脊索细胞体外诱导骨髓间充质干细胞定向分化及联合性移植阻止兔椎间盘退行性变的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分脊索细胞和骨髓间充质干细胞的分离培养和鉴定
     目的分离兔髓核脊索细胞及骨髓间充质干细胞,通过形态学及流式细胞术对两种细胞进行鉴定,为下一步细胞试验奠定基础。
     方法4-6周龄新西兰兔4只,取胸腰段脊柱的髓核,用密度梯度离心法提取脊索细胞,同时取其股骨骨髓用FICOLL液分离得到骨髓间充质干细胞,光镜观察脊索细胞和骨髓间充质干细胞的生长情况,取原代脊索细胞脊进行电镜观察;对第3代的骨髓间充质干细胞进行表面抗原CD34、CD44、CD29、CD45的检测。
     结果光镜下观察原代脊索细胞呈圆形或椭圆形,胞体大,细胞增殖不明显。骨髓间充质干细胞呈梭形贴壁生长,旋涡状排列,细胞贴壁后折光性较差。电镜扫描发现脊索细胞大小约为20-30um,细胞形态呈圆形或者椭圆形,细胞膜表面可见大量糖原分布,细胞内可见大量的大小不一的囊泡存在。对第3代的骨髓间充质干细胞进行表面抗原的检测发现:细胞表达CD34、CD44阴性,CD29、CD45阳性。其中CD34的平均表达率为3.9%,CD44的平均表达率为4.4%,CD45的平均表达率为96.2%,CD29的平均表达率为88.1%。
     结论使用密度梯度离心法可以分离出脊索细胞和骨髓间充质干细胞,经过细胞鉴定两种细胞均表现出特征性特点,为进一步试验奠定了基础。
     第二部分接触性共培养脊索细胞促进骨髓间充质干细胞增值及定向诱导分化的实验研究
     目的分离兔髓核脊索细胞及骨髓间充质干细胞,通过共培养探讨脊索细胞对骨髓间充质干细胞增值能力及细胞表型的影响。
     方法4-6周龄新西兰兔4只,取胸腰段脊柱的髓核,用密度梯度离心法提取脊索细胞,同时取其股骨骨髓用FICOLL液分离得到骨髓间充质干细胞,光镜观察脊索细胞和骨髓间充质干细胞不同比例(1:2、1:1、2:1)共培养条件下细胞的生长情况、CCK-8法检测细胞增殖。脊索细胞和骨髓间充质干细胞共培养(1:1)后行甲苯胺蓝染色及Ⅱ型胶原染色检测骨髓间充质干细胞的细胞表型的改变情况。共培养后的骨髓间充质干细胞进行相关基因表达的检测。
     结果光镜下观察原代脊索细胞呈圆形或椭圆形,胞体大,细胞增殖不明显。骨髓间充质干细胞呈梭形贴壁生长,旋涡状排列,细胞贴壁后折光性较差。CCK-8检测发现脊索细胞/骨髓间充质干细胞1:1组细胞增殖明显高于其余各组。甲苯胺蓝染色骨髓间充质干细胞单独培养组呈阴性,共培养组呈阳性。Ⅱ型胶原染色骨髓间充质干细胞单独培养组呈阴性,共培养组呈阳性。RT-PCR检测发现共培养组蛋白聚糖及Ⅱ型胶原的表达分别为脊索细胞的2倍、1.35倍,而单独培养的MSC则表达阴性。
     结论在共培养条件下脊索细胞可以促进骨髓间充质干细胞增值,且细胞比例为1:1时更为显著;同时可以诱导其产生Ⅱ型胶原及聚集蛋白聚糖,表现出类软骨细胞表型。
     第三部分非接触共培养脊索细胞诱导骨髓间充质干细胞向类软骨细胞分化的实验研究
     目的分离兔髓核脊索细胞(NC)及骨髓间充质干细胞(MSC),通过非接触共培养探讨脊索细胞对MSC细胞表型的影响。
     方法取4-6周龄新西兰兔8只,取胸腰段脊柱的髓核,用密度梯度离心提取脊索细胞,同时取其股骨骨髓用FICOLL液分离,光镜观察脊索细胞和MSC等比例(1:1)非接触共培养条件下的生长情况。对非接触共培养(1:1)和单独培养的MSC行免疫组化及RT-PCR、Western-blot检测MSC的细胞表型的改变情况。
     结果原代脊索细胞呈圆形或椭圆形,细胞体积大,细胞增殖不明显。MSC呈梭形贴壁生长,呈三角形或梭形,旋涡状排列,两端呈尖性突起,细胞折光性较差。非接触共培养后,行甲苯胺蓝染色MSC单独培养组呈阴性,与NC非接触共培养的MSC组呈阳性。Ⅱ型胶原免疫组化MSC单独培养组呈阴性,与NC非接触共培养的MSC组呈阳性呈阳性。通过RT-PCR、Western-blot在基因及蛋白水平检测后发现:非接触共培养的MSC组其Ⅱ型胶原及蛋白聚糖的表达明显增多,与对照组有显著性差异(p<0.05)。
     结论在非接触共培养条件下脊索细胞可以诱导MSC向类软骨细胞方向分化,为组织工程化髓核的种子细胞筛选提供新选择。
     第四部分联合移植脊索细胞和MSC阻止兔椎间盘退行性变的实验研究
     目的使用纤维环穿刺抽吸法造模兔椎间盘退行性变,联合移植脊索细胞(NC)及骨髓间充质干细胞(MSC)到退变的椎间盘内,观察退变椎间盘的变化。
     方法取1-1.5kg新西兰兔12只,手术对兔脊柱L3-4、L4-5、L5-6、L6-7四个椎间盘行穿刺抽吸髓核组织造模,造模2周后取等比例共培养3天脊索细胞和MSC移植到L4-5;单独的脊索细胞移植到L5-6;单独的MSC移植到L6-7。动物饲养2周后处死行髓核组织的免疫组化及Western-blot检测椎间盘退变的改变情况。
     结果穿刺抽吸髓核组织后2周行MRI检测兔椎间盘退行性变模型%ST2WI值较2周前相比明显下降,经过细胞移植后各组%ST2WI值均较对照组增高,尤其以联合细胞组为著。HE染色及甲苯胺蓝染色显示联合细胞移植后,椎间盘髓核内软骨样细胞明显增多,细胞外基质较各组丰富。Ⅱ胶原免疫组化:联合细胞移植组在髓核内较其它3组可见大片棕色区域,其间存在深染的棕黄色颗粒,基质内可见黄染阳性的软骨样细胞,靠近细胞处染色较深。通过Western-blot在蛋白水平检测后发现:对照组Ⅰ型胶原呈现高表达,分别是联合细胞移植组、单独移植脊索细胞组、单独移植MSC组的24.78倍、13.63倍和14.03倍(p<0.05)。联合细胞移植组Ⅱ型胶原的表达较C组和D组增高(p<0.05)。
     结论脊索细胞和MSC共培养后联合移植可以阻逆兔椎间盘的退行性变,为组织工程治疗椎间盘退行性变提供新的思路。
PartⅠ
     Isolation and characterization of notochordal cells(NCs) and mesenchymal stem cells(MSCs)
     Objective To isolate and co-culture notochordal cells(NC) and mesenchymal stem cells(MSCs), to assess the cell characteristic of notochordal cells and mesenchymal stem cells.
     Methods Notochordal cell were obtained from immature NP of 4 New Zealand rabbits(4-6 week-old) and purified by discontinuous gradient density centrifugation, MSCs were released from femur bone marrow and purified by discontinuous gradient density centrifugation. Cells culture expanded to passage 3, Investigate expression of CD29, CD34, CD44, CD45 in MSCs by flow cytometry (FCM).
     Results NCs were round or oval, the diameter between 20-30um, filled with vesicles, the cells aggregated commonly. Observed by electron microscope, there are many different size vesicles, but a few organelles in NCs, glycogen on the surface of membrane. MSCs were spindle shape or triangular, the original cells covered the flask for 7-10 days, grown rapidly by passage. The surface molecules of MSC were detected by FCM, the expression of CD29 and CD45 was positive compare to the negative expression of CD34 and CD44 that provided the evidence for identification of MSC.
     Conclusions Notochordal cell were obtained from immature NP and purified by discontinuous gradient density centrifugation, MSCs were released from femur bone marrow and purified by discontinuous gradient density centrifugation.
     PartⅡ
     Notochordala cell stimulates proliferation and differention of mesenchymal stem cell toward nucleus pulposus phenotype
     Objective:To isolate and co-culture notochordal cells(NC) and mesenchymal stem cells(MSCs) from New Zealand rabbit immature nucleus pulposus(NP), to assess the contribution of notochordal cells to proliferation and differention of mesenchymal stem cells.
     Methods:Notochordal cell were got from immature NP of 4 New Zealand rabbits(4-6 week-old) and purified by discontinuous gradient density centrifugation, MSCs were released from femur bone marrow and purified by discontinuous gradient density centrifugation. MSCs were cultured alone and co-cultured with NC(1:1/1:2/2:1), evaluated cell proliferation by CCK8-kit and expressions of collagenⅡand proteoglycan by toluidine blue and immunocytochemistry staining. Assessed the expression of collagenⅡand proteoglycan in gene and protein level.
     Results:NCs and MSCs were isolated and purified. NC were with diameter of 20-30un, had abundant intracytoplasmic vesicles and poor proliferation. MSCs were adherent growth with fusiform, arrayed with whirlpool. By co-cultured, the group of cell ration at 1:1(NC:MSC) increased significantly in proliferation compared with other groups. After co-culture, MSCs from the group co-culture were observed expression of collagenⅡand proteoglycan compared with negative expression in the group of MSCs cultured alone.
     Conclusion:By coculture, NC can stimulate MSCs'proliferation that will be significant at cell ration 1:1, and differention toward nucleus pulposus cell.
     Part III
     Inducing mesenchymal stem cells to differentiate toward nucleus pulposus phenotype with indirect co-culture
     Objective To isolate and co-culture notochordal cells(NC) and mesenchymal stem cells(MSCs) from New Zealand rabbit immature nucleus pulposus(NP), to assess the contribution of notochordal cells to differentiation of mesenchymal stem cells.
     Methods Notochordal cell were got from immature NP of 8 New Zealand rabbits (4-6 week-old) and purified by discontinuous gradient density centrifugation, MSCs were released from femur bone marrow and purified by discontinuous gradient density centrifugation. MSCs were cultured alone and non-contact co-cultured with NC(1:1), evaluated expressions of collagenⅡand proteoglycan by toluidine blue and immunocytochemistry staining. Assessed the expression of collagenⅡand proteoglycan in gene and protein level.
     Results NCs and MSCs were isolated and purified. NC were with diameter of 20-30un, had abundant intracytoplasmic vesicles and poor proliferation. MSCs were adherent growth with fusiform, arrayed with whirlpool. After indirect co-cultured, MSCs from the group co-culture were observed expression of collagenⅡand proteoglycan compared with negative expression in the group of MSCs cultured alone.
     Conclusion By indirect coculture, NC can stimulate MSCs'proliferation and differentiation toward nucleus pulposus cell, These findings maybe supply a new choice to cell therapy strategy of intervertebral disc regeneration.
     Part IV
     Restraining Degeneration of Punctured Intervertebral Discs by Transplantation of Rabbit notochordal cells and Marrow Stroma Cells
     Objective:To assess the ability of transplanted notochordal cells (NCs) and marrowstroma cells (MSCs) in restraining the degeneration of punctured intervertebral discs in rabbits.
     Methods The first passage NCs and third passage MSCs were harvested for transplantation. Twelve New Zealand white rabbits were invited in this experimentation. The L3/4, L4/5, L5/6, and L6/7 discs of the rabbits were stabbed and punctured using a 18G needle. After two weeks,The L3/4 discs were then untreated, L4/5 discs were treated by transplantation NCs and MSCs, L5/6 discs treated by transplantation NCs, L6/7 discs were treated by transplantation MSCs. Magnetic Resonance Images of the lumbar vertebral T2 weighed signals Were collected after 2 weeks by the operations. The DHI and standardized T2WI(ST2wI) were Measured using Image-proplus6.0 and Mergee Film Workstation. Nucleus pulposus were evaluated expressions of collagenⅡand proteoglycan by toluidine blue and immunocytochemistry staining. Assessed the expression of collagen II and collagen I in protein level.
     Results:Animals survived above 2 weeks after been transplanted. The transplantation effectively restrained the degeneration of the punctured discs. The L4/5 discs had higher DHI in 2 weeks by operation than other discs (P<0.05). The L4/5 discs demonstrated significantly positive compared with control by stained with toluidine blue and in Immunocytochemistry. The L4/5 discs were observed expression of collagen II compared with less expression in the L5/6, L6/7 disc.
     Conclusion:Transplantation of Rabbit NCs and MSCs restrain the degeneration of punctured discs. This cell therapy have shown stronger potential of extracellular matrixsynthesis, and height and water content Recovery of discs.
引文
1. Oegema TR Jr. The role of disc cell heterogeneity in determining disc biochemistry:A speculation. Biochem Soc Trans 2002;30:839-44
    2. OkumaM,Mochida J, Nishimura K, et al. Reinsertion of stimulated nucleus pulposus cells retards intervertebral disc degeneration:An in vitro and in vivo experimental study. J Orthop Res 2000; 18:988-97.
    3. Cole TC,Ghosh P, Taylor TKF. Variations of the proteoglycans of the canine intervertebral disc with ageing. Biochim Biophys Acta 1986;880:209-19.
    4. Jahnke MR, McDevitt CA. Proteoglycans of the human intervertebral disc. Electrophoretic heterogeneity of the aggregating proteoglycans of the nucleus pulposus. Biochem J 1988;251:347-56.
    5. Oegema TR Jr. Biochemistry of the intervertebral disc. Clin Sports Med 1993;12:419-39.
    6. Diwan AD, Parvataneni HK, Khan SN, et al. Current concepts in intervertebral disc restoration. Orthop Clin North Am 2000;31:453-64.
    7. Grange L, Gaudin P, Trocme C, et al. Intervertebral disk degeneration and herniation: the role of metalloproteinases and cytokines. Joint Bone Spine 2001;68:547-53.
    8. Hayes AJ, Benjamin M, Ralphs JR. Extracellular matrix in development of the intervertebral disc. Matrix Biol 2001;20:107-21.
    9. Oegema TR Jr. The role of disc cell heterogeneity in determining disc biochemistry:A speculation. Biochem Soc Trans 2002;30:839-44.
    10. Ganey T, Libera J, Moos V, et al. Disc chondrocyte transplantation in a anine model:A treatment for degenerated or damaged intervertebral disc. pine 2003;28:2609-20.
    11. Hunter CJ, Matyas JR, Duncan NA. The notochord cell in the nucleuspulposus:A review in the context of tissue engineering. Tissue Eng 2003;9:667-77.
    12. Aguiar DJ, Johnson SL, Oegema TR Jr. Notochordal cells interact with nuleus pulposus cells:Regulation of proteoglycan synthesis. Exp Cell Res 1999 246:129-37.
    13.Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype.Stem Cell Res Ther.2010 Jun 16; 1(2):18
    14.赵献峰,刘浩,丰于均,等.脊索细胞促进髓核软骨样细胞增殖及表型维持(J).中国修复重建外科杂志,2008,22(8):939-943
    15. Erwin WM, Inman RD. Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation. Spine (Phila Pa 1976).2006 1;31(10):1094-9.
    16. Erwin WM, Ashman K, O'Donnel P et al. Nucleu pulposus notochord cells secrete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthritis Rheum.2006;54(12):3859-67.
    17. Foster LJ, Zeemann PA, Li C, et al. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells.2005 Oct;23(9):1367-77.
    18. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315-7.
    19. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7.
    20. Barry FP, Murphy JM. Mesenchymal stem cells:clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36:568-84.
    21. Schauwer CD, Meyer E, Walle GR, Soom AV. Markers of sternness in equine mesenchymal stem cells:a plea for uniformity. Theriogenology.2010 Dec 31. [Epub ahead of print]
    22.柳向东,柴冈,李东,等.成人骨髓间充质干细胞的体外培养和表型鉴定[J].上海第二医科大学学报,2004,24(4):302-306.
    1 Maldonado BA, Oegema TR Jr. Initial characterization of the metabolism of intervertebral disc cells encapsulated in microspheres. J Orthop Res 1992; 10(5):677-690.
    2 Kim KW, Kim YS, Ha KY, et al. An autocrine or paracrine Fas-mediated counter attack:a potential mechanism for apoptosis of notochordal cells in intact rat nucleus pulposus. Spine 2005; 30(11):1247-1251.
    3 Hunter CJ, Matyas JR, Duncan NA, et al. The notochordal cell in the nucleus pulposus: a review in the context of tissue engineering.Tissue Eng 2003; 9(4):667-677.
    4肖剑,贾连顺,程岚等.兔腰椎间盘髓核细胞活力测定及外源性基因在其中的表达[J].中国临床康复,2002,6(20):3023-3024
    5. Horwitz T. The human notochord:a study of its development and regression, variations, and pathologic derivative, chordoma. Indianapolis:Horwitz; 1977.
    6. Ghosh P. The Biology of the Intervertebral Disc. Boca Raton, FL:CRC Press;1988.
    7. Aguiar DJ, Johnson SL, Oegema TR, et al. Notochordal cells interact with nucleus pulposus cells:Regulation of proteoglycan synthesis. Exp Cell Res 1999;246:129-37.
    8. Oegema TR Jr, Swedenberg S, Johson SL, et al. Residual chymopapain activity after chemonucleolysis in normal intervertebral discs in dogs. J Bone Joint Surg Am 1992;74:831-8.
    9. Oegema TR Jr. The role of disc cell heterogeneity in determining disc biochemistry:A speculation. Biochem Soc Trans 2002;30:839-44.
    10.赵献峰,刘浩,丰于均,等.脊索细胞促进髓核软骨样细胞增殖及表型维持(J).中国修复重建外科杂志,2008,22(8):939-943
    11 Erwin WM, Inman RD.Notochord cells regulate intervertebral disc chondrocyte proteoglycan production and cell proliferation.Spine (Phila Pa 1976).2006 May 1;31(10):1094-9.
    12 Erwin WM,Ashman K,Donnel P, et al. Nucleus pulposus notochord cells serete connective tissue growth factor and up-regulate proteoglycan expression by intervertebral disc chondrocytes. Arthitis Rbeum,2006; 54(12):3859-3867
    13 Baksh D, Song L, Tuan RS,et al. Adult mesenchymal stem cells:characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 2004, 8:301-316.
    14 Mochida J. New strategies for disc repair:novel preclinical trials. J Orthop Sci,2005; 10(1),112-118.
    15 Indrawattana N, Chen G, Tadokoro M, et al.Growth factor combination for chondrogenic induction from human mesenchymal stem cell.Biochem Biophys Res Commun.2004 Jul 30;320(3):914-919.
    16 Richardson SM, Curran JM, Chen R, et al.The differentiation of bone marrow mesenchymal stem cells into chondrocyte like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials,2006;27(22):4069-4078
    17 Sakai D, Mochidal J, Yamamoto Y, et al. Transplantation of mesenchymal stem cells embedded in Atelocollagen gel to the intervertebral disc:a potential therapeutic model for disc degeneration. Biomaterials,2003;24(20):3531-3541
    18 Sakai D, Mochidal J, Iwashina T, et al. Regenerative effect of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc Biomaterials,2006;27(3):335-345
    19王佳,陈晓禾,黄永灿等.缺氧对hBMSCs和胎盘来源MSCs增殖的影响(J).中国修复重建外科杂志,2009,23(2):136-139
    20 Wuertz K, Godburn K, Neidl inger, et al. Behavior of mesenchymal stem cells in the chemical microenvironment of the intervertebral disc. Spine,2008,33(17):1843-1849.
    21 Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype.Stem Cell Res Ther.2010 Jun 16; 1(2):18
    1. Boos N, Weissbach S, Rohrbach H, et al. Classification of age-related changes in lumbar intervertebral discs:2002 Volvo Award in basic science. Spine 2002;27:2631-44.
    2. Oegema TR Jr. The role of disc cell heterogeneity in determining disc biochemistry:a speculation. Biochem Soc Trans 2002;30 (Pt6):839-44.
    3. Kalson NS, Richardson S, Hoyland JA, et al. Strategies for regeneration of the intervertebral disc. Regen Med 2008;3:717-29.
    4. Ruan D, He Q, Ding Y, et al. Intervertebral disc transplantation in the treatment of degenerative spine disease:a preliminary study. Lancet 2007;369:993-9.
    5.肖剑,贾连顺,程岚等.兔腰椎间盘髓核细胞活力测定及外源性基因在其中的表达[J].中国临床康复,2002,6(20):3023-3024
    6. Richardson S M, Curran J M, Chen R, et al. The differentiation of bone mesenchymal stem cells into chondroeyte-like cells on poly-L-lactic acid (PLLA) scaffolds [J]. Biomaterials,2006,27(22):4069—4078.
    7. Le Visage C, Kim S W, Tateno K, et al. Interaction of human mesenchymal stem cells with disc cells:changes in extracellular matrix biosynthesis [J].Spine,2006,31,(18); 2036-2042.
    8.鲍军平,吴小涛,王运涛等.干细胞移植延缓椎间盘退变及磁共振示踪研究[J].东南大学学报:医学版,2008,27(3):166-170.
    9. Sakai D, Mochida J, Iwashina T, et al. Regenerative effects of transplanting mesenchymal stem cells embedded in atelocollagen to the degenerated intervertebral disc [J]. Biomaterials,2006,27(3):335-345.
    10. Ho G, Leung V Y L, Cheung K M C,et al. Effect of severity of intervertebral disc injuy on mesenchymal stem cells-based regeneration [J]. Connective Tissue Research,2008, 49(1):15-21
    11. Wuertz, K Godburn, K Neidlinger-Wilke C, et al. Behavior of Mesenchymal Stem Cells in the Chemical Microenvironment of the Intervertebral Disc [J]. Spine (Phila Pa 1976).2008 August 1; 33(17):1843-1849.
    12. Moore KA, Lemischka IR. Stem cells and their niches. Science 2006;311:1880-5.
    13. Horwitz T. The human notochord:a study of its development and regression, variations, and pathologic derivative, chordoma. Indianapolis:Horwitz; 1977.
    14. Ghosh P. The Biology of the Intervertebral Disc. Boca Raton, FL:CRC Press;1988.
    15. Oegema TR Jr, Swedenberg S, Johson SL, et al. Residual chymopapain activity after chemonucleolysis in normal intervertebral discs in dogs. J Bone Joint Surg Am 1992;74:831-8.
    16. Oegema TR Jr. The role of disc cell heterogeneity in determining disc biochemistry:A speculation. Biochem Soc Trans 2002;30:839-44.
    17.赵献峰,刘浩,丰于均,等.脊索细胞促进髓核软骨样细胞增殖及表型维持(J).中国修复重建外科杂志,2008,22(8):939-943
    18. Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype.Stem Cell Res Ther.2010 Jun 16; 1(2):18
    19. Blanco J F, Graciani I F, Sanchez F M, et al. Isolation and Characterization of Mesenchymal Stromal Cells From Human Degenerated Nucleus Pulposus:Comparison With Bone Marrow Mesenchymal Stromal Cells From the Same Subjects. Spine:2010, 35(26),2259-2265.
    1. Lindblom K. Intervertebral-disc degeneration considered as a pressure atrophy[J].J Bone Joint Surg Am,1957,39 (4):933-945.
    2. Bailey AS, Adler F, Min Lai S, et al. A comparison between bipedal and quadrupedal rats:do bipedal rats actually as sume an upright posture [J] Spine 2001,26 (14): E308-313.
    3. Key JA, Ford LT. Experimental intervertebral-disc lesions[J].J Bone Joint Surg Am, 1948,30 (3):621-63
    4. Sakai D, Mochida J, lwashina T, et al. Differentiation of mesenchymal stem cells transplanted to a rabbit degenerative disc model:potential and limitations for stem cell therapy in disc regeneration[J]. Spine,2005,30(21):2379-2387.
    5.王靖,唐天驷,姚啸生.纤维环穿刺诱导椎间盘退变动物模型的实验研究[J].中国脊柱脊髓杂志,2006,16(4):284-286
    6. Greg Anderson D, Li X, Tannoury T, et al. A fibronectin fragment stimulates intervertebral disc degeneration in vivo. Spine (Phila Pa 1976).2003 Oct 15;28(20):2338-45.
    7.赵鑫,赵新刚,张海龙.纤维环穿刺法与髓核抽吸法建立兔椎间盘退变模型的比较[J].解剖学杂志,2008,31(3):394-396
    8. Miyamoto T, Muneta T, Tabuchi T, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther.2010; 12(6):R206.
    9. Zhang Y, Drapeau S, Howard SA, et al. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc injury model. Spine (Phila Pa 1976).2011 Mar 1;36(5):372-7.
    10. Hee HT, Ismail HD, Lim CT, et al. Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. J Bone Joint Surg Br.2010 May;92(5):726-36.
    11. Jeong JH, Lee JH, Jin ES, et al. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien).2010 Oct; 152(10):1771-7. Epub 2010 Jun 24.
    12. Serigano K, Sakai D, Hiyama A, et al. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model.J Neurosurg Spine.2011 Mar;14(3):322-9. Epub 2011 Jan 21.
    13. Feng G, Zhao X, Liu H, et al. Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits:a comparison of 2 cell types as potential candidates for disc regeneration. J Orthop Res.2010 Oct;28(10):1267-75
    14. Yoshikawa T, Ueda Y, Miyazaki K, et al. Disc regeneration therapy using marrow mesenchymal cell transplantation:a report of two case studies. Spine (Phila Pa 1976). 2010 May 15;35(11):E475-80
    15. Blanco J F, Graciani I F, Sanchez F M, et al. Isolation and Characterization of Mesenchymal Stromal Cells From Human Degenerated Nucleus Pulposus:Comparison With Bone Marrow Mesenchymal Stromal Cells From the Same Subjects. Spine:2010, 35(26),2259-2265.
    16. Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype.Stem Cell Res Ther.2010 Jun 16;1(2):18
    1. Dagenais S, Caro J, Haldeman S:A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J 2008,8:8-20.
    2. Cheung KM, Karppinen J, Chan D, et al. Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine (Phila Pa 1976) 2009,34:934-940.
    3. Prockop DJ, A zizi SA, Colte r D,et al Potential use of stem cells from bone marrow to repair the extracellular matrix and central nervous system [J]. Biochem SocTrans, 2000,28(4):341-345.
    4. Motaln H, Schichor C, Lah TT. Human mesenchymal stem cells and their use in cell-based therapies. Cancer.2010;116(11):2519-30.
    5. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult hum an mesenchymal stem cells [J]. Science,1999,284(2):143-147.
    6. Mishra PJ, Mishra PJ, Glod JW, et al. Mesenchymal stem cells:flip side of the coin. Cancer Res.2009 Feb 15;69(4):1255-8.
    7. Foster LJ, Zeemann PA, Li C, et al. Differential expression profiling of membrane proteins by quantitative proteomics in a human mesenchymal stem cell line undergoing osteoblast differentiation. Stem Cells.2005 Oct;23(9):1367-77.
    8. Schauwer CD, Meyer E, Walle GR, et al. Markers of sternness in equine mesenchymal stem cells:a plea for uniformity. Theriogenology.2010 Dec 31. [Epub ahead of print]
    9.柳向东,柴冈,李东,等.成人骨髓间充质干细胞的体外培养和表型鉴定[J].上海第二医科大学学报,2004,24(4):302-306.
    10. Mackay AM,, Beck SC, Pittenger MF, et al. Multilineage potential of adult human mesenchymal stemcells. Science 1999;284:143-147.
    11. Kern S, Eichler H, Stoeve J, et al. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006;24:1294-301.
    12. Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derived cells:temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 2006;24:376-85.
    13. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesen-chymal stromal cells. The International Society for CellularTherapy position statement. Cytotherapy 2006;8:315-7.
    14. Guest DJ, Ousey JC, Smith MRW, et al. Defining the expression ofmarker genes in equine mesenchymal stromal cells. Stem Cells Cloning:Adv Appl 2008;1:1-9.
    15. Martinello T, Bronzini I, Maccatrozzo L, et al. Cryopreservation does not affect the stem characteristics of multipotent cells isolated from equine peripheral blood. Tiss Eng Part C 2009; doi:10.1089/ten.tec.2009.0512.
    16. de Mattos Carvalho A, Garcia Alves AL, Assis Golim M, et al. Isolation and immunophenotypic characterization of mesenchymal stem cells derived from equine adipose tissue. Vet Immunol Immunopathol 2009; doi:10.1016/j.vetimm.2009.06.014.
    17. Hoynowski SM, Fry MM, Gardner BM, et al. Characterization and differentiation of equine umbilical cord-derived matrix cells. Biochem Biophys Res Comm 2007;362:347-53.
    18. Ibrahim S, Saunders K, Kydd JH, et al. Screening of anti-human leukocyte monoclonal antibodies for reactivity with equine leukocytes. Vet Immunol Immunopathol 2007;119:63-80.
    19. Resta R, Thompson LF. T cell signaling through CD73. Cell Signal 1997;9:131-9.
    20. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer and fibrosis. FASEB J 2006;20:1045-54.
    21. Sanz-Rodriguez F, Guerrero-Esteo M, Botella L-M, et al. Endoglin regulates cytoskeletal organization through binding to ZRP-1, a member of the Lim family of proteins. J Biol Chem 2004;279:328,58-66.
    22. Barreiro O, Yanez-Mo M, Serrador JM, et al. Dynamic interaction of VCAM-1 and ICAM-1 with moesin and ezrin in a novel endothelial docking structure for adherent leukocytes. J Cell Biol 2002; 157:1233-45.
    23. Radcliffe CH, Flaminio MJBF, Fortier LA, et al. Temporal analysis of equine bone marrow aspirate during establishment of putative mesenchymal progenitor cell populations. Stem Cell Devel 2010;19:269-81.
    24. Lunn DP. A comparative review of human and equine leucocyte differentiation antigens. Br Vet J 1993; 149:31-49.
    25. Bruder SP, Ricalton NS, Boyton RE, et al. Mesenchymal stem cell surface antigen SB-10 corresponds to activated leucocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Min Res 1998; 13:655-63.
    26. Miyazaki M, Zuk PA, Zou J, et al. Comparison of human mesenchymal stem cells derived from adipose tissue and bone marrow for ex vivo gene therapy in rat spinal fusion model[J]. Spine (Phila Pa 1976),2008,33(8):863-869.
    27. Xia W J, Xu R, Ye X, et al. Biological appraisal of human bone marrow mesenchymal stem cells during exvivo expansion [J]. Journal of Experimental Hematology,2008, 16(3):639-644.
    28. Bianchi G, Banfi A, Mastrogiacomo M, et al. (2003) Ex vivo enrichment of mesenchymal cell progenitors by fibroblast growth factor 2. Exp CellRes 287:98-105
    29. Hellingman CA, Koevoet W, Kops N, et al. Fibroblast growth factor receptors in in vitro and in vivo chondrogenesis:relating tissue engineering using adult mesenchymal stem cells to embryonic development. Tissue Eng Part A.2010 Feb;16(2):545-56.
    30. Lee SY, Lim J, Khang G, et al. Enhanced ex vivo expansion of human adipose tissue-derived mesenchymal stromal cells by fibroblast growth factor-2 and dexamethasone. Tissue Eng Part A.2009 Sep;15(9):2491-9.
    31. Martin I, Vunjak-Novakovic G, Yang J, et al. Mammalian chondrocytes expanded in the presence of fibroblast growth factor 2 maintain the ability to differentiate and regenerate three-dimensional cartilaginous tissue. Exp Cell Res,1999 (2)253:681-688
    32. Ou G, Charles L, Matton S, et al. Fibroblast growth factor-2 stimulates the proliferation of mesenchyme derived progenitor cells from aging mouse and human bone. J Gerontol A Biol Sci Med Sci.2010;65(10):1051-9.
    33. Solchaga LA, Penick K, Goldberg VM, et al. Fibroblast growth factor-2 enhances proliferation and delays loss of chondrogenic potential in human adult bone-marrow-derived mesenchymal stem cells. Tissue Eng Part A. 2010;16(3):1009-19.
    34. Bosetti M, Boccafoschi F, Leigheb M, et al. Chondrogenic induction of human mesenchymal stem cells using combined growth factors for cartilage tissue engineering. J Tissue Eng Regen Med.2011 Feb 28. doi:10.1002/term.416. [Epub ahead of print]
    35. Zheng YH, Su K, Jian YT, et al. Basic fibroblast growth factor enhances osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells in coral scaffold constructs. J Tissue Eng Regen Med.2010 Dec 9. [Epub ahead of print]
    36. Ehlicke F, Freimark D, Heil B, et al. Intervertebral disc regeneration:influence of growth factors on differentiation of human mesenchymal stem cells (hMSC). Int J Artif Organs.2010;33(4):244-52.
    37. Goepfert C, Slobodianski A, Schilling AF, et al.Cartilage engineering from mesenchymal stem cells. Adv Biochem Eng Biotechnol.2010; 123:163-200.
    38. Jakob M, Demarteau O, Schaafer D, et al. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J Cell Biochem (2001)81:368-377
    39. Barbero A, Ploegert S, Heberer M, et al. Plasticity of clonal populations of dedifferentiated adult human articular chondrocytes. Arthritis Rheum (2003) 48:1315-1325
    40. Johnstone B, Hering TM, Caplan AI, et al. (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238:265-272
    41. Steck E, Bertram H, Abel R, et al. Induction of intervertebral disc like cells from adult mesenchymal ste m cells[J] Stem Cells,2005,3403-411
    42. Ronziere MC, Perrier E, Mallein-Gerin F, et al..Chondro genic potential of bone marrow-and adipose tissue-derived adult human mesenchymal stem cells. Biomed Mater Eng.2010 Jan 1;20(3):145-58.
    43. Jennifer S. Park, Julia S. Chu, Anchi D, et al.. Tsou The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β Biomaterials Article in Press, Corrected Proof.
    44. Yamamoto Y, Mochida J, Skai D, et al. Upregulation of the viability of nucleus pulposus cells by bone marrow derived stromal cells:significance of direct cell to cell contact in coculture system[J]. Spine,2004,29(14):1508-1514.
    45.李峰,李光辉,陶凤华,等。兔髓核细胞诱导大鼠骨髓间充质干细胞分化为髓核细胞的研究。[J].生物骨科材料与临床研究,2006,3(6):1-4
    46. Sandra Strassburgl, Stephen M Richardsonl, Anthony J Freemont, et al. Co-culture induces mesenchymal stem cell differentiation and modulation of the degenerate human nucleus pulposus cell phenotype Regenerative Medicine 2010,5(5):701-711
    47. Takuya Watanabe, Daisuke Sakail, Yukihiro Yamamoto, et al. Human nucleus pulposus cells significantly enhanced biological properties in a coculture system with direct cell-to-cell contact with autologous mesenchymal stem cells Journal of Orthopaedic Research,2010; 28(5):623-630.
    48. Wang F, Wu X, Wang Y, et al. An in vitro study on human bone marrow mesenchymal stem cells protecting nucleus pulposus cells from oxidative stress-induced apoptosis in a co-culture system of no direct cellular interaction. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi.2010,24(4):391-8.
    49. Hunter CJ, Matyas JR, Duncan NA, et al. The notochordal cell in the nucleus pulposus:a review in the context of tissue engineering. Tissue Eng 2003,9:667-677
    50. Korecki CL, Taboas JM, Tuan RS, et al. Notochordal cell conditioned medium stimulates mesenchymal stem cell differentiation toward a young nucleus pulposus phenotype.Stem Cell Res Ther.2010,1(2):16-18
    51. Sahoo S, Ang LT, Cho-Hong Goh J, et al. Bioactive nanofibers for fibroblastic differentiation of mesenchymal precursor cells for ligament/tendon tissue engineering applications. Differentiation.2010 Feb;79(2):102-10.
    52. Yan J, Yang L, Wang G, et al. Biocompatibility evaluation of chitosan-based injectable hydrogels for the culturing mice mesenchymal stem cells in vitro. J Biomater Appl.2010 Mar;24(7):625-37.
    53. Miyagawa Y, Okita H, Hiroyama M, et al. A micro fabricated scaffold induces the spheroid formation of human bone marrow-derived mesenchymal progenitor cells and promotes efficient adipogenic differentiation. Tissue Eng Part A.2011;17(3-4):513-21.
    54. Sun J, Zheng Q, Wu Y, et al. Biocompatibility of KLD-12 peptide hydrogel as a scaffold in tissue engineering of intervertebral discs in rabbits. J Huazhong Univ Sci Technolog Med Sci.2010 Apr;30(2):173-7.
    55. Jun Qi, Anmin Chen, Hongbo You, et al. Proliferation and chondrogenic differentiation of CD105-positive enriched rat synovium-derived mesenchymal stem cells in three-dimensional porous scaffolds. Biomed. Mater.20116(1):015006
    56. Theodora Chlapanidas, Silvio Farago, Federica Mingotto, et al. Regenerated silk fibroin scaffold and infrapatellar adipose stromal vascular fraction as feeder layer:a new product for cartilage advanced therapy Tissue Engineering Part A.-Not available-, ahead of print. doi:10.1089/ten.TEA.2010.0636
    57. Wei-Chuan Chen, Chao-Ling Yao, Yu-Hong Wei, et al. Evaluating osteochondral defect repair potential of autologous rabbit bone marrow cells on type Ⅱ collagen scaffold. Cytotechnology 2010; 63 (1):13-23
    58. Jakubova, A. Mickova, M. Buzgo, et al. Immobilization of thrombocytes on PCL nanofibres enhances chondrocyte proliferation in vitro. Cell Proliferation; 44(2): 183-191.
    59. Calderon, L., Collin, E., Velasco-Bayon, et al. Type II collagen-hyaluronan hydrogel a step towards a scaffold for intervertebral disc tissue engineering. Eur Cells & Mater, 2010; 6(20),134-148
    60. Nerurkar NL, Sen S, Baker BM, et al. Dynamic culture enhances stem cell infiltration and modulates extracellular matrix production on aligned electrospun nanofibrous scaffolds.. Acta Biomater.2011 Feb;7(2):485-91. Epub 2010 Aug 20
    61. Wang YT, Wu XT, Wang F, et al. Regeneration potential and mechanism of bone marrow mesenchymal stem cell transplantation for treating intervertebral disc degeneration.J Orthop Sci.2010 Nov;15(6):707-19. Epub 2010 Nov 26.
    62. Zou Z, Zhang Y, Hao L, et al. More insight into mesenchymal stem cells and their effects inside the body. Expert Opin Biol Ther.2010 Feb;10(2):215-30.
    63. Chan SC, Gantenbein-Ritter B, Leung VY, et al. Cryopreserved intervertebral disc with injected bone marrow-derived stromal cells:a feasibility study using organ culture. Spine J.2010 Jun;10(6):486-96..
    64. Miyamoto T, Muneta T, Tabuchi T, et al. Intradiscal transplantation of synovial mesenchymal stem cells prevents intervertebral disc degeneration through suppression of matrix metalloproteinase-related genes in nucleus pulposus cells in rabbits. Arthritis Res Ther.2010;12(6):R206.
    65. Zhang Y, Drapeau S, Howard SA, et al. Transplantation of goat bone marrow stromal cells to the degenerating intervertebral disc in a goat disc injury model. Spine (Phila Pa 1976).2011 Mar 1;36(5):372-7.
    66. Hee HT, Ismail HD, Lim CT, et al. Effects of implantation of bone marrow mesenchymal stem cells, disc distraction and combined therapy on reversing degeneration of the intervertebral disc. J Bone Joint Surg Br.2010 May;92(5):726-36.
    67. Serigano K, Sakai D, Hiyama A, et al. Effect of cell number on mesenchymal stem cell transplantation in a canine disc degeneration model.J Neurosurg Spine.2011 Mar;14(3):322-9.
    68. Feng G, Zhao X, Liu H, et al. Transplantation of mesenchymal stem cells and nucleus pulposus cells in a degenerative disc model in rabbits:a comparison of 2 cell types as potential candidates for disc regeneration. J Orthop Res.2010 Oct;28(10):1267-75
    69. Yoshikawa T, Ueda Y, Miyazaki K, et al. Disc regeneration therapy using marrow mesenchymal cell transplantation:a report of two case studies. Spine (Phila Pa 1976). 2010;35(11):E475-80
    70. Jeong JH, Lee JH, Jin ES, et al. Regeneration of intervertebral discs in a rat disc degeneration model by implanted adipose-tissue-derived stromal cells. Acta Neurochir (Wien).2010 Oct;152(10):1771-7..
    71. Chen J, Yan W, Setton LA (2006) Molecular phenotypes of notochordal cells purified from immature nucleus pulposus. Eur Spine J 15(Suppl 3):S303-S311
    72. Lee CR, Sakai D, Nakai T, et al A phenotypic comparison of intervertebral disc and articular cartilage cells in the rat. Eur Spine J 2007;16(12):2174-2185
    73. Grassel S, Ahmed N. Influence of cellular microenvironment and paracrine signals on chondrogenic differentiation. Front Biosci.2007 Sep 1; 12:4946-56
    74. Barrionuevo F, Scherer G (2010) SOX E genes:SOX9 and SOX8 in mammalian testis development. Int J Biochem Cell Biol 42:433-436.
    75. Alcock J, Lowe J, England T, et al. (2009)Expression of Soxl, Sox2 and Sox9 is maintained in adult human cerebellar cortex. Neuro sci Lett 450:114-116.
    76. Rovira M, Scott SG, Liss AS, et al (2010). Isolation and characterization ofcentroacinar terminal ductal progenitor cells in adult mouse pancreas. Proc Natl Acad Sci USA 107:75-80.
    77. Zhou CJ, Guo JQ, Zhu KX, et al (2010) Elevated expression of SOX9is related with the progression of gastric carcinoma. DiagnCytopathol, in press.
    78. Risbud MV, Albert TJ, Guttapalli A, et al (2004) Differentiation of mesenchymal stem cells towards a nucleus pulposus-like phenotype in vitro:implications for cell-based transplantation therapy. Spine 29(23):2627-2632
    79. Lei H, Wang H, Juan AH, et al (2005) The identification of Hoxc8 target genes. Proc Natl Acad SciUSA 102:2420-2424
    80. Belluoccio D, Bernardo BC, Rowley L, et al (2008) A microarray approach for comparative expression profiling of the discrete maturation zones of mouse growth plate cartilage. Biochim Biophys Acta 1779:330-340.
    81. Mienaltowski MJ, Huang L, Stromberg AJ, et al (2008) Differential gene expression associated with postnatal equine articular cartilage maturation. BMC Musculoskelet Disord 9:149.
    82. Zhang M, Pritchard MR, Middleton FA, et al (2008) Microarray analysis of perichondral and reserve growth plate zones identifies differential gene expressions and signal pathways. Bone 43:511-520.
    83. Lui JC, Andrade AC, Forcinito P, et al (2010) Spatial and temporal regulation of gene expression in the mammalian growth plate. Bone 46:1380-1390.
    84. Shapiro F, Flynn E, Calicchio ML (2009) Molecular differentiation in epiphyseal and physeal cartilage.Prominent role for gremlin in maintaining hypertrophic chondrocytes in epiphyseal cartilage. Biochem Biophys Res Commun 390:570-576.
    85. Nakada C, Iida A, Tabata Y, et al (2009) Forkhead transcription factor foxel regulates chondrogenesis in zebrafish. J Exp Zool (Mol Dev Evol) 312B:827-840.
    86. Cameron TL, Belluoccio D, Farlie PG, et al (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9:20.
    87. Yamane S, Cheng E, You Z, et al (2007) Gene expression profiling of mouse articular and growth plate cartilage. Tissue Eng 13:2163-2173.
    88. Rajpurohit R, Risbud MV, Ducheyne P, et al (2002) Phenotypic characteristics of the nucleus pulposus:expression of hypoxia inducing factor-1, glucose transporter-1 and MMP-2. Cell Tissue Res 308(3):401-407
    89. Gilson A, Dreger M, Urban JP. et al. Differential expression level of cytokeratin 8 in cells of the bovine nucleus pulposus complicates the search for specific intervertebral disc cell markers. Arthritis Res Ther.2010;12(1):R24. Epub 2010 Feb 12.
    90. Minogue BM, Richardson SM, Zeef LA, et al. Characterization of the human nucleus pulposus cell phenotype and evaluation of novel marker gene expression to define adult stem cell differentiation. Arthritis Rheum.2010 Dec;62(12):3695-705. doi: 10.1002/art.27710.
    91. Bibby SR, Jones DA, Ripley RM, Urban JP (2005) Metabolism of the intervertebral disc:effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30(5):487-496
    92. Stairmand JW, Holm S, Urban JP, et al (1991) Factors influencing oxygen concentration gradients in the intervertebral disc:A theoretical analysis. Spine 16(4):444-449
    93. Homer HA, Urban JP (2001) 2001 Volvo Award Winner inBasic Science Studies: effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine 26(23):2543-2549
    94. Ishihara H, Urban JP (1999) Effects of low oxygen concentrations and metabolic inhibitors on proteoglycan and protein synthesis rates in the intervertebral disc. J Orthop Res17(6):829-835
    95. Agrawal A, Guttapalli A, Narayan S, et al (2007) Normoxic stabilization of HIF-1 alpha drives glycolytic metabolism and regulates aggrecan gene expression in nucleus pulposus cells of the rat intervertebral disk. Am J Physiol Cell Physiol 293(2):C621-C631
    96. Holm S, Maroudas A, Urban JP, et al.(1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8(2):101-119
    97. Bibby SR, Urban JP (2004) Effect of nutrient deprivation on the viability of intervertebral disc cells. Eur Spine J 13(8):695-701
    98. Nachemson A, Lewin T, Maroudas A, Freeman MA (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41(6):589-607
    99. Urban JP, Smith S, Fairbank JC (2004) Nutrition of the intervertebral disc. Spine 29(23):2700-2709
    100.Nachemson A (1960) Lumbar intradiscal pressure. Experimental studies on post-mortem material. Acta Orthop Scand Suppl 43:1-104
    101.Wilke HJ, Neef P, Caimi M, et al (1999) New in vivo measurements of pressures in the intervertebral disc in daily life. Spine 24(8):755-762
    102.Melrose J, Roberts S, Smith S, et al (2002) Increased nerve and blood vessel ingrowth associated with proteoglycan depletion in an ovine anular lesion model of experimental disc degeneration. Spine 27(12):1278-1285
    103.Sivan SS, Tsitron E, Wachtel E, et al (2006) Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 399(1):29-35
    104.Sivan SS, Wachtel E, Tsitron E, et al (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283(14):8796-8801

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700