张力带钢板重建骨盆后环稳定性的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     不稳定性骨盆骨折多由高能量损伤所致,常合并有严重的血管、神经和其他脏器损伤,具有较高的死亡率和致残率。早期不稳定性骨盆骨折的治疗以抢救生命为主,降低死亡率是其治疗目的;后期以重建骨盆环的连续性和稳定性为主,以减少并发症、降低致残率、恢复患者的劳动和生活能力为目的。随着对骨盆的解剖、损伤机制及生物力学特点的深入了解和现代医学技术的进步,骨盆骨折的治疗已取得较大进展,但目前对广大临床骨科医生来说,无论是在骨盆骨折早期急救上,还是在后续的骨盆环修复重建上都仍极具挑战性。
     骨盆后环不仅是人体承重或负载的必经之路,也是维持骨盆环稳定性的主要结构。生物力学己证明后环对骨盆环的稳定作用占60%,而前环对骨盆环的稳定作用仅占40%。因此,如何重建后环的稳定性一直是骨盆骨折治疗研究的重点和焦点。目前常用的骨盆后环内固定方式有经髂骨棒(骶骨棒)、骶髂关节前方钢板、骶髂螺钉、三角形固定系统、后方张力带钢板等,这些内固定方式各有不同适应症和优缺点。最佳的固定方式还尚待于进一步深入研究。
     张力带钢板修复重建不稳定性骨盆骨折后环的损伤已获得临床上的一定认可,尤其是经皮手术的开展,更是使其具有了微创、操作简单的优点,临床应用越来越广泛。但目前国内外对张力带钢板固定骨盆后环的系统生物力学研究还较少,对其固定的力学原理以及如何应用可以达到最佳的生物力学稳定性还缺乏深入认识。本研究旨在通过系统生物力学研究为临床进一步合理有效地应用张力带钢板重建骨盆后环的稳定性提供生物力学依据。并通过生物力学研究验证一种新的改良张力带钢板固定不稳定性骨盆后环损伤的效果。
     第一部分固定位置对张力带钢板重建骨盆后环稳定性影响的生物力学研究
     目的
     比较三种不同张力带钢板固定位置对重建骨盆后环稳定性的影响,以期选出最佳的张力带钢板固定位置,为临床进一步更合理有效地应用后方张力带钢板提供生物力学依据。
     方法
     选取8具成人防腐骨盆标本,其中男性骨盆标本5具,女性骨盆标本3具,年龄24-53岁,平均41.4岁。各骨盆标本在完成正常完整骨盆检测后,制成不稳定性骨盆环损伤(A0分类C1.2:前环耻骨联合分离,后方骶髂关节脱位)模型,每个骨盆标本后环随机依次应用三种不同位置张力带钢板固定,固定位置1:钢板固定在双侧髂后上棘水平、钢板两端指向耻骨联合(大致与骨盆界线平行);固定位置2:钢板固定在髂后上棘上方水平、钢板两端指向前方;固定位置3:钢板固定在髂后上棘下方水平、钢板两端指向前上方。所有骨盆标本前环均用3.5mm重建钢板固定。将固定好的骨盆标本置于生物力学试验机上,分别依次予以0-600N的垂直加载和0-8N·m扭转加载,通过生物力学实验机自带的位移传感器测量并记录整体骨盆垂直位移和扭转角度,并计算骨盆的轴向刚度和扭转刚度;在垂直加载时通过放置在骨盆后环的位移传感器测量并记录损伤侧骶髂关节在垂直、水平和前后方向上骶骨与髂骨的相对位移以及骶骨相对于髂骨在矢状面上的旋转。所得数据采用重复测量的方差分析进行处理,并进行两两比较。
     结果
     在0-600N的垂直载荷下,固定位置1的整体骨盆环垂直位移最小(平均2.470±0.201mm),与固定位置2(平均2.896±0.271mm)和固定位置3(平均2.714±0.232mm)相比,差异有统计学意义(P<0.05)。固定位置3与固定位置2相比也有统计学差异(P<0.05)。固定位置1的轴向刚度为完整骨盆的73.3%,而固定位置2和固定位置3分别为62.5%和66.7%。在0-8N·m扭转载荷下固定位置1的扭转角度最小(平均3.285±0.354。),与固定位置2(平均3.644±0.388。)和固定位置3(平均3.610±0.420。)相比,差异有统计意义(P<0.05)。固定位置3与固定位置2相比无统计学差异(P>0.05)。固定位置1固定后骨盆整体扭转刚度为完整骨盆的72.7%,固定位置3为完整骨盆的66.2%,固定位置2仅为完整骨盆65.5%。在0-600N的垂直载荷下骨盆后环骶髂关节在垂直、左右和前后方向上位移以及在矢状面上的旋转位移,固定位置1与固定位置2和3相比均有统计学差异(P<0.05),固定位置1最小(垂直:1.390±0.118mm、左右:0.340±0.070mm、前后:0.441±0.056mm、矢状面旋转:1.125±0.282。),其次为固定位置3(垂直:1.565±0.069mm、左右:0.438±0.107mm、前后:0.548±0.098mm、矢状面旋转:1.475±0.212。),固定位置2位移最大(垂直:1.661±0.072mm、左右:0.484±0.105mm、前后:0.621±0.066mm、矢状面旋转:1.613±0.285。),固定位置3与相比固定位置2也有统计学差异(P<0.05)。
     结论
     张力带钢板固定骨盆环的生物力学原理类似于“箍桶”力学原理。在其固定后环时不仅需要考虑骨盆后环的结构形态,也需要从整体骨盆环的结构形态来考虑。张力带钢板选择在髂后上棘水平、钢板两端指向耻骨联合(大致与骨盆界线平行)固定,无论是从骨盆环局部,还是从整体骨盆环来说,都接近于“中心性”固定,更符合张力带钢板重建骨盆环的生物力学机制。在垂直和扭转载荷下,虽然不及完整骨盆环的刚度和骨盆后环的稳定性,但与选择在髂后上棘上方、钢板两端指向前方固定和选择在髂后上棘下方、钢板两端指向前上方固定相比,无论是对骨盆环的整体固定还是对后环的固定都能提供更好的生物力学稳定性。张力带钢板固定在髂后上棘下方、两端指向前上方次之,张力带钢板固定在髂后上棘上方,两端指向前方最差。
     第二部分一种改良张力带钢板重建骨盆后环稳定性的生物力学研究
     目的
     通过生物力学研究验证一种新的改良张力带钢板固定不稳定性骨盆后环损伤的效果,并与其它两种临床常用内固定方法进行比较。
     方法
     选取8具成人防腐骨盆标本,其中男性骨盆标本6具,女性骨盆标本2具,年龄29-54岁,平均43.8岁。各骨盆标本在完成正常完整骨盆检测后,制成不稳定性骨盆环损伤(A0分类C1.2:前环耻骨联合分离,后方骶髂关节脱位)模型,每个骨盆标本随机依次应用三种不同内固定来重建骨盆后环:标准张力带钢板固定:第一部分研究所证实的最佳固定位置;改良张力带钢板固定:在标准张力带钢板固定的基础上,将重建钢板塑为“M”形,并在骶髂关节损伤侧经钢板将1枚螺钉植入骶骨翼来加强张力带钢板的固定效果;双骶髂螺钉固定。所有骨盆标本前环均用3.5mm重建钢板固定。将固定好的骨锍标本置于生物力学试验机上,分别依次予以0-600N的垂直加载和0-8N·m的扭转加载,通过生物力学实验机自带的位移传感器测量并记录整体骨盆环垂直位移和扭转角度,并计算整体骨盆环的轴向刚度和扭转刚度;在垂直加载时通过放置在骨盆后环的位移传感器测量并记录损伤侧骶髂关节在垂直、左右和前后方向上骶骨与髂骨的相对位移以及骶骨相对于髂骨在冠状面上的旋转。所有数据采用重复测量的方差分析进行处理,并进行两两比较。
     结果
     在0-600N的垂直载荷下,改良张力带钢板固定后的整体骨毓环垂直位移(2.261±0.383mm)明显小于标准张力带钢板固定后的位移(2.646±0.394mm),差异有统计学意义(P<0.05)。与双骶髂螺钉固定相比,改良张力带钢板固定后整体骨盆环垂直位移虽大于双骶髂螺钉固定后的位移(2.144±0.324mm),但差异无统计学意义(P>0.05)。改良张力带钢板固定后的整体骨盆环轴向刚度为完整骨盆的83.1%,与骶髂螺钉固定(87.4%)相近,比标准张力带钢板固定(70.7%)提高12.4%,差异有统计学意义(P<0.05)。在0-8N·m扭转载荷下改良张力带钢板固定后的整体骨盆环扭转角度(2.719±0.507。)小于标准张力带钢板固定后的扭转角度(3.089±0.472。),差异有统计学意义(P<0.05)。与双骶髂螺钉相比,改良张力带钢板固定后的整体骨盆扭转角度虽然小于与双骶髂螺钉固定后的扭转角度(2.608±0.419。),但两者之间差别无统计学意义(P>0.05)。改良张力带钢板固定后的整体骨盆环扭转刚度为完整骨盆的84.8%,与双骶髂螺钉固定(88.1%)相近,比标准张力带钢板固定(74.3%)提高10.5%,差异有统计学意义(P<0.05)。在O-600N的垂直载荷下骨盆后环骶髂关节在垂直、左右和前后方向上位移以及在矢状面上的旋转位移,双骶髂螺钉最小(垂直:0.741±0.164mm、左右:0.214±0.031mm、前后:0.308±0.085mm、矢状面旋转:0.975±0.271。),其次为改良张力带钢板(垂直:0.824±0.183mm、左右:0.235±0.030mm、前后:0.318±0.078mm、矢状面旋转:1.088±0.300。),标准张力带钢板最大(垂直:1.248±0.205mm、左右:0.291±0.034mm、前后:0.475±0.107mm、矢状面旋转:1.425±0.377。)。改良张力带钢板固定明显小于标准张力带钢板固定(P<0.05),虽不及双骶髂螺钉固定,但两者之间差异无统计学意义(P>0.05)。
     结论
     改良张力带钢板通过将重建钢板塑形为“M”形,并经钢板增加一枚螺钉置放于骶骨翼,在传统张力带钢板的基础上,将固定扩展到骶骨,更加接近损伤部位,进一步模仿了正常骶髂关节复合体后方韧带组成的“悬吊桥”稳定机制,比传统张力带钢板更符合骨盆后环的生物力学特点和稳定机制。在垂直和扭转负荷下,与传统的张力带钢板相比,改良张力带钢板无论对骨盆环的整体固定还是对后环骶髂关节的固定都起到了很好的加强作用,其固定的稳定性与双骶髂螺钉相近,因此可作为一种相对安全、固定效果可靠的重建骨盆后环特别是骶髂关节骨折脱位稳定性的新选择。
Background
     Unstable pelvic fractures resulted mostly from high-energy injury, often associated with serious blood vessels, nerves and other organ injury, and have higher mortality and morbidity. The aim of early treatment is to save lives and reduce mortality. The subsequent treatments are aimed at reconstruct the continuity and stability of the pelvic ring in order to reduce complications and restore the labor and life skills. With the development of modern medical technology and further understanding of anatomy, injury mechanism and biomechanics features of the pelvis, it has made great progress in the management of pelvic fracture. However, unstable pelvic fractures are still a challenging problem both in the immediate post injury phase and later when definitive fixation is undertaken.
     Posterior pelvic ring is the critical area of weight-bearing and transmitting loads, and it is also the major stabilizing structure of pelvic ring. Biomechanical study has shown that60%of pelvic stability comes from the posterior structures,40%from the anterior. And the reconstruction of posterior pelvic ring has been the focus of clinical and biomechanical research. The current methods of treatment include sacral bars, anterior sacroiliac plates, iliosacral screws, triangular osteosynthesis and tension band plate. However, these fixation techniques have the advantages and disadvantages respectively. And the optimal fixation methods remain unclear.
     It has achieved excellent clinical results using the tension band plate for unstable pelvic ring injury. The posterior tension band plate osteosynthesis presents a comparatively stable, minimally invasive method for the posterior pelvic ring reconstruction in unstable pelvic injury. However, there are few biomechanical analysis of the tension band plate for unstable pelvic fracture. This study is designed to provide biomechanical basis for further reasonable and effective application of tension band plate for posterior pelvic ring injury by systematic biomechanical study. Furthermore, we design a new modified tension band plate and evaluate the biomechanical stability of posterior pelvic ring fixed with the modified tension band plate in the current study.
     PART I Effects of fixation position on the stability of posterior pelvic ring fixed using tension band plate:a biomechanical study
     Objective
     To compare the effect of three different fixation positions on the stability of the posterior pelvic ring fixed with tension band plate in cadaver pelvis specimens in order to identify the optimal fixation position of tension band plate for posterior pelvic ring reconstruction
     Methods
     8adult cadaver pelvic specimens (male5, female3, aged from24to53) were used to simulate the AO type C1.2pelvic injury (pubic symphysis diastasis and unilateral sacroiliac joint disruption). Each intact pelvic specimen was firstly tested as a control group before the model of unstable pelvic injury was made. The posterior ring of each pelvis was constructed in randomized order with tension band plate in the following three different position:Fixation position1:the plate was fixed to bilateral posterior superior iliac spines, and the plate at both ends pointed to the pubic symphysis (roughly parallel with the pelvic boundaries, point downward and forward); Fixation position2:the plate was located at the posterior of iliac crest above the posterior superior iliac spine level, the plate at both ends pointed forward. Fixation position3:the plate was located at the posterior of iliac crest under the posterior superior iliac spine level, the plate at both ends pointed upward and forward. The anterior pelvic ring of each specimens of was fixed with3.5mm reconstruction plate. All pelvic specimens were mounted in the bio-mechanical testing machines in order that a0-600N vertical load and a0~8N·m torsional load were performed. The vertical displacement and torsional angle of the whole pelvic were measured and recorded by the displacement sensors of the bio-mechanical testing machine. The axial stiffness and torsional stiffness of the pelvis were calculated. Under0~600N vertical load, the relative displacement of the sacrum and ilium of the involved sacroiliac joint in the vertical, horizontal, and anteroposterior direction and the rotation of sacrum relative to the iliac in the sagittal plane were measured and recorded by the prepositioned posterior pelvic ring displacement sensors. Statistical analysis was performed using the analysis of variance test (ANOVA) with repeated-measures for multiple comparisons.
     Results
     Under0~600N vertical load, the whole pelvic vertical displacement of the fixation position1was the smallest (2.470±0.201mm), compared with the fixation position2(2.896±0.271mm) and the fixation position3(2.714±0.232mm), the difference was statistically significant (P<0.05). The difference between the fixation position2and the fixation position3was also statistically significant (P<0.05). The whole pelvic axial stiffness of the fixation position1was73.3%of the intact pelvis,62.5%and66.7%in the fixation position2and the fixation position3respectively. The differences were statistically significant (P<0.05). Under0~8N·m torsional loads, the whole pelvic torsional angle of the fixation position1was the smallest (3.285±0.354°), compared with the fixation position2(3.644±0.388°) and the fixation position3(3.610±0.420°), the difference was statistically significant(P<0.05). The whole pelvic torsional stiffness of the fixation position1was72.7%of the intact pelvis, the fixation position366.2%, and the fixation position265.5%. Under0~600N vertical load, the displacement of the sacroiliac joint in the vertical, horizontal, and anteroposterior direction and the rotation displacement in the sagittal plane of the fixation position1, compared with fixation positions2and3, was smallest, and the difference was statistically significant (P<0.05). The displacement of fixation position1was minimum (vertical displacement:1.390±0.118mm, horizontal displacment:0.340±0.070mm, anteroposterior displacement:0.441±0.056mm, sagittal rotation:1.125±0.282°), followed by a fixation position3(vertical displacement:1.570±0.069mm, horizontal displacement:0.438±0.107mm, anteroposterior displacement:0.548±0.098mm, sagittal rotation:1.475±0.212°), and the fixation position2was the largest (vertical displacement:1.661±0.072mm, horizontal displacement:0.484±0.105mm, anteroposterior displacement:0.621±0.066mm, sagittal rotation1.613±0.285°). The difference between the fixation position3and the fixation position2was also statistically significant (P<0.05).
     Conclusions
     Under both vertical and torsional load, it is the optimal fixation position of tension band plate osteosynthesis for posterior pelvic ring injury that the tension band plate is fixed to bilateral posterior superior iliac spines and the plate at both ends point to the pubic symphysis. And the tension band plate which is fixed under the posterior superior iliac spine level (the plate at both ends point to the pubic symphysis) is better than the tension band plate fixed above the posterior superior iliac spine level(the plate at both ends pointed forward).
     PART Ⅱ Biomechanical testing of a new modified tension band plate for unstable posterior pelvic ring
     Objective
     To evaluate the biomechanical stability of posterior pelvic ring fixed with a modified tension band plate, and compare with two iliosacral screws and standard tension band plate.
     Methods
     8adult cadaver pelvic specimens (male6, female2, aged from29to54) were used to simulate the AO type C1.2pelvic injury (pubic symphysis diastasis and unilateral sacroiliac joint disruption). Each intact pelvic specimen was firstly tested as a control group before the model of unstable pelvic injury was made. The posterior ring of each pelvis was constructed gradually in randomized order with the following three different implants. The modified tension band plate:a precontoured M-shaped reconstruction plate was used similarly to the standard tension band plate, and a screw was implanted to involved alae sacralis through the plate; The standard tension band plate:the plate was fixed to bilateral posterior superior iliac spines, and the plate at both ends pointed to the pubic symphysis (roughly parallel with the pelvic boundaries); Two iliosacral screws. The anterior pelvic ring of each specimens of was fixed with3.5mm reconstruction plate. All pelvic specimens were placed in the bio-mechanical testing machine in order that a0~600N vertical load and a0~8N·m torsional load were performed. The vertical displacement and torsional angle of the whole pelvic were measured and recorded by the displacement sensors of the bio-mechanical testing machine. The axial stiffness and torsional stiffness of the pelvis were calculated. Under0~600N vertical load, the relative displacement of the sacrum and ilium of the sacroiliac joint in the vertical, horizontal, and anteroposterior direction and the rotation of sacrum relative to the iliac in the sagittal plane were measured and recorded by the prepositioned posterior pelvic ring displacement sensors. Statistical analysis was performed using the analysis of variance test (ANOVA) with repeated-measures for multiple comparisons.
     Results
     Under0~600N vertical load, the overall pelvic vertical displacement of the modified tension band plate (2.261±0.383mm) was significantly smaller than the displacement of the standard tension band plate (2.646±0.394mm), the difference was statistically significant (P<0.05). Compared with the two sacroiliac screws (2.144±0.324mm), the overall pelvic vertical displacement of the modified tension band plate was larger than two sacroiliac screw, but the difference was not statistically significant (P>0.05). The overall pelvic axial stiffness of the modified tension band plate was83.1%of the intact pelvis, which increased by12.4%compared to the standard tension band plate (70.7%). The difference between the modified tension band plate and the two sacroiliac screws (87.4%) was not statistically significant (P>0.05). Under0~8N·m torsional load, the overall pelvic torsional angle (2.719±0.507°) of the modified tension band plate was less than the standard tension band plate (3.089±0.472°), and the difference was statistically significant(P<0.05). Compared with the two sacroiliac screws, the overall pelvic torsional angle of the modified tension band plate was larger than two sacroiliac screws (2.608±0.419°), but the difference was not statistically significant (P>0.05). The torsional rigidity of the modified tension band plate is84.8%of the intact pelvis, which increased by10.5%compared to the standard tension band plate (74.3%), and the difference was statistically significant (P<0.05). The difference between the modified tension band plate and the two sacroiliac screws (88.1%) was not statistically significant (P>0.05). Under0~600N vertical load, the displacement of the sacroiliac joint in the vertical, horizontal, and anteroposterior direction and the rotation displacement in the sagittal plane, the two sacroiliac screws was minimum (vertical displacement:0.741±0.164mm, horizontal displacement:0.214±0.031mm, anterioposterior displacement:0.308±0.085mm, sagittal rotation displacement:0.975±0.271°), followed by the modified tension band plate (vertical displacement:0.824±0.183mm, horizontal displacement:0.235±0.030mm, anterioposterior displacement:0.318±0.078mm, sagittal rotation displacement:1.088±0.300°), the standard tension band plate (vertical displacement:1.248±0.205mm, horizontal displacement:0.291±0.034mm, anterioposterior displacement:0.475±0.107mm, sagittal rotation displacement:1.425±0.377°). The difference between the modified tension band plate and the standard tension band plate was significant (P<0.05). Compared with the two sacroiliac screws, the displacement of the modified tension band plate was larger than two sacroiliac screw, but the difference was not statistically significant (P>0.05). The displacement of the standard tension band plate was largest, the difference between the standard tension band plate and the two sacroiliac screws was also significant (P<0.05).
     Conclusion
     The modified tension band plate which is added a screw placed on sacral ala shortens the fixed distance and further mimics the tension band formed by ligaments of the sacroiliac joint complex. Under both vertical and torsional load, the modified tension band plate can offer superior stability for unstable sacroiliac joint than the standard tension band plate, and it is similar to the two sacroiliac screws. It offers a novel and alternative method for the treatment of the unstable sacroiliac joint injury.
引文
1.张英泽.临床创伤骨科学流行病学.北京:人民卫生出版社,2009:316.
    2. Ayoub MA. Type C pelvic ring injuries in polytrauma patients:can percutaneous iliosacral screws reduce morbidity and costs? European Journal of Orthopaedic Surgery & Traumatology,2012,22(2):137-144.
    3. Demetriades D, Karaiskakis M, Tuotouzas K, et al. Pelvic fractures:epidemiology and predictors of associated abdominal injuries and outcomes. J Am Coll Surg, 2002,195(1):1-10.
    4. Gansslen A, Pohlemann T, Paul C, et al. Epidemiology of pelvic ring injuries. Injury,1996,27 Suppl 1:S-A13-20
    5. Fulkerson EW, Egol KA. Timing issues in frature management:a review of current concepts. Bull NYU Hosp Jt Dis,2009,67(1):58-67.
    6. Giannoudis PV, Pape HC. Damage control orthopaedics in unstable pelvic ring injuries. Injury.2004,35(7):671-677.
    7. Starr AJ, Griffin DR, Reinert CM, et al. Pelvic ring disruptions:prediction of associated injuries, transfusion requirement, pelvic arteriography, complications and mortality. J Orthop Trauma,2002,16(8):553-561.
    8. Cothren CC, Osborn PM, Moor EE, et al. Preperitonal pelvic packing for hemodynamically unstable pelvic fracture:a paradigm shift. J Orthop Trauma, 2007,62(4):834-839, discussion 839-842.
    9. Dente CJ, Feliciano DV, Rozycki GS, et al. The outcome of open pelvic fractures in the modern era. Am J Sur,2005,190(6):830-835.
    10. Flint L, Cryer HG. Pelvic fracture:the last 50 years. J Trauma,2010, 69(3):483-488.
    11. Guthrie HC, Owens RW, Bircher MD. Fractures of the pelvis. J Bone Joint Surg Br.2010,92(11):1481-1488.
    12. Dienstknecht T, Berner A, Lenich A, et al. A minimally invasive stabilizing system for dorsal pelvic ring injuries. Clin Orthop Relat Res,2011,469(11):3209-3217.
    13. Papakostidis C, Kanakaris NK, Kontakis G, et al. Pelvic ring disruptions: treatment modalities and analysis of outcomes. Int Orthop,2009,33(2):329-338.
    14. Tile M, Hearn T, Vrahas M. Biomechanics of the pelvic ring. In:Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia: Lippincott Williams and Wilkins,2003:32-45.
    15. Comstock CP, van der Meulen MC, Goodman SB. Biomechanical comparison ofposterior internal fixation techniques for unstable pelvic fractures. J Orthop Trauma,1996,10(8):517-522.
    16.周东生,王钢、王鲁博,等.骨盆骨折治疗.见:周东生,主编.骨盆创伤学.第2版.济南:山东科学技术出版社,2009:103-171.
    17. Taller S, Sram J, Lucas R, et al. Nonunions or malunions of pelvic fractures. Acta Chir Orthop Traumatol Cech,2009,76(2):121-127.
    18. Routt ML, Simonian PT, Mills WJ. Iliosacral Screw Fixation:Early Complications of the Percutaneous Technique. J Orthop Trauma.1997, 11(8):584-589.
    19. Leighton RK, Waddell JP, Bray TJ, et al. Biomechanical testing of new and old fixation devices for vertical shear fractures of the pelvis. J Orthop Trauma,1991, 5(3):313-317.
    20. Bottlang M, Krieg JC, Mohr M, et al. Emergent management of pelvic ring fractures with use of circumferential compression. J Bone Joint Surg Am,2002, 84-A Suppl 2:43-47.
    21. Stocks GW, Gabel GT, Noble PC, et al. Anterior and posterior internal fixation of vertical shear fractures of the pelvis. J Orthop Res,1991,9(2):237-245.
    22. Yinger K, Scalise J, Olson SA, Bay BK, et al. Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma,2003,17(7):481-487.
    23. Keating JF, Werier J, Blachut P, et al. Early fixation of the vertically unstable pelvis:the role of iliosacral screw fixation of the posterior lesion. J Orthop Trauma,1999,13(2):107-113.
    24. Papathanasopoulos A, Tzioupis C, Giannoudis VP, et al. Biomechanical aspects of pelvic ring reconstruction techniques:Evidence today. Injury,2010, 41(12):1220-1227.
    25. Mord BR, Kellam, JF, Mclaren A, et al. Internal fixation for the injured pelvic ring. In:Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia:Lippincott Williams and Wilkins,2003:217-322.
    26. Durkin A, Sagi HC, Durham R, Flint L. Contemporary management of pelvic fractures. Am J Surg,2006,192(2):211-223.
    27. Gansslen A, Hufner T, Krettek C. Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol, 2006,18(3):225-244.
    28. Schildhauer TA, Ledoux WR, Chapman JR, et al. Triangular osteosynthesis and iliosacral screw fixation for unstable sacral fractures:a cadaveric and biomechanical evaluation under cyclic loads. J Orthop Trauma,2003,17(1):22-31.
    29. Albert MJ, Miller ME, MacNaughton M, et al. Posterior pelvic fixation using a transiliac 4.5-mm reconstruction plate:a clinical and biomechanical study. J Orthop Trauma,1993,7(3):226-232.
    30. Simonain PT, Routt C Jr, Harrington RM, et al. Internal fixation for the transforaminal sacral fracture. Clin Orthop Relat Res,1996, (323):202-209.
    31. Krappinqer D, Larndorfer R, Struve P, et al. Minimally invasive transiliac plate osteosynthesis for type C injuries of the pelvic ring:a clinical and radiological follow-up. J Orthop Trauma,2007,21(9):595-602.
    32. Berber O, Amis AA, Day AC. Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures. J Bone Joint Surg Br,2011,93(2):237-244.
    33.陈红卫,王子阳,黄洪斌,等.经皮重建钢板与经皮骶髂螺钉固定治疗Tile C型骨盆后环骨折.中华骨科杂志,2009,29(11):1019-1022.
    34.王洪,刘璠,张玉峰,等.经皮微创锁定加压钢板固定治疗骨盆后环骨折.中华骨科杂志,2011,31(11):1185-1190.
    35. Kobbe P, Hockertz I, Sellei RM et al. Minimally invasive stabilisation of posterior pelvic-ring instabilities with a transiliac locked compression plate. Int Orthop, 2012,36(1):159-64.
    36.王秋根,杜明奎,纪方,等.锁定加压钢板在骨盆后环损伤中的临床应用.中华创伤骨科杂志,2006,8(1):34-37.
    37.杜明奎,王秋根,张秋林,等.锁定加压钢板固定骶骨不稳定骨折的三维有限元分析.医用生物力学,2007,22(1):94-98.
    38.李凡,汪方,王秋根,等.外固定支架结合锁定加压钢板在不稳定骨盆骨折治疗中的应用.中华创伤骨科杂志,2009,11(9):829-832.
    39. Hao T, Changwei Y, Qiulin Z. Treatment of posterior pelvic ring injuries with minimally invasive percutaneous plate osteosynthesis. Int Orthop,2009, 33(5):1435-1439.
    40. Ayoub MA. Vertically unstable sacral fractures with neurological insult:outcomes of surgical decompression and reconstruction plate internal fixation. Int Orthop, 2009,33(1):261-267.
    41. Suzuki T, Hak DJ, Ziran BH, et al. Outcome and complications of posterior transiliac plating for vertically unstable sacral fractures. J Injury,2009, 40(4):405-409.
    1. Mears DC, Capito CP, Deleeuw H. Posterior pelvic disruptions managed by the use of the Double Cobra Plate. Instr Course Lect,1988,37:143-150.
    2. Albert MJ, Miller ME, MacNaughton M, et al. Posterior pelvic fixation using a transiliac 4.5-mm reconstruction plate:a clinical and biomechanical study. J Orthop Trauma,1993,7(3):226-232.
    3. Krappinqer D, Larndorfer R, Struve P, Rosenberqer R, et al. Minimally invasive transiliac plate osteosynthesis for type C injuries of the pelvic ring:a clinical and radiological follow-up. J Orthop Trauma,2007,21(9):595-602.
    4.陈红卫,王子阳,黄洪斌,等.经皮重建钢板与经皮骶髂螺钉固定治疗Tile C型骨盆后环骨折.中华骨科杂志,2009,29(11):1019-1022.
    5. Hao T, Changwei Y, Qiulin Z. Treatment of posterior pelvic ring injuries with minimally invasive percutaneous plate osteosynthesis. Int Orthop,2009, 33(5):1435-1439.
    6.王洪,刘璠,张玉峰,等.经皮微创锁定加压钢板固定治疗骨折后环骨折.中华骨科杂志,2011,31(11):1185-1190.
    7. Kobbe P, Hockertz I, Sellei RM, et al. Minimally invasive stabilisation of posterior pelvic-ring instabilities with a transiliac locked compression plate. Int Orthop,2012,36(1):159-64.
    8.杜明奎,王秋根,张秋林,等.锁定加压钢板固定骶骨不稳定骨折的三维有限元分析.医用生物力学,2007,22(1):94-98.
    9.李凡,汪方,王秋根,等.外固定支架结合锁定加压钢板在不稳定骨盆骨折治疗中的应用.中华创伤骨科杂志,2009,11(9):829-832.
    10.王秋根,杜明奎,纪方,等.锁定加压钢板在骨盆后环损伤中的临床应用.中华创伤骨科杂志,2006,8(1):34-37.
    11. Suzuki T, Hak DJ, Ziran BH, et al. Outcome and complications of posterior transiliac plating for vertically unstable sacral fractures. Injury,2009, 40(4):405-409.
    12. Ayoub MA. Vertically unstable sacral fractures with neurological insult:outcomes of surgical decompression and reconstruction plate internal fixation. Int Orthop, 2009,33(1):261-267.
    13.杨桢榕,陈淑强,闫楷忠,等.M型锁定重建钢板后路治疗骶髂关节复合体损伤13例分析.局部手术学杂志,2011,20(1):41-42.
    14.王伟峰,周东生、谭国庆,等.重建M形钢板修复骨盆后环损伤的稳定性.中国组织工程研究与临床康复,2011,15(35):6575-6578.
    15. Yinger K, Scalise J, Olson SA, et al. Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma,2003,17, (7):481-487.
    16. Papathanasopoulos A, Tzioupis C, Giannoudis VP, et al. Biomechanical aspects of pelvic ring reconstruction techniques:Evidence today. Injury,2010, 41(12):1220-1227.
    17. Simonain PT, Routt C Jr, Harrington RM, et al. Internal fixation for the transforaminal sacral fracture. Clin Orthop Relat Res,1996, (323):202-209.
    18. Berber O, Amis AA, Day AC. Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures. J Bone Joint Surg Br,2011,93(2):237-244.
    19. Miller JA, Schultz AB, Andersson GB. Load-displacement behavior of sacroiliac joints. J Orthop Res,1987,5(1):92-101.
    20. Saiki K, Hirabayashi S, Horie T, et al. Anatomically correct reduction and fixation of a TileC-1 type unilateral sacroiliac disruption using a rod and pedicle screw system between the S1 vertebra and ilium:experimental and clinical case report. J Orthop Sci,2002,7(5):581-585.
    21. Mears SC, Sutter EG, Wall SJ,et al. Biomechanical comparison of three methods of sacral fracture fixation in osteoporotic bone. Spine,2010,35(10):E392-395.
    22. Varga E, Hearn T, Powell J, et al. Effects of method of internal fixation of symphyseal disruptions on stability of the pelvic ring. Injury.1995,26(2):75-80.
    23. Yu B, Zheng, Z, Zhuang, X, e tal. Biomechanical effects of transverse partial sacrectomy on the sacroiliac joints:an invitro human cadaveric investigation of the border line of sacroiliac joint in stability. Spine,2009,34(13):1370-1375.
    24. Zheng ZM, Yu BS, Chen H, et al. Effect of Iliac Screw Insertion Depth on the Stability and Strength of Lumbo-Iliac Fixation Constructs:an anatomical and biomechanical study. Spine,2009,34(16):E565-E572.
    25. Tile M, Hearn T, Vrahas M. Biomechanics of the pelvic ring. In:Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia: Lippincott Williams and Wilkins,2003:32-45.
    26. Pool-Goudzwaard AL, Vleeming A, Stoeckart R, et al. Insufficient lumbopelvic stability:a clinical, anatomical and biomechanical approach to 'a-specific' low back pain. Man Ther,1998,3(1):12-20.
    27. Zinghi G.F, Briccoli A, Bungaro P, et al. Principles of anatomy. In Zinghi G.F eds. Fractures of the pelvis and acetabulum. Thieme:Georg Thieme Verlag, 2004:11-22.
    28. Vukicevic S, Marusic A, Stavljenic A, et al.Holographic analysis of the human pelvis. Spine,1991,16(2):209-214.
    29. Smidt GL, Wei SH, McQuade K, et al. Sacroiliac motion for extreme hip positions. A fresh cadaver study. Spine,1997,22(18):2073-2082.
    30. Vleeming A, Stoeckart R, Volkers AC, et al. Relation between form and function in the sacroiliac joint. Part I:Clinical anatomical aspects. Spine,1990, 15(2):130-132.
    31. Vleeming A, Volkers AC, Snijders CJ, et al. Relation between form and function in the sacroiliac joint. Part Ⅱ:Biomechanical aspects. Spine,1990,15(2):133-136.
    32. Cichoke AJ. Anatomy and function of the sacroiliac articulation:a review of the literature. Chiropractic,1989,2(3):65-70.
    33. Brucholz RW. The pathological anatomy of Malgaine fracture dislocation of the pelvis. J Bone Joint Surg,1981,63(3):400-404.
    34. Porterfield JA. Oerosu. C.The sacroillac joint. In:Gould JA eds. Orthopaedic and Sports Physical Therapy.2nd Ed, St. LOUIS:C.V. Mosby,1990:553-559
    35. Dujardin FH, Roussignol X, Hossenbaccus M, et al. Experimental study of the sacroiliac joint micromotion in pelvic disruption. J Orthop Trauma,2002, 16(2):99-103.
    36.潘进社,康红军,张英泽,等.骨盆韧带损伤对骶髂关节稳定性影响的生物力学研究.中华创伤骨科杂志,2008,10(1):68-71.
    37. Pool-Goudzwaard AL, Kleinrensink GJ, Snijders CJ, etal. The sacroiliac part of the iliolumbar ligament. J Anat,2001,199(4):457-463.
    38. Kellam JF, Browner BD. Fractures of the pelvic ring. In:Browner BD, Jupiter JB, Levine AM, et al eds. Skeletal trauma. Philadelphia:WB Saunder,1992:849-897.
    39. Kellam JF, McMurty RY, Paley D, et al. The unstable pelvic fracture, operative treatment. Orthop Clin North Am,1987,18(1):25-41.
    40. Matta JM, Sausedo T. Internal fixation of pelvic fractures, Clin Orthop,1989, (242):83-97.
    41. Tile M. Anatomy of the pelvic ring. In:Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia:Lippincott Williams and Wilkins,2003:12-21.
    42. Comstock CP, van der Meulen MC, Goodman SB. Biomechanical comparison ofposterior internal fixation techniques for unstable pelvic fractures. J Orthop Trauma,1996,10(8):517-522.
    43.陈伟,张奇,郑占乐,等.不同耻骨联合分离对骨盆后环应力分布影响的生物力学研究.中华创伤杂志,2010,26(6):531-534.
    44. Vrahas M, Hern TC, Diangelo D, et al. Ligamentous contributions to pelvic stability. Orthopedics.1995,18(3):271-274.
    45. Snijders C, Vleeming A, Stoeckart R. Transfer of lumbosacral load to iliac bones and legs. Part I:Biomechanics of self-bracing of the sacroiliac joints and its significance for treatment and exercise. Clinical biomechanics.1993,8(6): 285-294.
    46. Sturesson B, Selvik G, Uden A. Movements of the sacroiliac joints:a roentgen stereogrammatic analysis. Spine,1989,14(2):162-165.
    47. Hungerford B, Gilleard W, Hodges P. Evidence of altered lumbo-pelvic muscle recruitment in the presence of sacroiliac joint pain. Spine.2003,28(14): 1593-1600.
    48. Vleeming A, Pool-Goudzwaard A, Stoeckart R, et al.The posterior layer of the thoraco-lumbar fascia:its function in load transfer from spine to legs. Spine,1995, 20(7):753-758.
    49. Bazmajian JV. Grant's method of anatomy,4th ed. Baltimore:Williams & Wilkins, 1980.
    50.周东生,王钢、王鲁博,等.骨盆的生物力学.见:周东生,主编.骨盆创伤学,第2版.济南:山东科学技术出版社,2009:18-26.
    51.孙建伟,尹望平,张春才,等.基于激光快速成型技术正常步态下骨盆应力分布的三维光弹分析.中国组织工程研究,2012,16(26):4751-4755.
    52. Papakostidis C, Kanakaris NK, Kontakis G, et al. Pelvic ring disruptions: treatment modalities and analysis of outcomes. Int Orthop,2009,33(2):329-338.
    53. Leighton RK, Waddell JP, Bray TJ, et al. Biomechanical testing of new and old fixation devices for vertical shear fractures of the pelvis. J Orthop Trauma,1991, 5(3):313-317.
    54. Stocks GW, Gabel GT, Noble PC, et al. Anterior and posterior internal fixation of vertical shear fractures of the pelvis. J Orthop Res,1991,9(2):237-245.
    55. Keating JF, Werier J, Blachut P, et al. Early fixation of the vertically unstable pelvis:the role of iliosacral screw fixation of the posterior lesion. J Orthop Trauma,1999,13(2):107-113.
    56. Garcia JM, Doblare M, Seral B, et al. Three-dimensional finite element analysis of several internal and external pelvis fixations. J Biomech Eng,2000, 122(5):516-22.
    57.王根本,金保纯,戴和壁,等.下肢.见:王根本,主编.临床解剖学.北京:人民卫生出版社,1988:220-221.
    58. Gorczyca, J, Hearn T, Vrahas M. Biomechanics and methods of pelvic fixation. In: Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia:Lippincott Williams and Wilkins,2003:116-129.
    59.汪方,刘瑞,王秋根,等.垂直梯级载荷下人体全骨盆轴向刚度分析.医用生物力学,2011,26(1):57-62.
    60. Kapandji IA:The Physiology of the Joints. New York:Churchill Livingstone. 1974:54-71.
    61. Alderink GJ. The sacroiliac joint:review of anatomy, mechanics, and function. J Orthop Sports Phys Ther,1991,3(2):71-84.
    62.陈伟,张奇,郑占乐,等.三种内固定物固定个骨盆后环损伤稳定性的生物力学比较.中华骨科杂志,2011,31(11):1232-1238.
    1. Krappinqer D, Larndorfer R, Struve P, et al. Minimally invasive transiliac plate osteosynthesis for type C injuries of the pelvic ring:a clinical and radiological follow-up. J Orthop Trauma,2007,21(9):595-602.
    2. Hao T, Changwei Y, Qiulin Z. Treatment of posterior pelvic ring injuries with minimally invasive percutaneous plate osteosynthesis. Int Orthop, 2009, 33(5):1435-1439.
    3. Suzuki T, Hak DJ, Ziran BH, et al. Outcome and complications of posterior transiliac plating for vertically unstable sacral fractures. Injury,2009, 40(4):405-409.
    4. Albert MJ, Miller ME, MacNaughton M, et al. Posterior pelvic fixation using a transiliac 4.5-mm reconstruction plate:a clinical and biomechanical study. J Orthop Trauma,1993,7(3):226-232.
    5. Yinger K, Scalise J, Olson SA, et al. Biomechanical comparison of posterior pelvic ring fixation. J Orthop Trauma.2003,17(7):481-7.
    6. Berber O, Amis AA, Day AC. Biomechanical testing of a concept of posterior pelvic reconstruction in rotationally and vertically unstable fractures. J Bone Joint Surg Br,2011,93(2):237-244.
    7. Mord BR, Kellam, JF, Mclaren A, et al. Internal fixation for the injured pelvic ring. In:Tile M, Helfet DL, Kellam, JF eds. Fractures of the pelvis and acetabulum,3rd ed. Philadelphia:Lippincott Williams and Wilkins,2003:217-322.
    8. Varga E, Hearn T, Powell J, et al. Effects of method of internal fixation of symphyseal disruptions on stability of the pelvic ring. Injury,1995,26(2):75-80.
    9. Yu, B, Zheng, Z, Zhuang, X, e tal. Biomechanical effects of transverse partial sacrectomy on the sacroiliac joints:an invitro human cadaveric investigation of the border line of sacroiliac joint in stability. Spine,2009,34(13):1370-1375.
    10. Zheng ZM, Yu BS, Chen H, et al. Effect of Iliac Screw Insertion Depth on the Stability and Strength of Lumbo-Iliac Fixation Constructs:an anatomical and biomechanical study.Spine,2009,34(16):E565-E572.
    11. Kellam JF, McMurtry RY, Paley D, et al. The unstable pelvic:operative treatment. Orthop Clin North Am,1987,18:25-41.
    12. Matta JM, Saucedo T. Internal fixation of pelvic ring fractures. Clin Orthop,1989, 242:83-97.
    13. Browner BD, Cole JD, Graham JM, et al. Delayed posterior internal fixation of unstable pelvis fractures. J Trauma,1987,27(9):998-1006.
    14. Gorczyca JT, Varga E, Woodside T, et al. The strength of iliosacral lag screws and transiliac bars in the fixation of vertically unstable pelvic injuries with sacral fractures. Injury,1996,27(8):561-564.
    15. Comstock CP, van der Meulen MC, Goodman SB. Biomechanical comparison of posterior internal fixation techniques for unstable pelvic fractures. J Orthop Trauma,1996,10(8):517-522.
    16. Atlihan D, Tekdemir I, Ates Y, et al. Anatomy of the anterior sacroiliac joint with reference to lumbosacral nerves. Clin Orthop Relat Res,2000, (376):236-241.
    17. Durkin A, Sagi HC, Durham R, Flint L. Contemporary management of pelvic fractures. Am J Surg,2006,192(2):211-213.
    18.曹奇勇,王满宜,吴新宝,等.前路跨骶髂钢板固定治疗骨盆后环损伤.中华医学杂志,2008,88(13):898-900.
    19. Gansslen A, Hufner T, Krettek C. Percutaneous iliosacral screw fixation of unstable pelvic injuries by conventional fluoroscopy. Oper Orthop Traumatol, 2006,18(3):225-244.
    20. Altman DT, Jones CB, Routt ML Jr. Superior gluteal artery injury during iliosacral screw placement. J Orthop Trauma,1999,13(3):220-227.
    21. Van Zwienen CM, Van den Bosch EW, Hoek van Dijke GA, et al. Cyclic loading of sacroiliac screws in Tile C pelvic fractures. J Trauma,2005,58(5):1029-1034.
    22. Van den Bosch EW, van Zwienen CM, van Vugt AB. Fluoroscopic positioning of sacroiliac screws in 88 patients. J Trauma,2002,53(1):44-48.
    23. Schweitzer D, Zylberberg A, Cordova M, Gonzalez J. Closed reduction and iliosacral percutaneous fixation of unstable pelvic ring fractures. Injury,2008, 39(8):869-874.
    24. Marmor M, Lynch T, Matityahu A. Superior gluteal artery injury during iliosacral screw placement due to aberrant anatomy. Orthopedics,2010,33(2):117-20.
    25. Templeman D, Schmidt A, Freese J, et al. Proximity of iliosacral screws to neurovascular structures after internal fixation. Clin Orthop Relat Res,1996, (329):194-198.
    26. Reilly MC, Bono CM, Litkouhi B, et al. The effect of sacral fracture malreduction on the safe placement of iliosacral screws. J Orthop Trauma,2006,20(1 suppl):S37-43.
    27. Hinsche AF, Giannoudis PV, Smith RM. Fluoroscopy-based multiplanar image guidance for insertion of sacroiliac screws. Clin Orthop Relat Res,2002, (395):135-144.
    28. Zwingmann J, Konrad G, Mehlhorn AT, et al. Percutaneous iliosacral screw insertion:malpositioning and revision rate of screws with regards to application technique (navigated vs. Conventional). J Trauma,2010,69(6):1501-1506.
    29. Van Zwienen CM, van den Bosch EW, Snijders CJ, et al. Biomechanical comparison of sacroiliac screw techniques for unstable pelvic ring fractures. J Orthop Trauma,2004,18(9):589-595.
    30. Schildhauer TA, Ledoux WR, Chapman JR, et al. Triangular osteosynthesis and iliosacral screw fixation for unstable sacral fractures:a cadaveric and biomechanical evaluation under cyclic loads. J Orthop Trauma.2003,17(1):22-31.
    31. Griffin DR, Starr AJ, Reinert CM, et al. Vertically unstable pelvic fractures fixed with percutaneous iliosacral screws:does posterior injury pattern predict fixation failure? J Orthop Trauma,2003,17(6):399-405.
    32. Utting MR, Vince AS, Patel AD. Late neurological symptoms after internal fixation of a pelvic fracture due to breakage of an iliosacral screw. Injury,2000, 31(7):554-556.
    33. Schildhauer TA, Josten Ch, Muhr G. Triangular osteosynthesis of vertically unstable sacrum fractures:a new concept allowing early weight-bearing. J Orthop Trauma,2006,20(1 Suppl):S44-51.
    34. Sagi HC, Militano U, Caron T, et al. A comprehensive analysis with minimum 1-year follow-up of vertically unstable transforaminal sacral fractures treated with triangular osteosynthesis. J Orthop Trauma,2009,23(5):313-9, discussion:319-321.
    35. Ayoub MA. Vertically unstable sacral fractures with neurological insult:outcomes of surgical decompression and reconstruction plate internal fixation. Int Orthop, 2009,33(1):261-267.
    36.王伟峰,周东生,谭国庆,等.重建M形钢板修复骨盆后环损伤的稳定性.中国组织工程研究与临床康复,2011,15(35):6575-6578.
    37.陈红卫,王子阳,黄洪斌,等.经皮重建钢板与经皮骶髂螺钉固定治疗Tile C型骨盆后环骨折.中华骨科杂志,2009,29(11):1019-1022.
    38.王秋根,杜明奎,纪方,等.锁定加压钢板在骨盆后环损伤中的临床应用.中华创伤骨科杂志,2006,8(1):34-37.
    39.王洪,刘璠,张玉峰,等.经皮微创锁定加压钢板固定治疗骨盆后环骨折.中华骨科杂志,2011,31(11):1185-1190.
    40. Kobbe P, Hockertz I, Sellei RM, et al. Minimally invasive stabilisation of posterior pelvic-ring instabilities with a transiliac locked compression plate. Int Orthop,2012,36(1):159-164.
    41. Shirahama M. Surgical treatment of vertically unstable sacral fractures using a new plate. Kurume Med J,2005,52(1-2):9-18.
    42. Simonain PT, Routt C Jr, Harrington RM, et al. Internal fixation for the transforaminal sacral fracture. Clin Orthop Relat Res,1996, (323):202-209.
    43. Loegters T, Briem D, Gatzka C, et al. Treatment of unstable fractures of the pelvic ring in pregnancy. Arch OrthopTrauma Surg,2005,125(3):204-208.
    44.陈伟,张奇,郑占乐,等.三种内固定物固定个骨盆后环损伤稳定性的生物力学比较.中华骨科杂志,2011,31(11):1232-1238.
    45.王奇,黄其杉,王向阳,等.骶骨后路钉板固定的解剖学研究.中华骨科杂志,2010,30(3):277-281.
    46. Fardon D. Dispalced transverse fracture of the sacrum with nerve root injury: report of a case with successful operative management. J Trauma,1979, 19(2):119-122.
    47. Padalkar P, Pereira BP, Kathare A, Sun KK, Kagda F, Joseph T. Trans-iliosacral plating for vertically unstable fractures of sacral spine associated with spinopelvic dissociation:A cadaveric study. Indian J Orthop,2012,46(3):274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700