科杂志2005;4.
    54.韩雪峰,杨大平,郭铁芳等.软骨细胞与异体软骨微粒脱细胞基质体外相容性的研究.中华医学杂志2005;(27).
    55.杨彩荣,梁传余,马菘等.同种脱细胞软骨基质与软骨细胞体外培养的实验研究.[J]中国耳鼻咽喉颅底外科杂志2004;(05).
    56.韩雪峰,杨大平,郭铁芳等.纤维蛋白胶塑形、异体微粒软骨脱细胞基质支架的人工软骨研究.[J]中国临床康复2005;(02).
    57.杨强,彭江,卢世璧等.新型脱细胞软骨基质三维多孔支架的制备[J]中国修复重建外科杂志2008;22((3)):359-364.
    58.Yang Q,Peng J,Guo Q,Huang J,Zhang L,Yao J,et al.A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-1abeled chondrogenic bone marrow-derived mesenchymal stem cells.Biomaterials 2008;29(15):2378-2387.
    59.卢世璧.软骨细胞外基质和多种种子细胞修复关节软骨缺损的研究.2008.
    60.Wang JH,Jia F,Gilbert TW,Woo SL.Cell orientation determines the alignment of cell-produced collagenous matrix.J Biomech 2003;36(1):97-102.
    61.Zhong S,Teo WE,Zhu X,Beuerman RW,Ramakrishna S,Yung LY.An aligned nanofibrous collagen scaffold by electrospinning and its effects on in vitro fibroblast culture.J Biomed Mater Res A 2006;79(3):456-463.
    62.Lee HS,Teng SW,Chen HC,Lo W,Sun Y,Lin TY,et al.Imaging human bone marrow stem cell morphogenesis in polyglycolic acid scaffold by multiphoton microscopy.Tissue Eng 2006;12(10):2835-2841.
    63.Murugan R,Ramakrishna S.Design strategies of tissue engineering scaffolds with controlled fiber orientation.Tissue Eng 2007;13(8):1845-1866.
    64.Li WJ,Mauck RL,Cooper JA,Yuan X,Tuan RS.Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering.J Biomech 2007;40(8):1686-1693.
    65. Ingber DE,Mow VC,Butler D,Niklason L,Huard J,Mao J,et al.Tissue engineering and developmental biology:going biomimetic.Tissue Eng 2006;12(12):3265-3283.
    66.Nerurkar NL,Elliott DM,Mauck RL.Mechanics of oriented electrospun nanofibrous scaffolds for annulus fibrosus tissue engineering.J Orthop Res 2007;25(8):1018-1028.
    67.Flynn L,Dalton PD,Shoichet MS.Fiber templating of poly(2-hydroxyethyl methacrylate)for neural tissue engineering.Biomaterials 2003;24(23):4265-4272.
    68.Lin AS,Barrows TH,Cartmell SH,Guldberg RE.Microarchitectural and mechanical characterization of oriented porous polymer scaffolds.Biomaterials 2003;24(3):481-489.
    69.Moore MJ,Friedman JA,Lewellyn EB,Mantila SM,Krych AJ,Ameenuddin S,et al.Multiple-channel scaffolds to promote spinal cord axon regeneration.Biomaterials 2006;27(3):419-429.
    70.Cai J,Peng X,Nelson KD,Eberhart R,Smith GM.Permeable guidance channels containing microfilament scaffolds enhance axon growth and maturation.J Biomed Mater Res A2005;75(2):374-386.
    71.Huang YC,Huang YY,Huang CC,Liu HC.Manufacture of porous polymer nerve conduits through a lyophilizing and wire-heating process.J Biomed Mater Res B Appl Biomater 2005;74(1):659-664.
    72.Yang F,Qu X,Cui W,Bei J,Yu F,Lu S,et al.Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds.Biomaterials 2006;27(28):4923-4933.
    73.Kim GKaW.Formation of oriented nanofibers using electrospinning.APPLIED PHYSICS LETTERS 2006;88:233101-233103.
    74.Kim GH.Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.Biomed Mater 2008;3(2):25010.
    75.Madaghiele M,Sannino A,Yannas IV,Spector M.Collagen-based matrices with axially oriented pores.J Biomed Mater Res A 2008;85(3):757-767.
    76.Zhao H,Ma L,Gao C,Shen J.A composite scaffold of PLGA microspheres/fibrin gel for cartilage tissue engineering:fabrication,physical properties,and cell responsiveness.Journal of biomedical materials research 2009;88(1):240-249.
    77.Tan H,Wu J,Lao L,Gao C.Gelatin/chitosan/hyaluronan scaffold integrated with PLGA microspheres for cartilage tissue engineering.Acta biomaterialia 2009;5(1):328-337.
    78.Lien SM,Ko LY,Huang TJ.Effect of pore size on ECM secretion and cell growth in gelatin scaffold for articular cartilage tissue engineering.Acta biomaterialia 2009;5(2):670-679.
    79.Zhao H,Ma L,Gong Y,Gao C,Shen J.A polylactide/fibrin gel composite scaffold for cartilage tissue engineering:fabrication and an in vitro evaluation.Journal of materials science 2008.
    80.Wei Y,Hu Y,Hao W,Han Y,Meng G,Zhang D,et al.A novel injectable scaffold for cartilage tissue engineering using adipose-derived adult stem cells.J Orthop Res 2008;26(1):27-33.
    81.Oliveira JT,Correlo VM,Sol PC,Costa-Pinto AR,Malafaya PB,Salgado AJ,et al.Assessment of the suitability of chitosan/polybutylene succinate scaffolds seeded with mouse mesenchymal progenitor cells for a cartilage tissue engineering approach.Tissue engineering 2008;14(10):1651-1661.
    82.Mohan N,Nair PD,Tabata Y.A 3D biodegradable protein based matrix for cartilage tissue engineering and stem cell differentiation to cartilage.Journal of materials science 2008.
    83.Ngangan AV,McDevitt TC.Acellularization of embryoid bodies via physical disruption methods.Biomaterials 2009;30(6):1143-1149.
    84.Sandmann GH,Eichhorn S,Vogt S,Adamczyk C,Aryee S,Hoberg M,et al.Generation and characterization of a human acellular meniscus scaffold for tissue engineering.Journal of biomedical materials research 2008.
    85.Prasertsung I,Kanokpanont S,Bunaprasert T,Thanakit V,Damrongsakkul S.Development of acellular dermis from porcine skin using periodic pressurized technique.J Biomed Mater Res B Appl Biomater 2008;85(1):210-219.
    86.Li C,Xu YM,Song LJ,Fu Q,Cui L,Yin S.Urethral reconstruction using oral keratinocyte seeded bladder acellular matrix grafts.The Journal of urology 2008;180(4):1538-1542.
    87.Schaner PJ,Martin ND,Tulenko TN,Shapiro IM,Tarola NA,Leichter RF,et al.Decellularized vein as a potential scaffold for vascular tissue engineering.J Vase Surg 2004;40(1):146-153.
    88.张建党,卢世璧,黄靖香等.人关节软骨脱细胞基质的制备[J].中国矫形外科杂志 2005;13((4)):276-277.
    89.Hoemann CD,Sun J,Chrzanowski V,Buschmann MD.A multivalent assay to detect glycosaminoglycan,protein,collagen,RNA,and DNA content in milligram samples of cartilage or hydrogel-based repair cartilage.Analytical biochemistry 2002;3 00(1):1-10.
    90.Farndale R,Buttle D,Barrett A.Improved quantitation and discrimination of sulphated glycosaminoglycans by use of dimethylmethylene blue.Biochim Biophys Acta 1986;Sep 4;883(2):173-177.
    91.Graham JM.Isolation of Golgi membranes from tissues and cells by differential and density gradient centrifugation.Current protocols in cell biology / editorial board,Juan S Bonifacino [et al 2001;Chapter 3:Unit 3 9.
    92.Nagasaka A,Hige S,Matsushima T,Yoshida J,Sasaki Y,Tsunematsu I,et al.Differential flotation centrifugation study of hepatitis C virus and response to interferon therapy.Journal of medical virology 1997;52(2):190-194.
    93.Ye S,Su ZP,Zhang J,Qian X,Zhuge QC,Zeng YJ.Differential centrifugation in culture and differentiation of rat neural stem cells.Cellular and molecular neurobiology 2008;28(4):511-517.
    94.Freed LE,Martin I,Vunjak-Novakovic G Frontiers in tissue engineering.In vitro modulation of chondrogenesis.Clinical orthopaedics and related research 1999(367 Suppl):S46-58.
    95.Silva MM,Cyster LA,Barry JJ,Yang XB,Oreffo RO,Grant DM,et al.The effect of anisotropic architecture on cell and tissue infiltration into tissue engineering scaffolds.Biomaterials 2006;27(35):5909-5917.
    96.Barnes CP,Pemble CW,Brand DD,Simpson DG,Bowlin GL.Cross-linking electrospun type II collagen tissue engineering scaffolds with carbodiimide in ethanol.Tissue engineering 2007;13(7):1593-1605.
    97.Bryant SJ,Anseth KS.Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol)hydrogels.J Biomed Mater Res 2002;59(1):63-72.
    98.Bryant SJ,Anseth KS,Lee DA,Bader DL.Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.J Orthop Res 2004;22(5):1143-1149.
    99.Gordon TD,Schloesser L,Humphries DE,Spector M.Effects of the degradation rate of collagen matrices on articular chondrocyte proliferation and biosynthesis in vitro.Tissue Eng 2004;10(7-8):1287-1295.
    100.Madry H,Padera R,Seidel J,Langer R,Freed LE,Trippel SB,et al.Gene transfer of a human insulin-like growth factor I cDNA enhances tissue engineering of cartilage.Human gene therapy 2002;13(13):1621-1630.
    101.Lipman JM,McDevitt CA,Sokoloff L.Xenografts of articular chondrocytes in the nude mouse.Calcified tissue international 1983;35(6):767-772.
    102.Vacanti CA,Langer R,Schloo B,Vacanti JR Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation.Plastic and reconstructive surgery 1991;88(5):753-759.
    103.Puelacher WC,Mooney D,Langer R,Upton J,Vacanti JP,Vacanti CA.Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes.Biomaterials 1994;15(10):774-778.
    104.Jeon YH,Choi JH,Sung JK,Kim TK,Cho BC,Chung HY.Different effects of PLGA and chitosan scaffolds on human cartilage tissue engineering.The Journal of craniofacial surgery 2007;18(6):1249-1258.
    105.Dickhut A,Gottwald E,Steck E,Heisel C,Richter W.Chondrogenesis of mesenchymal stem cells in gel-like biomaterials in vitro and in vivo.Front Biosci 2008;13:4517-4528.
    106.Tampieri A,Sandri M,Landi E,Pressato D,Francioli S,Quarto R,et al.Design of graded biomimetic osteochondral composite scaffolds.Biomaterials 2008;29(26):3539-3546.
    107.Marcacci M,Berruto M,Brocchetta D,Delcogliano A,Ghinelli D,Gobbi A,et al.Articular cartilage engineering with Hyalograft C:3-year clinical results.Clinical orthopaedics and related research 2005(435):96-105.
    108.Farrell E,O'Brien FJ,Doyle P,Fischer J,Yannas I,Harley BA,et al.A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes.Tissue Eng 2006;12(3):459-468.
    109.Yunoki S,Ikoma T,Tsuchiya A,Monkawa A,Ohta K,Sotome S,et al.Fabrication and mechanical and tissue ingrowth properties of unidirectionally porous hydroxyapatite/collagen composite.J Biomed Mater Res B Appl Biomater 2007;80(1):166-173.
    110.Jin CZ,Park SR,Choi BH,Park K,Min BH.In vivo cartilage tissue engineering using a cell-derived extracellular matrix scaffold.Artif Organs 2007;31(3):183-192.
    111.Zehbe R,Libera J,Gross U,Schubert H.Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement.Biomed Mater Eng 2005;15(6):445-454.
    112.Bruns J,Kersten P,Lierse W,Silbermann M.Autologous rib perichondrial grafts in experimentally induced osteochondral lesions in the sheep-knee joint:morphological results.Virchows Archiv 1992;421(1):1-8.
    113.Moran ME,Kim HK,Salter RB.Biological resurfacing of full-thickness defects in patellar articular cartilage of the rabbit.Investigation of autogenous periosteal grafts subjected to continuous passive motion.The Journal of bone and joint surgery 1992;74(5):659-667.
    114.Niederauer GG,Slivka MA,Leatherbury NC,Korvick DL,Harroff HH,Ehler WC,et al.Evaluation of multiphase implants for repair of focal osteochondral defects in goats.Biomaterials 2000;21(24):2561-2574.
    115.Wakitani S,Goto T,Pineda SJ,Young RG,Mansour JM,Caplan AI,et al.Mesenchymal cell-based repair of large,full-thickness defects of articular cartilage.J Bone Joint Surg Am 1994;76(4):579-592.
    116.Mauney JR,Jaquiery C,Volloch V,Heberer M,Martin I,Kaplan DL.In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering.Biomaterials 2005;26(16):3173-3185.
    117.Kramer J,Bohrnsen F,Schlenke P,Rohwedel J.Stem cell-derived chondrocytes for regenerative medicine.Transplantation proceedings 2006;38(3):762-765.
    118.Wang L,Tran I,Seshareddy K,Weiss ML,Detamore MS.A Comparison of Human Bone Marrow-Derived Mesenchymal Stem Cells and Human Umbilical Cord-Derived Mesenchymal Stromal Cells for Cartilage Tissue Engineering.Tissue engineering 2009.
    119.Zhao L,Li G,Chan KM,Wang Y,Tang PR Comparison of multipotent differentiation potentials of murine primary bone marrow stromal cells and mesenchymal stem cell line C3H10T1/2.Calcified tissue international 2009;84(1):56-64.
    120.Yamasaki T,Deie M,Shinomiya R,Yasunaga Y,Yanada S,Ochi M.Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.Artificial organs 2008;32(7):519-524.
    121.Tepliashin AS,Korzhikova SV,Sharifullina SZ,Rostovskaia MS,Chupikova NI,Vasiunina N,et al.[Differentiation of multipotent mesenchymal stromal cells of bone marrow into cells of cartilage tissue by culturing in three-demential OPLA scaffolds].Tsitologiia 2007;49(7):544-551.
    122.Yamasaki T,Deie M,Shinomiya R,Izuta Y,Yasunaga Y,Yanada S,et al.Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.Journal of biomedical materials research 2005;75(1):23-30.
    123.Chawla K,Klein TJ,Schumacher BL,Jadin KD,Shah BH,Nakagawa K,et al.Short-term retention of labeled chondrocyte subpopulations in stratified tissue-engineered cartilaginous constructs implanted in vivo in mini-pigs.Tissue engineering 2007;13(7):1525-1537.
    124.Chawla K,Klein TJ,Schumacher BL,Schmidt TA,Voegtline MS,Thonar EJ,et al.Tracking chondrocytes and assessing their proliferation with PKH26:effects on secretion of proteoglycan 4(PRG4).J Orthop Res 2006;24(7):1499-1508.
    125.Dell'Accio F,Vanlauwe J,Bellemans J,Neys J,De Bari C,Luyten FP.Expanded phenotypically stable chondrocytes persist in the repair tissue and contribute to cartilage matrix formation and structural integration in a goat model of autologous chondrocyte implantation. J Orthop Res 2003;21(1):123-131.
    126.Kaneshiro N,Sato M,Ishihara M,Mitani G,Sakai H,Kikuchi T,et al.Cultured articular chondrocytes sheets for partial thickness cartilage defects utilizing temperature-responsive culture dishes.European cells & materials 2007;13:87-92.
    127.Kaneshiro N,Sato M,Ishihara M,Mitani G,Sakai H,Mochida J.Bioengineered chondrocyte sheets may be potentially useful for the treatment of partial thickness defects of articular cartilage.Biochemical and biophysical research communications 2006;349(2):723-731.
    128.Tatebe M,Nakamura R,Kagami H,Okada K,Ueda M.Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit.Cytotherapy 2005;7(6):520-530.
    129.Wada N,Ide H.Sorting out of limb bud cells in monolayer culture.The International journal of developmental biology 1994;38(2):351-356.
    1.Bryant SJ,Anseth KS.Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels.J Biomed Mater Res 2002 Jan;59(1):63-72.
    2.Bryant SJ,Anseth KS,Lee DA,Bader DL.Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.J Orthop Res 2004Sep;22(5):1143-1149.
    3.Gordon TD,Schloesser L,Humphries DE,Spector M.Effects of the degradation rate of collagen matrices on articular chondrocyte proliferation and biosynthesis in vitro.Tissue Eng 2004 Jul-Aug;10(7-8):1287-1295.
    4.Bryant SJ,Bender RJ,Durand KL,Anseth KS.Encapsulating chondrocytes in degrading PEG hydrogels with high modulus:engineering gel structural changes to facilitate cartilaginous tissue production.Biotechnol Bioeng 2004Jun 30;86(7):747-755.
    5.Lee SH,Moon JJ,Miller JS,West JL.Poly(ethylene glycol) hydrogels conjugated with a collagenase-sensitive fluorogenic substrate to visualize collagenase activity during three-dimensional cell migration.Biomaterials 2007 Jul;28(20):3163-3170.
    6.Kim S,Chung EH,Gilbert M,Healy KE.Synthetic MMP-13 degradable ECMs based on poly(N-isopropylacrylamide-co-acrylic acid)semi-interpenetrating polymer networks.Ⅰ.Degradation and cell migration.J Biomed Mater Res A 2005 Oct 1;75(1):73-88.
    7.Woodfield TB,Van Blitterswijk CA,De Wijn J,Sims TJ,Hollander AP,Riesle J.Polymer scaffolds fabricated with pore-size gradients as a model for studying the zonal organization within tissue-engineered cartilage constructs.Tissue Eng 2005 Sep-Oct;11(9-10):1297-1311.
    8.Zehbe R,Libera J,Gross U,Schubert H.Short-term human chondrocyte culturing on oriented collagen coated gelatine scaffolds for cartilage replacement.Biomed Mater Eng 2005;15(6):445-454.
    9.Yang F,Qu X,Cui W,Bei J,Yu F,Lu S,et al.Manufacturing and morphology structure of polylactide-type microtubules orientation-structured scaffolds.Biomaterials 2006 Oct;27(28):4923-4933.
    10.Li WJ,Jiang YJ,Tuan RS.Chondrocyte phenotype in engineered fibrous matrix is regulated by fiber size.Tissue Eng 2006 Jul;12(7):1775-1785.
    11.范宏斌,胡蕴玉,李旭升等。.明胶-硫酸软骨素-透明质酸钠载体制备及复合骨髓基质干细胞成软骨的实验研究。.中国骨与关节损伤杂志2006:21:33-35.
    12.王彦君,孔维佳,毕胜斌.耳廓软骨天然生物支架材料的制备及初步研究.[J]中华耳科学杂志2005;03.
    13.张建党,卢世璧,黄靖香等.人关节软骨脱细胞基质的制备.[J]中国矫形外科杂志2005:4.
    14.韩雪峰,杨大平,郭铁芳等.软骨细胞与异体软胃微粒脱细胞基质体外相容性的研究.中华医学杂志2005;(27).
    15.杨彩荣,梁传余,马菘等.同种脱细胞软骨基质与软骨细胞体外培养的 实验研究.[J]中国耳鼻咽喉颅底外科杂志2004;(05).
    16.韩雪峰,杨大平,郭铁芳等.纤维蛋白胶塑形、异体微粒软骨,脱细胞基质支架的人工软骨研究.[J]中国临床康复2005;(02).
    17.杨强,彭江,卢世璧等.新型脱细胞软骨基质三维多孔支架的制备.中国修复重建外科杂志2008:(03).
    18.Yang Q,Peng J,Guo Q,Huang J,Zhang L,Yao J,et al.A cartilage ECM-derived 3-D porous acellular matrix scaffold for in vivo cartilage tissue engineering with PKH26-labeled chondrogenic bone marrow-derived mesenchymal stem cells.Biomaterials 2008 May;29(15):2378-2387.
    19.Marlovits S,Striessnig G,Kutscha-Lissberg F,Resinger C,Aldrian SM,Vecsei V,et al.Early postoperative adherence of matrix-induced autologous chondrocyte implantation for the treatment of full-thickness cartilage defects of the femoral condyle.Knee Surg Sports Traumatol Arthrosc 2005Sep;13(6):451-457.
    20.Facchini A,Lisignoli G,Cristino S,Roseti L,De Franceschi L,Marconi E,et al.Human chondrocytes and mesenchymal stem cells grown onto engineered scaffold.Biorheology 2006;43(3-4):471-480.
    21.Lisignoli G,Cristino S,Piacentini A,Toneguzzi S,Grassi F,Cavallo C,et al.Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold.Biomaterials 2005 Oct;26(28):5677-5686.
    22.Gobbi A,Kon E,Berruto M,Francisco R,Filardo G,Marcacci M.Patellofemoral full-thickness chondral defects treated with Hyalograft-C:a clinical,arthroscopic,and histologic review.The American journal of sports medicine 2006 Nov;34(11):1763-1773.
    23.Marcacci M,Berruto M,Brocchetta D,Delcogliano A,Ghinelli D,Gobbi A,et al.Articular cartilage engineering with Hyalograft C:3-year clinical results.Clinical orthopaedics and related research 2005 Jun(435):96-105.
    24.van Susante JLC,Pieper J,Buma P,van Kuppevelt TH,van Beuningen H, van Der Kraan PM,et al.Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro.Biomaterials 2001 Sep;22(17):2359-2369.
    25.Farrell E,O'Brien FJ,Doyle P,Fischer J,Yannas I,Harley BA,et al.A collagen-glycosaminoglycan scaffold supports adult rat mesenchymal stem cell differentiation along osteogenic and chondrogenic routes.Tissue Eng 2006 Mar;12(3):459-468.
    26.Morra M.Biomolecular modification of implant surfaces.Expert review of medical devices 2007 May;4(3):361-372.
    27.Liu X,Won Y,Ma PX.Surface modification of interconnected porous scaffolds.J Biomed Mater Res A 2005 Jul 1;74(1):84-91.
    28.Liu X,Won Y,Ma PX.Porogen-induced surface modification of nano-fibrous poly(L-lactic acid)scaffolds for tissue engineering.Biomaterials 2006 Jul;27(21):3980-3987.
    29.Murugan R,Ramakrishna S.Design strategies of tissue engineering scaffolds with controlled fiber orientation.Tissue Eng 2007 Aug;13(8):1845-1866.
    30.Li WJ,Mauck RL,Cooper JA,Yuan X,Tuan RS.Engineering controllable anisotropy in electrospun biodegradable nanofibrous scaffolds for musculoskeletal tissue engineering.J Biomech 2007;40(8):1686-1693.
    31.Li WJ,Danielson KG,Alexander PG,Tuan RS.Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone)scaffolds.J Biomed Mater Res A 2003 Dec 15;67(4):1105-1114.
    32.Shields KJ,Beckman MJ,Bowlin GL,Wayne JS.Mechanical properties and cellular proliferation of electrospun collagen type II.Tissue Eng 2004 Sep-Oct;10(9-10):1510-1517.
    33.Hu JC,Athanasiou KA.A self-assembling process in articular cartilage tissue engineering.Tissue Eng 2006 Apr;12(4):969-979.
    34.Ma PX,Zhang R.Synthetic nano-scale fibrous extracellular matrix.J Biomed Mater Res 1999 Jul;46(1):60-72.
    35.Zhang R,Ma PX.Synthetic nano-fibrillar extracellular matrices with predesigned macroporous architectures.J Biomed Mater Res 2000 Nov;52(2):430-438.
    36.van Beuningen HM,Glansbeek HL,van der Kraan PM,van den Berg WB.Osteoarthritis-like changes in the murine knee joint resulting from intra-articular transforming growth factor-beta injections.Osteoarthritis Cartilage 2000 Jan;8(1):25-33.
    37.Fujisato T,Sajiki T,Liu Q,Ikada Y Effect of basic fibroblast growth factor on cartilage regeneration in chondrocyte-seeded collagen sponge scaffold.Biomaterials 1996 Jan;17(2):155-162.
    38.Hunziker EB,Driesang IM,Saager C.Structural barrier principle for growth factor-based articular cartilage repair.Clinical orthopaedics and related research 2001 Oct(391 Suppl):S 182-189.
    39.Fan H,Hu Y,Qin L,Li X,Wu H,Lv R.Porous gelatin-chondroitin-hyaluronate tri-copolymer scaffold containing microspheres loaded with TGF-betal induces differentiation of mesenchymal stem cells in vivo for enhancing cartilage repair.J Biomed Mater Res A 2006 Jun 15;77(4):785-794.
    40. Lee KY,Peters MC,Anderson KW,Mooney DJ.Controlled growth factor release from synthetic extracellular matrices.Nature 2000 Dec 21-28;408(6815):998-1000.
    41. Seliktar D,Zisch AH,Lutolf MP,Wrana JL,Hubbell JA.MMP-2 sensitive,VEGF-bearing bioactive hydrogels for promotion of vascular healing.J Biomed Mater Res A 2004 Mar 15;68(4):704-716.
    42.Holland TA,Tabata Y,Mikos AG Dual growth factor delivery from degradable oligo(poly(ethylene glycol)fumarate)hydrogel scaffolds for cartilage tissue engineering.J Control Release 2005 Jan 3;101(1-3):111-125.
    43. Park H,Temenoff JS,Tabata Y,Caplan AI,Raphael RM,Jansen JA,et al. Effect of dual growth factor delivery on chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in injectable hydrogel composites.J Biomed Mater Res A 2008 Mar 31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700