rhBMP-7复合rhVEGF-165肌内诱生血管化组织工程化骨瓣的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     复合有成骨诱导因子rhBMP-7的牛天然骨矿物BioOss颗粒会在肌肉中异位诱导成骨发生,从而实现可血管化移植的组织工程化骨(肌)瓣的异位预成。临床上成功地应用该技术在患者的背阔肌中预成个体化血管化的组织工程化骨瓣并通过移植该骨瓣修复下颌骨缺损。但该法预成的大块组织工程化骨瓣的成骨水平不高,特别是中心区域的成骨和血管化水平均欠理想,因此提高异位预成大块组织工程化骨瓣的成骨水平和血管化程度具有重要意义。
     研究目的
     相比单一应用rhBMP-7加载组织工程支架,复合应用rhBMP-7和血管形成诱导因子rhVEGF-165能否提高肌肉内异位预成大块组织工程化骨瓣的骨量、机械强度和血管化。
     相比单一以BioOss颗粒作为内支架,复合应用自体松质骨颗粒(AB)和BioOss颗粒作为内支架,是否能提高肌内异位预成大块组织工程化骨的骨量和机械强度。
     材料和方法
     本研究以8只家猪为实验模型,并构建6组组织工程支架复合体。支架复合体以2.0x2.0x1.0cm~3的微孔钛网盒控制外形,内充填以6组不同的内支架,分别是BioOss/rhBMP-7、BioOss/AB、BioOss/AB/rhBMP-7、BioOss/rhBMP-7/rhVEGF-165、BioOss/AB/rhVEGF-165和BioOss/AB/rhBMP-7/rhVEGF-165,其中rhBMP-7的用量为660μg/支架、rhVEGF-165用量为4μg/支架。
     将6组支架复合体植入8只家猪的双侧背阔肌内预成,并以多彩荧光标记各时期的成骨。12周后回收植入物,并制备成硬组织切片和圆柱形标准件。对于硬组织切片,应用微放射摄片技术、荧光显微镜观察、组织学观察等多种手段对预成骨瓣进行定性研究,并应用组织形态测量定量研究预成骨瓣的骨组织分布密度、残留BioOss分布密度、骨结合的BioOss比例和早期骨形成速度。对于圆柱形标准件,通过压缩试验定量分析各组标本的压缩强度。
     结果
     多彩荧光标记显示,新骨在支架植入2周后即已开始形成,而在第4、5周时最活跃,在第7周时则很微弱。应用rhVEGF-165的各组标本中多彩荧光条带分布较未应用rhVEGF-165者稠密,表明rhVEGF-165促进了早期新骨形成的分布。自体松质骨的应用并未明显提高早期新骨形成的分布。
     组织学观察显示,复合应用两种生长因子加载于BioOss者其预成骨瓣的新骨和血管分布更加均匀,新骨板层结构明显。复合应用BioOss和AB者其预成骨瓣较单一应用BioOss者结构上更加成熟,且存在大量脂肪细胞。复合应用rhBMP-7和rhVEGF-165者其骨瓣内残留BioOss颗粒的骨结合较高。未结合骨组织的BioOss可被破骨细胞吸收,但过程较为缓慢。
     在以BioOss为内支架的两组中,复合应用两种生长因子者预成骨瓣的骨组织分布密度为31.93%±4.31%,高于单用rhBMP-7者(t=3.567,P=0.023)。在以BioOss/AB为内支架的四组中,复合应用生长因子者骨组织分布密度为32.66%±4.55%,高于其它组(F=3.341,P=0.041)。在复合应用生长因子的两组中,未显示应用AB颗粒能提高骨组织分布密度。
     复合应用生长因子rhBMP-7和rhVEGF-165者残留BioOss颗粒的骨结合程度为67.12%±15.29%,较单一应用rhBMP-7者高(t=2.866,P=0.045),而内支架中加用AB颗粒未提高BioOss颗粒的骨结合程度。
     复合应用生长因子者其早期成骨速度与单一应用rhBMP-7者无明显差异,而进一步复合AB则会明显提高(t=2.630,P=0.046)。
     压缩试验显示,复合应用生长因子加载BioOss者,其预成骨瓣的压缩强度为4.71±1.42MPa,高于单用rhBMP-7者(t=2.991,P=0.040),而应用自体松质骨颗粒又进一步提高预成骨瓣的压缩强度的趋势(5.84±1.60MPa),尽管尚未达到统计学意义(P=0.057)。
     结论
     复合应用成骨诱导因子rhBMP-7和血管形成诱导因子rhVEGF-165促进肌内预成的大块组织工程化骨瓣的早期成骨。
     复合应用rhBMP-7和rhVEGF-165促进了肌内预成的大块组织工程化骨瓣的成骨和血管化,提高了BioOss的骨结合程度。
     复合应用rhBMP-7和rhVEGF-165提高了肌内预成的大块组织工程骨瓣的压缩强度。
     应用AB不能提高生长因子异位诱生的大块组织工程骨瓣的成骨分布密度。
     应用AB提高了生长因子异位诱生的大块组织工程骨瓣的骨组织成熟度。
     应用AB可能提高生长因子异位诱生的大块组织工程骨瓣的压缩强度。
     复合应用成骨诱导因子rhBMP-7和血管形成诱导因子rhVEGF-165在肌内诱生大块血管化组织工程化骨瓣中起协同效应。
     本研究为临床上复合应用两种生长因子异位诱生血管化的个体化大型组织工程骨瓣以修复骨缺损奠定了研究基础。
Backgrounds
     rhBMP-7,a kind of osteoinductive factor,can induce heterotopic bone formation in muscles,when being carried on BioOss which is a kind of bovine bone minerals.In this way,a vascularized tissue engineered bone graft can be prefabricated in muscles for further transplantation.This technique was applied clinically to prefabricate a large-size tissue engineered bone graft in latissmus dorsi muscle,with which a mandibular defect was successfully repaired.However,the rhBMP-7-induced bone formation as well as vessel density is still low in the central area of the implanted scaffold,especially when the scaffold is large.Therefore,it is necessary and scientifically meaningful to improve bone formation and vascularization of the heterotopic-engineered bone graft.
     Objectives
     A main objective of this study was to investigate the possibility of improving bone quantity,vascularization and the compression resistance of the in-muscle engineered bone graft by combination of rhBMP-7 and rhVEGF-165,an intense angiogenic factor.
     The other objective was to investigate the potential advantages of combination of autogenous sponge bone granules(AB) and BioOss over BioOss alone as the scaffold in the heterotopic prefabrication of large engineered bone graft in muscles.
     Methods
     Eight house pigs were applied as the experimental model in the present study.Six various groups of scaffold were fabricated.These scaffolds were composed of the external scaffold that was a micro-mesh titanium box of 2.0×2.0×1.0cm~3 in size and the internal scaffold which was filled in the titanium box and varied between different groups of scaffold.The various internal scaffolds were:(1) 660μg rhBMP-7-carrying BioOss granules,(2) BioOss granules and AB granules,(3) 660μg rhBMP-7-carrying BioOss granules and AB granules,(4) 660μg rhBMP-7 and 4μg rhVEGF 165-carrying BioOss granules,(5) 4μg rhVEGF165-carrying BioOss granules and AB granules,and (6) 660μg rhBMP-7 and 4μg rhVEGF165-carrying BioOss granules and AB granules.
     The six groups of scaffold were implanted into the bilateral lattissmus dorsi muscles in all pigs to prefabricate tissue-engineered bone grafts.Polychrome fluorescence labeling was performed sequently.After 12 weeks the implanted constructs were retrieved and used to make undecalcified sections and standard cylinders. Microradiography,fluorescence microscopy and histological microscopy were performed based on the sections to qualitatively investigate the implanted constructs. Further,histomorphometry was done to examine bone distribution density(BD), residual BioOss density(RBOB),percentage of osteointegrated BioOss(POB) and the early-stage mineral apposition rate(MAR).The cylinders were used to test the compressive strength(CS).
     Results
     Bone formation began at week 2,was active at week 4 and 5 but rare at week 7,as was indicated by polychrome fluorescence labeling.Application of rhVEGF-165,along with rhBMP-7,led to rich and evenly distributed multiple color bands,indicating that rhVEGF-165 propelled early-stage bone formation which was induced by rhBMP-7.
     However,the application of AB failed to benefit early bone formation.
     Histologically,the combination of osteogenic and angiogenic factors,as well as the application of AB,led to evenly distributed and mature bone and vessels within the scaffolds.Moreover,the application of AB led to more adipocytes and increased the maturity of the bone structure.The combination of osteogenic and angiogenic factors enhanced osteointegration of the BioOss granules,whatever AB/BioOss or BioOss alone as the internal scaffold.The nonintegrated BioOss granules were degraded by osteoclasts in a very slow rate.
     When loaded on BioOss granules,the combination of osteogenic and angiogenic factors led to higher BD(31.93%±4.31%) than the application of rhBMP-7 alone (t=3.567,P=0.023).Among the four groups with AB/BioOss as the internal scaffold,the combined application of osteogenic and angiogenic factors reached the highest BD (32.66%±4.55%)(F=3.341,P=0.041).However,the combination of AB and BioOss failed to show any advantage over BioOss alone in BD.
     When the BioOss granules were loaded with both rhBMP-7 and rhVEGF-165, POB was 67.12%±15.29%and higher than those loaded with rhBMP-7 alone(t=2.866, P=0.045).The application of AB granules failed to enhance POB.
     The combination of rhBMP-7 and rhVEGF-165 failed to show any advantage over rhBMP-7 alone of improving early-stage mineral apposition rate.However,the rate became higher when AB granules were applied along with rhBMP-7 and rhVEGF-165 (t=2.630,P=0.046).
     CS was 4.71±1.42MPa when BioOss granules were loaded with both rhBMP-7 and rhVEGF-165,and was higher than when with rhBMP-7 alone(t=2.991,P=0.040). The further application of AB,with CS of 5.84±1.60MPa,seemed to enhance compressive strength,although still not enough to reach statistical significance (P=0.057).
     Conclusions The combination of rhBMP-7 and rhVEGF-165 benefits the early-stage bone formation in muscles.
     The combination of rhBMP-7 and rhVEGF-165 enhances mineralization, vascularization and BioOss osteointegration of the heterotopic induced bone graft in muscles.
     The combination of rhBMP-7 and rhVEGF-165 improves compressive strength of the heterotopic tissue engineered bone graft in muscles.
     The application of autogenous spongy bone(AB) granules fails to improve bone quantity of the growth factor(s)-induced bone graft in muscles.
     The application of AB granules improves the maturity of the growth factor(s)-induced bone graft in muscles.
     The application of AB granules might enhance the compressive strength of the growth factor(s)-induced bone graft in muscles.
     The osteogenic factor rhBMP-7 and the angiogenic factor rhVEGF-165 are synergic in inducing large-size bone graft in muscles.
     The present study proves the potentiality of prefabricating a highly mineralized and vascularized tissue-engineered bone graft in heterotopic sites(muscles) by the combination of osteogenic and angiogenic factors,which can be transplanted to repair bone defect.
引文
1.Bouletreau PJ,Warren SM,Spector JA,Peled ZM,Gerrets RP,Greenwald JA,Longaker MT.Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing.Plast Reconstr Surg.2002 Jun;l 09(7):23 84-97.
    2.Bucholz RW.Nonallograft osteoconductive bone graft substitutes.Clin Orthop Relat Res.2002 Feb;(395):44-52.
    3.Chen XL,Li ZL,Zhang WB,Ye ZC,Ke SN.Experimental study of maxillary sinus lifting with tissue engineered bone.Zhonghua Kou Qiang Yi Xue Za Zhi.2007 Oct;42(10):610-3.
    4.Colnot C,Romero DM,Huang S,Helms JA.Mechanisms of action of demineralized bone matrix in the repair of cortical bone defects.Clin Orthop Relat Res.2005 Jun;(435):69-78.
    5.Cordaro L,Bosshardt DD,Palattella P,Rao W,Serino G,Chiapasco M.Maxillary sinus grafting with Bio-Oss or Straumann Bone Ceramic:histomorphometric results from a randomized controlled multicenter clinical trial.Clin Oral Implants Res.2008 Aug;19(8):796-803.
    6.Cordioli G,Mazzocco C,Schepers E,Brugnolo E,Majzoub Z.Maxillary sinus floor augmentation using bioactive glass granules and autogenous bone with simultaneous implant placement.Clinical and histological findings.Clin Oral Implants Res.2001 Jun;12(3):270-8.
    7.Coultas L,Chawengsaksophak K,Rossant J.Endothelial cells and VEGF in vascular development.Nature.2005 Dec;43 8(7070):93 7-45.
    8.Dai KR,Xu XL,Tang TT,Zhu ZA,Yu CF,Lou JR,Zhang XL.Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone.Calcif Tissue Int.2005 Jul;77(1):55-61.
    9.Deckers MM,Karperien M,van der Bent C,Yamashita T,Papapoulos SE,Lowik CW.Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation.Endocrinology.2000 May; 141(5):1667-74.
    10.Deckers MM,van Bezooijen RL,van der Horst G,Hoogendam J,van Der Bent C, Papapoulos SE,Lowik CW.Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.Endocrinology.2002 Apr;143(4):1545-53.
    11.Drosse I,Volkmer E,Capanna R,De Biase P,Mutschler W,Schieker M.Tissue engineering for bone defect healing:an update on a multi-component approach.Injury.2008 Sep;39(S2):S9-20.
    12.Fang TD,Salim A,Xia W,Nacamuli RP,Guccione S,Song HM,Carano RA,Filvaroff EH,Bednarski MD,Giaccia AJ,Longaker MT.Angiogenesis is required for successful bone induction during distraction osteogenesis.J Bone Miner Res.2005 Jul;20(7):1114-24.
    13.Farhadi J,Valderrabano V,Kunz C,Kern R,Hinterman B,Pierer G.Free fibula donor-site morbidity:clinical and biomechanical analysis.Ann Plast Surg.2007 Apr;58(4):405-10.
    14.Folkman J,Hochberg M.Self-regulation of growth in three dimensions.J Exp Med.1973 Oct;138(4):745-53.
    15.Froum SJ,Wallace SS,Cho SC,Elian N,Tarnow DP.Histomorphometric comparison of a biphasic bone ceramic to anorganic bovine bone for sinus augmentation:6-to 8-month postsurgical assessment of vital bone formation.A pilot study.Int J Periodontics Restorative Dent.2008 Jun;28(3):273-81.
    16.Futran ND,Mendez E.Developments in reconstruction of midface and maxilla.Lancet Oncol.2006 Mar;7(3):249-58.
    17.Geusens P,Boonen S,Nijs J,Jiang Y,Lowet G,Van Auderkercke R,Huyghe C,Caulin F,Very JM,Dequeker J,Van der Perre G.Effect of salmon calcitonin on femoral bone quality in adult ovariectomized ewes.Calcif Tissue Int.1996 Oct;59(4):315-20.
    18.Goldstein AS,Juarez TM,Helmke CD,Gustin MC,Mikos AG.Effect of convection on osteoblastic cell growth and function in biodegradable polymer foam scaffolds.Biomaterials.2001 Jun;22(11):1279-88.
    19.Hertz A,Bruce IJ.Inorganic materials for bone repair or replacement applications.Nanomed.2007 Dec;2(6):899-918.
    20.Holtzclaw D,Toscano N,Eisenlohr L,Callan D.The safely of bone allografts used in dentistry:a review.J Am Dent Assoc.2008 Sep;139(9):1192-9.
    21.Honig JF,Merten HA,Luhr HG.Passive and active intracranial translocation of osteosynthesis plates in adolescent minipigs.J Craniofac Surg.1995 Jul;6(4):292-8;discussion 299-300.
    22.Hsu HP,Zanella JM,Peckham SM,Spector M.Comparing ectopic bone growth induced by rhBMP-2 on an absorbable collagen sponge in rat and rabbit models.J Orthop Res.2006 Aug;24(8):1660-9.
    23.Huang YC,Kaigler D,Rice KG,Krebsbach PH,Mooney DJ.Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration.J Bone Miner Res.2005 May;20(5):848-57.
    24.Kanczler JM,Oreffo RO.Osteogenesis and angiogenesis:the potential for engineering bone.Eur Cell Mater.2008 May;15:100-14.
    25.Keramaris NC,Calori GM,Nikolaou VS,Schemitsch EH,Giannoudis PV.Fracture vascularity and bone healing:a systematic review of the role of VEGF.Injury.2008 Sep;39(S2):S45-57.
    26.Khouri RK,Koudsi B,Reddi H.Tissue transformation into bone in vivo.A potential practical application.JAMA.1991 Oct 9;266(14):1953-5.
    27.Kim EK,Evangelista M,Evans GR.Use of free tissue transfers in head and neck reconstruction.J Craniofac Surg.2008 Nov;19(6):1577-82.
    28.Kretlow JD,Jin YQ,Liu W,Zhang WJ,Hong TH,Zhou G,Baggett LS,Mikos AG,Cao Y.Donor age and cell passage affects differentiation potential of murine bone marrow-derived stem cells.BMC Cell Biol.2008 Oct 28;9:60.
    29.Kuriakose MA,Shnayder Y,DeLacure MD.Reconstruction of segmental mandibular defects by distraction osteogenesis for mandibular reconstruction.Head Neck.2003 Oct;25(10):816-24.
    30.Langer R,Vacanti JP.Tissue engineering.Science 1993 May;260(5110):920-6.
    31.Leach JK,Kaigler D,Wang Z,Krebsbach PH,Mooney DJ.Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration.Biomaterials.2006 Jun;27(17):3249-55.
    32.Le Nihouannen D,Daculsi G,Saffarzadeh A,Gauthier O,Delplace S,Pilet P, Layrolle P.Ectopic bone formation by microporous calcium phosphate ceramic particles in sheep muscles.Bone.2005 Jun;36(6):1086-93.
    33.Levine JP,Bradley J,Turk AE,Ricci JL,Benedict JJ,Steiner G,Longaker MT,McCarthy JG.Bone morphogenetic protein promotes vascularization and osteoinduction in preformed hydroxyapatite in the rabbit.Ann Plast Surg.1997 Aug;39(2):158-68.
    34.Li G,Cui Y,McIlmurray L,Allen WE,Wang H.rhBMP-2,rhVEGF(165),rhPTN and thrombin-related peptide,TP508 induce chemotaxis of human osteoblasts and microvascular endothelial cells.J Orthop Res.2005 May;23(3):680-5.
    35.Liu YM,Chen GF,Yan JL,Zhao SF,Zhang WM,Zhao S,Chen L.Functional reconstruction of maxilla with pedicled buccal fat pad flap,prefabricated titanium mesh and autologous bone grafts.Int J Oral Maxillofac Surg.2006 Dec;35(12):1108-13.
    36.Liu Y,Springer IN,Zimmermann CE,Acil Y,Scholz-Arens K,Wiltfang J,Terheyden H.Missing osteogenic effect of expanded autogenous osteoblast-like cells in a minipig model of sinus augmentation with simultaneous dental implant installation.Clin Oral Implants Res.2008 May;19(5):497-504.
    37.Logeart-Avramoglou D,Anagnostou F,Bizios R,Petite H.Engineering bone:challenges and obstacles.J Cell Mol Med.2005 Jan;9(1):72-84.
    38.Mankani MH,Kuznetsov SA,Wolfe RM,Marshall GW,Robey PG.In vivo bone formation by human bone marrow stromal cells:reconstruction of the mouse calvarium and mandible.Stem Cells.2006 Sep;24(9):2140-9.
    39.Mayr-Wohlfart U,Waltenberger J,Hausser H,Kessler S,Gunther KP,Dehio C,Puhl W,Brenner RE.Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone.2002 Mar;30(3):472-7.
    40.Mosekilde L,Kragstrup J,Richards A.Compressive strength,ash weight,and volume of vertebral trabecular bone in experimental fluorosis in pigs.Calcif Tissue Int.1987 Jun;40(6):318-22.
    41.Murphy WL,Simmons CA,Kaigler D,Mooney DJ.Bone regeneration via a mineral substrate and induced angiogenesis.J Dent Res.2004 Mar;83(3):204-10.
    42.Patel ZS,Young S,Tabata Y,Jansen JA,Wong ME,Mikos AG.Dual delivery of an angiogenic and an osteogenic growth factor for bone regeneration in a critical size defect model.Bone.2008 Nov;43(5):931-40.
    43.Rawashdeh MA.Morbidity of iliac crest donor site following open bone harvesting in cleft lip and palate patients.Int J Oral Maxillofac Surg.2008 Mar;37(3):223-7.
    44.Reilly DT,Burstein AH,Frankel VH.The elastic modulus for bone.J Biomech.1974 May;7(3):271-5.
    45.Roldan JC,Jepsen S,Miller J,Freitag S,Rueger DC,Acil Y,Terheyden H.Bone formation in the presence of platelet-rich plasma vs.bone morphogenetic protein-7.Bone.2004 Jan;34(1):80-90.
    46.Sacco AG,Chepeha DB.Current status of transport-disc-distraction osteogenesis for mandibular reconstruction.Lancet Oncol.2007 Apr;8(4):323-30.
    47.Schlegel KA,Schultze-Mosgau S,Wiltfang J,Neukam FW,Rupprecht S,Thorwarth M.Changes of mineralization of free autogenous bone grafts used for sinus floor elevation.Clin Oral Implants Res.2006 Dec;17(6):673-8.
    48.Simmons CA,Alsberg E,Hsiong S,Kim WJ,Mooney DJ.Dual growth factor delivery and controlled scaffold degradation enhance in vivo bone formation by transplanted bone marrow stromal cells.Bone.2004 Aug;35(2):562-9.
    49.Smajilagic A,Redzic A,Filipovic S.Pharmacokinetics and biological effect of the recombinant human bone morphogenetic protein-7.Med Arh.2007;61(1):3-6.
    50.Sohier J,Daculsi G,Sourice S,de Groot K,Layrolle P.Porous beta tricalcium phosphate scaffolds used as a BMP-2 delivery system for bone tissue engineering.J Biomed Mater Res A.2009 Mar 19.[Epub ahead of print]doi:10.1002/jbm.a.32467.
    51.Tang Y,Tang W,Lin Y,Long J,Wang H,Liu L,Tian W.Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats.Cell Biol Int.2008 Sep;32(9):1150-7.
    52.Terheyden H,Knak C,Jepsen S,Palmie S,Rueger DR.Mandibular reconstruction with a prefabricated vascularized bone graft using recombinant human osteogenic protein-1:an experimental study in miniature pigs.Part Ⅰ:Prefabrication.Int J Oral Maxillofac Surg.2001 Oct;30(5):373-9.
    53.Terheyden H,Warnke P,Dunsche A,Jepsen S,Brenner W,Palmie S,Toth C,Rueger DR.Mandibular reconstruction with prefabricated vascularized bone grafts using recombinant human osteogenic protein-1:an experimental study in miniature pigs.Part Ⅱ:transplantation.Int J Oral Maxillofac Surg.2001 Dec;30(6):469-78.
    54.Terheyden H,Menzel C,Wang H,Springer PN,Rueger DR,Acil Y.Prefabrication of vascularized bone grafts using recombinant human osteogenic protein-1--part 3:dosage of rb.OP-1,the use of external and internal scaffolds.Int J Oral Maxillofac Surg.2004 Mar;33(2):164-72.
    55.Viljanen W,Gao TJ,Lindholm TS.Producing vascularized bone by heterotopic bone induction and guided tissue regeneration:a silicone membrane-isolated latissimus dorsi island flap in a rat model.J Reconstr Microsurg.1997 Apr;13(3):207-14.
    56.Wang C,Wang Z,Li A,Bai F,Lu J,Xu S,Li D.Repair of segmental bone-defect of goat's tibia using a dynamic perfusion culture tissue engineering bone.J Biomed Mater Res A.2009 Mar 25.[Epub ahead of print]
    57.Warnke PH,Springer IN,Wiltfang J,Acil Y,Eufmger H,Wehmoller M,Russo PA,Bolte H,Sherry E,Behrens E,Terheyden H.Growth and transplantation of a custom vascularised bone graft in a man.Lancet.2004 Aug;364(9436):766-70.
    58.Warnke PH,Wiltfang J,Springer I,Acil Y,Bolte H,Kosmahl M,Russo PA,Sherry E,Lutzen U,Wolfart S,Terheyden H.Man as living bioreactor:fate of an exogenously prepared customized tissue-engineered mandible.Biomaterials.2006 Jun;27(17):3163-7.
    59.Zawicki DF,Jain RK,Schmid-Schoenbein GW,Chien S.Dynamics of neovascularization in normal tissue.Microvasc Res.1981 Jan;21(1):27-47.
    1.Abarrategi A,Moreno-Vicente C,Ramos V,Aranaz I,Sanz Casado JV,Lopez-Lacomba JL.Improvement of porous beta-TCP scaffolds with rhBMP-2 chitosan carrier film for bone tissue application.Tissue Eng Part A.2008 Aug;14(8):1305-19
    2.Allori AC,Sailon AM,Warren SM.Biological basis of bone formation,remodeling,and repair-part I:biochemical signaling molecules.Tissue Eng Part B Rev.2008 Sep;14(3):259-73.
    3.Arnander C,Westermark A.,Veltheim R.,Docherty-Skogh C,Hilborn J.,Engstrand T.Three-dimensional technology and bone morphogenetic protein in frontal bone reconstruction.J Craniofac Surg.2006 Mar;17(2):275-79.
    4.Basmanav FB,Kose GT,Hasirci V.Sequential growth factor delivery from complexed microspheres for bone tissue engineering.Biomaterials.2008 Nov;29(31):4195-204.
    5.Bergeron E,Marquis ME,Chretien I,Faucheux N.Differentiation of preosteoblasts using a delivery system with BMPs and bioactive glass microspheres.J Mater Sci Mater Med.2007 Feb;18(2):255-63.
    6.Bikram M,Fouletier-Dilling C,Hipp JA,Gannon F,Davis AR,Olmsted-Davis EA,West JL.Endochondral bone formation from hydrogel carriers loaded with BMP2-transduced cells.Ann Biomed Eng.2007 May;35(5):796-807.
    7.Blum JS,Barry MA,Mikos AG,Jansen JA.In vivo evaluation of gene therapy vectors in ex vivo-derived marrow stromal cells for bone regeneration in a rat critical-size calvarial defect model.Hum Gene Ther.2003 Dec 10;14(18):1689-701.
    8.Bonewald LF,Mundy GR.Role of transforming growth factor-beta in bone remodeling.Clin Orthop Relat Res.1990 Jan;(250):261-76.
    9.Bouletreau PJ,Warren SM,Spector JA,Peled ZM,Gerrets RP,Greenwald JA,Longaker MT.Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells:implications for fracture healing.Plast Reconstr Surg.2002 Jun;109(7):2384-97.
    10.Carev D,Saraga M,Saraga-Babic M.Involvement of FGF and BMP family proteins and VEGF in early human kidney development.Histol Histopathol.2008 Jul;23(7):853-62.
    11.Chen H,Shi S,Acosta L,Li W,Lu J,Bao S,Chen Z,Yang Z,Schneider MD,Chien KR,Conway SJ,Yoder MC,Haneline LS,Franco D,Shou W.BMP 10 is essential for maintaining cardiac growth during murine cardiogenesis.Development.2004 May;131(9):2219-31.
    12.Chen Y,Luk KD,Cheung KM,Xu R,Lin MC,Lu WW,Leong JC,Kung HF.Gene therapy for new bone formation using adeno-associated viral bone morphogenetic protein-2 vectors.Gene Ther.2003 Aug;10(16):1345-53.
    13.Chu TM,Warden SJ,Turner CH,Stewart RL.Segmental bone regeneration using a load-bearing biodegradable carrier of bone morphogenetic protein-2.Biomaterials.2007 Jan;28(3):459-67.
    14.Coultas L,Chawengsaksophak K,Rossant J.Endothelial cells and VEGF in vascular development.Nature.2005 Dec;438(7070):937-45.
    15.Cowan CM,Jiang X,Hsu T,Soo C,Zhang B,Wang JZ,Kuroda S,Wu B,Zhang Z,Zhang X,Ting K.Synergistic effects of Nell-1 and BMP-2 on the osteogenic differentiation of myoblasts.J Bone Miner Res.2007 Jun;22(6):918-30.
    16.Dai KR,Xu XL,Tang TT,Zhu ZA,Yu CF,Lou JR,Zhang XL.Repairing of goat tibial bone defects with BMP-2 gene-modified tissue-engineered bone.Calcif Tissue Int.2005 Jul;77(l):55-61.
    17.de Oliveira PT,de Oliva MA,Maximiano WM,Sebastiao KE,Crippa GE,Ciancaglini P,Beloti MM,Nanci A,Rosa AL.Effects of a mixture of growth factors and proteins on the development of the osteogenic phenotype in human alveolar bone cell cultures.J Histochem Cytochem.2008 Jul;56(7):629-38.
    18.Deckers MM,Karperien M,van der Bent C,Yamashita T,Papapoulos SE,Lowik CW.Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation.Endocrinology.2000 May;141(5):1667-74.
    19.Deckers MM,van Bezooijen RL,van der Horst G,Hoogendam J,van Der Bent C,Papapoulos SE,Lowik CW.Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A.Endocrinology. 2002 Apr;143(4):1545-53.
    20.Derubeis AR,Cancedda R.Bone marrow stromal cells(BMSCs) in bone engineering:limitations and recent advances.Ann Biomed Eng.2004 Jan;32(1):160-5.
    21.Dunn CA,Jin Q,Taba M Jr,Franceschi RT,Bruce Rutherford R,Giannobile WV.BMP gene delivery for alveolar bone engineering at dental implant defects.Mol Ther.2005 Feb;11(2):294-9.
    22.Engstrand T,Daluiski A,Bahamonde ME,Melhus H,Lyons KM.Transient production of bone morphogenetic protein 2 by allogeneic transplanted transduced cells induces bone formation.Hum Gene Ther.2000 Jan 1;11(1):205-11.
    23.Engstrand T,Veltheim R,Arnander C,Docherty-Skogh AC,Westermark A,Ohlsson C,Adolfsson L,Larm O.A novel biodegradable delivery system for bone morphogenetic protein-2.Plast Reconstr Surg.2008 Jun;121(6):1920-8.
    24.Franceschi RT,Yang S,Rutherford RB,Krebsbach PH,Zhao M,Wang D.Gene therapy approaches for bone regeneration.Cells Tissues Organs.2004;176(1-3):95-108.
    25.Gavenis K,Klee D,Pereira-Paz RM,von Walter M,Mollenhauer J,Schneider U,Schmidt-Rohlfing B.BMP-7 loaded microspheres as a new delivery system for the cultivation of human chondrocytes in a collagen type-Ⅰ gel.J Biomed Mater Res B Appl Biomater.2007 Aug;82(2):275-83.
    26.Gersbach CA,Le Doux JM,Guldberg RE,Garcia AJ.Inducible regulation of Runx2-stimulated osteogenesis.Gene Ther.2006 Jun;13(11):873-82.
    27.Ghosh SS,Gopinath P,Ramesh A.Adenoviral vectors:a promising tool for gene therapy.Appl Biochem Biotechnol.2006 Apr;133(1):9-29.
    28.Herweijer H,Wolff JA.Progress and prospects:naked DNA gene transfer and therapy.Gene Ther.2003 Mar;10(6):453-8.
    29.Hollister SJ,Lin CY,Saito E,Lin CY,Schek RD,Taboas JM,Williams JM,Partee B,Flanagan CL,Diggs A,Wilke EN,Van Lenthe GH,Muller R,Wirtz T,Das S,Feinberg SE,Krebsbach PH.Engineering craniofacial scaffolds.Orthod Craniofac Res.2005 Aug;8(3):162-73.
    30.Huang YC,Kaigler D,Rice KG,Krebsbach PH,Mooney DJ.Combined angiogenic and osteogenic factor delivery enhances bone marrow stromal cell-driven bone regeneration.J Bone Miner Res.2005 May;20(5):848-57.
    31.Israel DI,Nove J,Kerns KM,Kaufman RJ,Rosen V,Cox KA,Wozney JM.Heterodimeric bone morphogenetic proteins show enhanced activity in vitro and in vivo.Growth Factors.1996;13(3-4):291-300.
    32.Ito H,Koefoed M,Tiyapatanaputi P,Gromov K,Goater JJ,Carmouche J,Zhang X,Rubery PT,Rabinowitz J,Samulski RJ,Nakamura T,Soballe K,O'Keefe RJ,Boyce BF,Schwarz EM.Remodeling of cortical bone allografts mediated by adherent rAAV-RANKL and VEGF gene therapy.Nat Med.2005 Mar;11(3):291-7.
    33.Ito T,Sawada R,Fujiwara Y,Tsuchiya T.FGF-2 increases osteogenic and chondrogenic differentiation potentials of human mesenchymal stem cells by inactivation of TGF-beta signaling.Cytotechnology.2008 Jan;56(1):1-7.
    34.Jabbarzadeh E,Starnes T,Khan YM,Jiang T,Wirtel AJ,Deng M,Lv Q,Nair LS,Doty SB,Laurencin CT.Induction of angiogenesis in tissue-engineered scaffolds designed for bone repair:a combined gene therapy-cell transplantation approach.Proc Natl Acad Sci U S A.2008 Aug;105(32):11099-104.
    35.Jayasuriya AC,Shah C.Controlled release of insulin-like growth factor-1 and bone marrow stromal cell function of bone-like mineral layer-coated poly(lactic-co-glycolic acid) scaffolds.J Tissue Eng Regen Med.2008 Jan;2(1):43-9.
    36.Jiang X,Gittens SA,Chang Q,Zhang X,Chen C,Zhang Z.The use of tissue-engineered bone with human bone morphogenetic protein-4-modified bone-marrow stromal cells in repairing mandibular defects in rabbits.Int J Oral Maxillofac Surg.2006 Dec;35(12):1133-9.
    37.Jin Q,Anusaksathien O,Webb SA,Printz MA,Giannobile WV.Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors.Mol Ther.2004 Apr;9(4):519-26.
    38.Kagiwada H,Yashiki T,Ohshima A,Tadokoro M,Nagaya N,Ohgushi H.Human mesenchymal stem cells as a stable source of VEGF-producing cells.J Tissue Eng Regen Med.2008 Jun;2(4):184-9.
    39.Karaplis A(2002).Embryonic development of bone and the molecular regulation of intramembranous and endochondral bone fomration.In:Principles of bone biology.Bilezikian J,Raisz L,Rodan G,editors.San Diego:Academic Press,pp.33-58.
    40.Kilian O,Flesch I,Wenisch S,Taborski B,Jork A,Schnettler R,Jonuleit T.Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro.Eur J Med Res.2004 Jul 30;9(7):337-44.
    41.Kim IS,Song YM,Cho TH,Park YD,Lee KB,Noh I,Weber F,Hwang SJ.In vitro response of primary human bone marrow stromal cells to recombinant human bone morphogenic protein-2 in the early and late stages of osteoblast differentiation.Dev Growth Differ.2008 Sep;50(7):553-64.
    42.Kim HJ,Im GI.Combination of Transforming Growth Factor-Beta(2) and Bone Morphogenetic Protein 7 Enhances Chondrogenesis from Adipose Tissue-Derived Mesenchymal Stem Cells.Tissue Eng Part A.2008 Dec 12.[epub ahead of print]
    43.Kim SE,Jeon O,Lee JB,Bae MS,Chun HJ,Moon SH,Kwon IK.Enhancement of ectopic bone formation by bone morphogenetic protein-2 delivery using heparin-conjugated PLGA nanoparticles with transplantation of bone marrow-derived mesenchymal stem cells.J Biomed Sci.2008 Nov;15(6):771-7.
    44.Kim SJ,Kim SY,Kwon CH,Kim YK.Differential effect of FGF and PDGF on cell proliferation and migration in osteoblastic cells.Growth Factors.2007 Apr;25(2):77-86.
    45.Kim SS,Gwak SJ,Kim BS.Orthotopic bone formation by implantation of apatite-coated poly(lactide-co-glycolide)/hydroxyapatite composite particulates and bone morphogenetic protein-2.J Biomed Mater Res A.2008 Oct;87(1):245-53.
    46.Knight PG,Glister C.TGF-beta superfamily members and ovarian follicle development.Reproduction.2006 Aug;132(2):191-206.
    47.Koh JT,Zhao Z,Wang Z,Lewis IS,Krebsbach PH,Franceschi RT.Combinatorial gene therapy with BMP2/7 enhances cranial bone regeneration.J Dent Res.2008 Sep;87(9):845-9.
    48.Kubota K,Iseki S,Kuroda S,Oida S,Iimura T,Duarte WR,Ohya K,Ishikawa I,Kasugai S.Synergistic effect of fibroblast growth factor-4 in ectopic bone formation induced by bone morphogenetic protein-2.Bone.2002 Oct;31(4):465-71.
    49.Kurian K M,Watson C J,Wyllie A H.Retroviral vectors.J Clin Pathol:Mol Pathol 2000 Aug;53(4):173-176.
    50.Langer R,Vacanti JP.Tissue engineering.Science 1993 May;260(5110):920-6.
    51.Lee JY,Kim KH,Shin SY,Rhyu IC,Lee YM,Park YJ,Chung CP,Lee SJ.Enhanced bone formation by transforming growth factor-betal-releasing collagen/chitosan microgranules.J Biomed Mater Res A.2006 Mar 1;76(3):530-9.
    52.Leonor IB,Ito A,Onuma K,Kanzaki N,Reis RL.In vitro bioactivity of starch thermoplastic/hydroxyapatite composite biomaterials:an in situ study using atomic force microscopy.Biomaterials.2003 Feb;24(4):579-85
    53.Luk KD,Chen Y,Cheung KM,Kung HF,Lu WW,Leong JC.Adeno-associated virus-mediated bone morphogenetic protein-4 gene therapy for in vivo bone formation.Biochem Biophys Res Commun.2003 Aug;308(3):636-45.
    54.Maegawa N,Kawamura K,Hirose M,Yajima H,Takakura Y,Ohgushi H.Enhancement of osteoblastic differentiation of mesenchymal stromal cells cultured by selective combination of bone morphogenetic protein-2(BMP-2) and fibroblast growth factor-2(FGF-2).J Tissue Eng Regen Med.2007 Jul;1(4):306-13.
    55.Marie PJ.Fibroblast growth factor signaling controlling osteoblast differentiation.Gene.2003 Oct;316:23-32.
    56.Mayr-Wohlfart U,Waltenberger J,Hausser H,Kessler S,Gunther KP,Dehio C,Puh1 W,Brenner RE.Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts.Bone.2002 Mar;30(3):472-7.
    57.Nakasa T,Ishida O,Sunagawa T,Nakamae A,Yasunaga Y,Agung M,Ochi M.Prefabrication of vascularized bone graft using a combination of fibroblast growth factor-2 and vascular bundle implantation into a novel interconnected porous calcium hydroxyapatite ceramic.J Biomed Mater Res A.2005 Nov;75(2):350-5.
    58.Nakasaki M,Yoshioka K,Miyamoto Y,Sasaki T,Yoshikawa H,Itoh K.IGF-Ⅰ secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts.Bone.2008 Nov;43(5):869-79.
    59.Niidome T,Huang L.Gene therapy progress and prospects:nonviral vectors.Gene Ther.2002 Dec;9(24):1647-52.
    60.Nishikawa M,Huang L.Nonviral vectors in the new millennium:delivery barriers in gene transfer.Hum Gene Ther.2001 May;12(8):861-70.
    61.Noshi T,Yoshikawa T,Dohi Y,Ikeuchi M,Horiuchi K,Ichijima K,Sugimura M,Yonemasu K,Ohgushi H.Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites.Artif Organs.2001 Mar;25(3):201-8.
    62.Ozkan K,Eralp L,Kocaoglu M,Ahishali B,Bilgic B,Mutlu Z,Turker M,Ozkan FU,Sahin K,Guven M.The effect of transforming growth factor beta1(TGF-beta1) on the regenerate bone in distraction osteogenesis.Growth Factors.2007 Apr;25(2):101-7.
    63.Park EJ,Kim ES,Weber HP,Wright RF,Mooney DJ.Improved bone healing by angiogenic factor-enriched platelet-rich plasma and its synergistic enhancement by bone morphogenetic protein-2.Int J Oral Maxillofac Implants.2008 Sep;23(5):818-26
    64.Peng H,Wright V,Usas A,Gearhart B,Shen HC,Cummins J,Huard J.Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4.J Clin Invest.2002 Sep;110(6):751-9.
    65.Peng H,Usas A,Olshanski A,Ho AM,Gearhart B,Cooper GM,Huard J.VEGF improves,whereas sFlt1 inhibits,BMP2-induced bone formation and bone healing through modulation of angiogenesis.J Bone Miner Res.2005 Nov;20(11):2017-27.
    66.Peterson B,Zhang J,Iglesias R,Kabo M,Hedrick M,Benhaim P,Lieberman JR.Healing of critically sized femoral defects,using genetically modified mesenchymal stem cells from human adipose tissue.Tissue Eng.2005 Jan;11(1-2):120-9.
    67.Raiche AT,Puleo DA.In vitro effects of combined and sequential delivery of two bone growth factors.Biomaterials.2004 Feb;25(4):677-85
    68.Reddi AH.2003;Cartilage morphogenetic proteins:role in joint development,homoeostasis,and regeneration.Ann Rheum Dis 62(suppl 2):73-78.
    69.Reddi AH.BMPs:from bone morphogenetic proteins to body morphogenetic proteins.Cytokine Growth Factor Rev.2005 Jun;16(3):249-50
    70.Rivera-Feliciano J,Tabin CJ.Bmp2 instructs cardiac progenitors to form the heart-valve-inducing field.Dev Biol.2006 Jul;295(2):580-8.
    71.Rose T,Peng H,Usas A,Kuroda R,Lill H,Fu FH,Huard J.Gene therapy to improve osteogenesis in bone lesions with severe soft tissue damage.Langenbecks Arch Surg.2003 Oct;388(5):356-65.
    72.Saito N,Murakami N,Takahashi J,Horiuchi H,Ota H,Kato H,Okada T,Nozaki K,Takaoka K.Synthetic biodegradable polymers as drug delivery systems for bone morphogenetic proteins.Adv Drug Deliv Rev.2005 May;57(7):1037-48.
    73.Schuessele A,Mayr H,Tessmar J,Goepferich A.Enhanced bone morphogenetic protein-2 performance on hydroxyapatite ceramic surfaces.Biomed Mater Res A.2008 Jul 24.[Epub ahead of print]
    74.Seeherman HJ,Azari K,Bidic S,Rogers L,Li XJ,Hollinger JO,Wozney JM.rhBMP-2 delivered in a calcium phosphate cement accelerates bridging of critical-sized defects in rabbit radii.J Bone Joint Surg Am.2006 Jul;88(7):1553-65.
    75.Schliephake H,Weich HA,Dullin C,Gruber R,Frahse S.Mandibular bone repair by implantation of rhBMP-2 in a slow release carrier of polylactic acid--an experimental study in rats.Biomaterials.2008 Jan;29(1):103-10.
    76.Simpson AH,Mills L,Noble B.The role of growth factors and related agents in accelerating fracture healing.J Bone Joint Surg Br.2006 Jun;88(6):701-5.
    77.Smajilagic A,Redzic A,Filipovic S.Pharmacokinetics and biological effect of the recombinant human bone morphogenetic protein-7.Med Arh.2007;61(1):3-6.
    78.Srouji S,Rachmiel A,Blumenfeld I,Livne E.Mandibular defect repair by TGF-beta and IGF-1 released from a biodegradable osteoconductive hydrogel.J Craniomaxillofac Surg.2005 Apr;33(2):79-84.
    79.Su N,Du X,Chen L.FGF signaling:its role in bone development and human skeleton diseases.Front Biosci.2008 Jan 1;13:2842-65.
    80.Tanaka T,Taniguchi Y,Gotoh K,Satoh R,Inazu M,Ozawa H.Morphological study of recombinant human transforming growth factor beta 1-induced intramembranous ossification in neonatal rat parietal bone.Bone.1993 Mar;14(2):117-23.
    81.Tang Y,Tang W,Lin Y,Long J,Wang H,Liu L,Tian W.Combination of bone tissue engineering and BMP-2 gene transfection promotes bone healing in osteoporotic rats.Cell Biol Int.2008 Sep;32(9):1150-7.
    82.Urist MR.Bone:formation by autoinduction.Science.1965 Nov 12;150(698):893-9.
    83.Usas A,Ho AM,Cooper GM,Olshanski A,Peng H,Huard J.Bone Regeneration Mediated by BMP4-Expressing Muscle-Derived Stem Cells Is Affected by Delivery System.Tissue Eng Part A.2008 Dec 6.[Epub ahead of print]
    84.Viggeswarapu M,Boden SD,Liu Y,Hair GA,Louis-Ugbo J,Murakami H,Kim HS,Mayr MT,Hutton WC,Titus L.Adenoviral delivery of LIM mineralization protein-1 induces new-bone formation in vitro and in vivo.J Bone Joint Surg Am.2001 Mar;83-A(3):364-76.
    85.Wells DJ.Gene therapy progress and prospects:electroporation and other physical methods.Gene Ther.2004 Sep;11(18):1363-9.
    86.Wlodarski K,Galus R.Histological aspects of bone fracture healing.Ortop Traumatol Rehabil.2005 Aug;7(4):351-60.
    87.Wright V,Peng H,Usas A,Young B,Gearhart B,Cummins J,Huard J.BMP4-expressing muscle-derived stem cells differentiate into osteogenic lineage and improve bone healing in immunocompetent mice.Mol Ther.2002 Aug;6(2):169-78.
    88.Wu B,Zheng Q,Guo X,Wu Y,Wang Y,Cui F.Preparation and ectopic osteogenesis in vivo of scaffold based on mineralized recombinant human-like collagen loaded with synthetic BMP-2-derived peptide.Biomed Mater.2008 Dec;3(4):44111.Epub 2008 Nov 25
    89.Yang P,Wang C,Shi Z,Huang X,Dang X,Xu S,Wang K.Prefabrication of Vascularized Porous Three-Dimensional Scaffold Induced from rhVEGF(165):A Preliminary Study in Rats.Cells Tissues Organs.2009;189(5):327-37.
    90.Yi Y,Hahm SH,Lee KH.Retroviral gene therapy:safety issues and possible solutions.Curr Gene Ther.2005 Feb;5(1):25-35.
    91.Ying Y,Qi X,Zhao GQ.Induction of primordial germ cells from pluripotent epiblast.Scientific World Journal.2002 Mar 26;2:801-10.
    92.Zhao M,Zhao Z,Koh JT,Jin T,Franceschi RT.Combinatorial gene therapy for bone regeneration:cooperative interactions between adenovirus vectors expressing bone morphogenetic proteins 2,4,and 7.J Cell Biochem.2005 May 1;95(1):1-16.
    93.Zhu W,Rawlins BA,Boachie-Adjei O,Myers ER,Arimizu J,Choi E,Lieberman JR,Crystal RG,Hidaka C.Combined bone morphogenetic protein-2 and -7 gene transfer enhances osteoblastic differentiation and spine fusion in a rodent model.J Bone Miner Res.2004 Dec;19(12):2021-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700