过氧化物酶体增殖活化受体-γ对炎症,免疫抑制和肺气肿生成的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过氧化物酶体增殖活化受体-γPeroxisomeProliferator-ActivatedReceptor-γγPPARγ可减少炎症因子的表达,是一个抗炎转录调节因子。本实验室前期研究结果发现,当溶酶体酸性脂肪酶(Lysosomalacidlipase,LAL)缺乏时,阻断PPARγ配体的合成可以导致肺部严重的炎症和肺气肿,表明PPARγ的失活对这些病变起重要作用。为了探明PPARγ在肺中所扮演的病理生理作用,我们建立了CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠模型,在mRNA和蛋白质水平上,都检测到四环素诱导产生的dnPPARγ-Flag融合蛋白在肺II型上皮细胞的表达。我们假设PPARγ在肺II型上皮细胞中起了重要作用,过量表达负显性PPARγ(dominantnegativePPARγdnPPARγ)可抑制内源性PPARγ在肺II型上皮细胞里的功能,从而调控肺的炎症产生及病变的形成。主要结论如下:
     ①dnPPARγ在肺部的过量表达导致了肺气肿的形成。为了研究dnPPARγ在肺型上皮细胞中的过量表达对转基因小鼠肺部的影响,我们对4月龄CCSP-rtTA/(tetO)_7-CMV-dnPPARγ转基因小鼠的肺部进行了组织学分析,我们观察到了在四环素诱导下的双转基因小鼠中肺气肿的形成。显微镜下观察HE染色的肺组织切片,用MetaMorph图像分析软件进行定量组织形态学分析。四环素诱导的双转基因小鼠的肺泡数量(65±9)显著低于那些没有被四环素诱导的转基因小鼠的肺泡数量(122±13)。在四环素诱导的双转基因小鼠中,平均线长度(Lm),肺泡面积,肺泡表面积和肺泡体积都较没有诱导的小鼠明显增加,表明dnPPARγ在肺部的过量表达导致了肺气肿的形成。PPARγ在肺组织中可负调节的基因还有金属基质蛋白酶(Matrixmetalloproteinase,MMPs)。MMPs的上调可降解细胞外基质,使肺泡间隙结构弱化,从而导致肺气肿。对4月龄CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠进行研究,在四环素诱导的双转基因小鼠中,MMP2,MMP7,MMP8,MMP9,MMP12在整个肺部和肺II型上皮细胞中的mRNA表达水平显著高于那些没有四环素诱导的双转基因小鼠。在被四环素诱导的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠的肺腔灌洗液(Bronchioalveolarlarvagefluid,BALF)中,MMP12和MMP9也比没有四环素诱导的BALF中的酶活性增强了,这有助于肺气肿的形成。因此,PPARγ的失活导致的MMPs的合成和分泌对肺气肿的形成起到了一定的作用。
     ②炎症细胞因子的上调表达。PPARγ是一个抗炎分子,dnPPARγ的过量表达抑制了内源PPARγ的抗炎活性,我们研究了CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠中的炎症因子的表达。dnPPARγ在四环素诱导的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠中的过量表达可通过竞争性结合于炎症因子基因启动子上的PPARγE位点,取代PPARγ与启动子的结合,从而在转录水平上抑制了内源PPARγ的抗炎活性,使炎症因子的表达上调。为了验证这一假设,我们采用染色质免疫共沉淀(ChromatinImmunoprecipitation,ChIP)的方法分析了月龄CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺中dnPPARγ和Api6,IL-1,IL-6,MMP12和TNF-基因启动子上PPARγE位点的结合情况。抗flag多克隆抗体被用于免疫沉淀dnPPARγ-flag/DNA复合物。ChIP的实验结果显示,在四环素诱导的双转基因小鼠中,沉淀下来的启动子DNA片段的信号要高于那些没有被四环素诱导的小鼠,表明dnPPARγ取代内源PPARγ与启动子的结合,抑制了其抗炎活性。为了研究dnPPARγ的过量表达是否可以上调双转基因小鼠体内炎症因子的表达水平,我们提取月龄CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺总细胞和肺II型上皮细胞的mR,用Real-timePCR的方法定量检测了多个炎症细胞因子的表达水平。与没有四环素诱导的小鼠相比,受四环素诱导的双转基因小鼠的肺总细胞和肺II型上皮细胞中的IFN-,IFN-,IL-1,IL-6,IL-13,TNF-的表达水平升高。用ELISA检测了IL-1,IL-6,TNF-在BALF中的蛋白质浓度,与没有四环素诱导的小鼠相比,受四环素诱导的双转基因小鼠的BALF中IL-1,IL-6,TNF-的蛋白质浓度的的也升高。
     ③髓源性抑制细胞向肺部的侵入。为了研究dnPPARγ的过量表达导致的炎症细胞因子的上调是否会导致炎症细胞的向肺的入侵,提取1,4,8月龄的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠的外周血细胞和肺细胞,用CD11b,GR-1抗体染色,流式细胞仪分析小鼠的炎症细胞。与没有四环素诱导的小鼠相比,受四环素诱导的双转基因小鼠肺和血液细胞中的CD11b~+GR-1~+细胞在1,4,8月时间点都逐步上升。HE染色显示大量的炎症细胞在受四环素诱导的双转基因小鼠肺部聚集,Mac2免疫组织化学染色结果表明,这些炎症细胞是髓源性细胞。Kwik-Diff染色结果也显示在受四环素诱导的双转基因小鼠BALF中,炎症细胞大量增加。该研究结果表明,由于dnPPARγ在肺II型上皮细胞的过量表达,使髓源性细胞处于非成熟阶段,其分化被阻断,不能分化成为成熟的巨噬细胞和粒细胞。这种非成熟的CD11b~+GR-1~+细胞即髓源性抑制细胞(Myeloid-derivedsuppressorcells,MDSCs),它可抑制T细胞的增殖和功能,搅乱免疫监视,阻止免疫系统功能。我们的研究结果也表明,在四环素素诱导4个月的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠外周血与肺中,伴随着CD11b+GR-1+MDSCs细胞的增多,CD3~+,CD4~+和CD8~+T细胞的数量减少。
     ④细胞内信号分子的表达。在受四环素诱导的肺II型上皮细胞中,由于dnPPARγ的过量表达,Stat1,Stat2,Stat3,Stat4,Erk1/2和P38等一系列细胞内信号分子的磷酸化增多,这可能是由于炎症细胞因子刺激物通过自分泌途径上调了这些信号分子的表达。这些研究结果表明,PPARγ信号通路的失活不仅引起炎症细胞因子的上调,同时激活了一系列的肺II型上皮细胞中细胞内信号分子路径。同时,与没有四环素诱导的小鼠相比,在受四环素诱导的dnPPARγ的过量表达的转基因小鼠肺和血液的CD11b~+GR-1~+MDSCs细胞中,pStat3,pErk和pP38与其总蛋白的比值增高。综上结果表明,dnPPARγ在CCSP-rtTA/(tetO)_7-dnPPARγ双转基因小鼠肺II型上皮细胞中的过量表达,诱导了炎症分子的产生,通过自分泌机制使肺II型上皮细胞内的癌症信号分子通路激活,并通过旁分泌机制使CD11b~+GR-1~+MDSCs内的癌症信号分子通路激活。
     ⑤髓源性抑制细胞MDSCs对T细胞增殖,活性和功能影响的体外研究。为了研究CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠的MDSCs对T细胞的影响,CFSE标记的CD4~+T细胞,用抗CD3单克隆抗体和抗CD28单克隆抗体刺激T细胞的增殖,与MDSCs共培养4天,流式细胞仪检测T细胞的增殖情况。实验结果表明,来源于四环素诱导的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺的CD11b~+GR-1~+细胞对野生型WT脾脏CD4~+T细胞增殖具有抑制作用。同样,来源于四环素诱导的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺的CD11b~+GR-1~+细胞对野生型WT脾脏CD4~+T细胞的活性具有抑制作用,其表达CD69的量减少。用ELISA的方法检测共培养体系中的IL-2, IL-4, IFN-的蛋白浓度来研究MDSCs对CD4~+T细胞功能的影响。实验结果表明,来源于四环素诱导的CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺的CD11b~+GR-1~+细胞与野生型WT脾脏CD4~+T细胞共培养后,其表达IL-2, IL-4, IFN-的量减少。用AnnexinV标记CD4~+T细胞来检测MDSCs对T细胞凋亡的影响。实验结果表明,CCSP-rtTA/(tetO)_7-CMV-dnPPARγ双转基因小鼠肺的CD11b~+GR-1~+细胞与WT脾脏CD4~+T细胞共培养时,与来源于没有四环素诱导的相比,来源于四环素诱导的双转基因小鼠肺的CD11b~+GR-1~+细胞使野生型WT脾脏CD4~+T细胞的凋亡增加。
     综上所述,dnPPARγ的过量表达阻断了内源性PPARγ对炎症基因的抑制作用,包括细胞因子和MMPs。这促使了炎症细胞,特别是MDSCs向肺的侵润,改变了原有的微环境。在非免疫应答中,肺II型上皮细胞中多个胞内信号分子的活化导致肺的改变,从而有助于肺气肿的形成。这些研究结果表明,LAL/配体/PPARγ路径在抑制肺部炎症,维持肺泡正常结构中扮演重要的作用。
Peroxisome Proliferator-Activated Receptor-γγ PPARγ is an anti-inflammatorytranscriptional factor by reducing pro-inflammatory cytokine expression. Previously, wereported that blockage of PPARγ ligand synthesis during LAL deficiency causedexuberant inflammation and emphysema in the lung, implicating that PPARγ inactivation is responsible for these phenotypes. In order to identify thephathophysiological roles of PPARγ in the lung, a doxycycline-controlledCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mouse model was generated tooverexpress dnPPARγ in lung epithelial cells to block the endogenous function ofPPARγ. In this bitransgenic model, doxycycline treatment induced dnPPARγ-Flagfusion protein expression in AT II epithelial cells at both mRNA and protein levels.Flow cytometry analysis showed dnPPARγ-Flag fusion protein expression associatedwith AT II epithelial cells. We hypothesize that PPARγ in AT II epithelial cells playsimportant roles in controlling pulmonary inflammation and associated pathogenesis.The main results are as follows:
     ①To assess pathogenic phenotypes in the lung as a result of dnPPARγ overexpression in AT II epithelial cells, CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice with4-month doxycycline treatment were investigated by histologicalanalysis.Histopathological analysis revealed emphysema in the lung ofdoxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice. Clusteredinflammatory cell accumulation was observed in some lung areas. Quantitative analysisby the MetaMorph imaging software showed that alveolar numbers ofdoxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ mice (65±9) were much lessthan those of untreated bitransgenic mice (122±13). The mean cord length (Lm),alveolar area, alveolar sphere surface area and alveolar volume were all significantlyincreased in doxycycline-treated bitransgenic mice compared with those of untreatedbitransgenic mice. After dnPPARγ overexpression, the mRNA levels of MMP12, alongwith MMP2, MMP7, MMP8and MMP9were all up-regulated in AT II epithelial cellsfrom doxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice. Theenzymatic activity of MMP9and MMP12were increased in BALF ofdoxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice. Thus, MMP synthesis and secretion were induced by inactivation of PPARγ in AT II epithelialcells that contributed to emphysema formation.
     ②Since PPARγ is an anti-inflammatory molecule, it is important to evaluatewhether the pro-inflammatory molecules were up-regulated inCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice. These molecules are potentiallyimportant for triggering and recruiting immune cells into the lung to initiateinflammation and emphysema. PPARγ, which binds to the specific DNA sites (PPARγ E)on the promoters after ligand binding, prevents transcriptional events ofpro-inflammatory molecules. ChIP assay was performed to investigate the associationbetween dnPPARγ and PPARγ E sites within the Api6, IL-1, IL-6, MMP12and TNF-promoters in2-month doxycycline-treated or untreatedCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic lung. The putative PPARγ E siteswithin the promoters of Api6, IL-1, IL-6, MMP12and TNF-were identified.Anti-Flag polyclonal antibody was used to immuno-precipitate the dnPPARγ-Flag/DNAcomplex. In doxycycline-treated mice, the signals of precipitated promoter DNA werestronger than those of untreated controls by quantitative Real-Time PCR analysis. Theresults showed that dnPPARγ-Flag fusion protein was able to bind to the promoters ofthese pro-inflammatory genes. To determine if dnPPARγ overexpression indeedup-regulates proinflammatory cytokines in vivo, total RNAs were purified from thewhole lung and AT II epithelial cells of2-month doxycycline-treated or untreatedCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice. The expression levels ofmultiple cytokines were quantitatively determined by Real-Time PCR. Among them,mRNA expression levels of IFN-, IFN-, IL-1, IL-6, IL-13, and TNF-indoxycycline-treated mice were increased compared with those in doxycycline-untreatedmice. In BALF, protein concentrations of secreted IL-1, IL-6and TNF-were steadilyincreased as measured by ELISA compared with those in untreated mice.
     ③Up-regulation of pro-inflammatory cytokines suggests that overexpression ofdnPPARγ may induce inflammation that contributes to emphysema. To identifywhether overexpression of dnPPARγ induces inflammatory cell infiltration in the lungof CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice as a result ofpro-inflammatory cytokine up-regulation, peripheral blood mononuclear cells (PBMCs)and lung mononuclear cells were isolated from1,4,8-month doxycycline-treated oruntreated mice and stained with fluorochrome-conjugated anti-mouse CD11b (formonocytes) and Gr-1(for neutrophils) antibodies for FACS analysis. Compared with doxycycline-untreated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice,immature CD11b~+GR-1~+MDSCs were steadily increased in the blood and lung of4,8-month doxycycline-treated mice. Kwik-Diff staining showed significant increase ofinflammatory cells in the BALF of doxycycline-treated mice. This suggests thatmyeloid cells were blocked at the immature stage to differentiate into maturemacrophages and neutrophils after dnPPARγ overexpression in AT II epithelial cells. Itis known that MDSCs suppress T cell proliferation and function to subvert immunesurveillance and prevent the immune system from eliminating unwanted pathogenicevents. Indeed, decreased numbers of CD3~+, CD4~+and CD8~+T cells were observed indoxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic lungs incorrelation with CD11b~+Gr-1~+MDSCs expansion4months after doxycycline treatment.In these assays, the absolute numbers of CD3, CD4and CD8T cells were also reduced.
     ④In AT II epithelial cells, a set of intracelluar signaling molecules, includingStat1, Stat2, Stat3, Stat4, Erk1/2, NF B, p38and PU.1, showed increasedphosphorylation (activation) by dnPPARγ overexpression. This can be a result ofpro-inflammatory cytokine stimuli up-regulation through autocrine pathways. Theseresults indicate that inactivation of the PPARγ pathway not only up-regulatedpro-inflammatory cytokines, but also activated unique sets of intracellular signalingmolecules in AT II epithelial cells. In CD11b~+Gr-1~+MDSCs from dnPPARγ overexpressed bitransgenic mice, activation of Stat3, Erk1/2, NF B, p38and Akt wereobserved in doxycycline-treated CCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic micecompared with those of untreated bitransgenic mice. It appears that inflammatorymolecules induced by dnPPARγ overexpression in the milieu of doxycycline-treatedCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic lung activated oncogenic intracellularsignaling molecules in AT II epithelial cells through the autocrine mechanism and thosein CD11b~+Gr-1~+MDSCs through the paracrine mechanism.
     ⑤To measure the effect of CD11b~+Gr-1~+cells on T cell proliferation inCCSP-rtTA/(tetO)_7-CMV-dnPPARγ bitransgenic mice, CFSE labeled wild type splenicCD4~+T cells were stimulated with anti-CD3and anti-CD28mAb in the presence ofCD11b~+Gr-1~+cells that were isolated from the bone marrow, spleen and lung ofdoxycycline-treated or untreated mice. After4days co-culturing, T cell proliferationwas measured by CFSE labeling dilution and flow cytometry. As a result, TCRstimulated T cell proliferation (represented by multiple peaks) was suppressed byCD11b~+Gr-1~+cells from the lung of doxycycline-treated bitransgenic mice compared with CD11b~+Gr-1~+cells of untreated bitransgenic mice. Therefore, the defect caused bydnPPARγ overexpression in AT II epithelial cells was restricted to the lung and blood.A similar observation was made in the CD69(a T cell activation marker) expressionassay. After48hours co-culturing, CD11b~+Gr-1~+cells from the lung ofdoxycycline-treated bitransgenic mice suppressed anti-CD3Ab plus anti-CD28Ab-stimulated CD69expression compared with CD11b~+Gr-1~+cells of untreatedbitransgenic mice. In functional analysis, secretion of lymphokines was measured inMDSCs/CD4T cell co-culturing medium by ELISA. CD11b~+Gr-1~+cells from the lungsof doxycycline-treated mice showed reduced secretion of IL-2, IL-4and IFN-afterTCR activation compared with CD11b~+Gr-1~+cells of untreated bitransgenic mice. Todetermine whether CD4~+T cell reduction is associated with the apoptosis, CD4~+T cellswere analyzed by Annexin V staining. Only CD4~+T cells that were co-cultured withCD11b~+Gr-1~+cells from the lungs of doxycycline-treated bitransgenic mice showed theincreased apoptotic activity compared with CD11b~+Gr-1~+cells of untreated bitransgenicmice. Thus, dnPPARγ-induced myeloid defect had a profound impact on T cellproliferation and function.
     In summary, overexpression of dnPPARγ relieved endogenous PPARγ suppressionon the transcriptional activities of pro-inflammatory genes including cytokines andMMPs. This action promoted inflammatory cell infiltration (especially MDSCs) into thelung and changed the regional microenvironment. In the non-immune response, AT IIepithelial cells were changed as evident by activation of multiple intracellular signalingmolecules. As a consequence, emphysema was formed. These observations support aconcept that the LAL/ligands/PPARγ axis plays a critical role in maintaining alveolarhomeostasis by suppressing pulmonary inflammation.
引文
[1] Neuringer IP, Randell SH. Stem cells and repair of lung injuries[J]. Respir Res,2004,5:6.
    [2] Ricote M, Li AC, Willson TM, Kelly CJ, Glass CK. The peroxisome proliferator-activatedreceptor-gamma is a negative regulator of macrophage activation[J]. Nature,1998,391(6662):79-82.
    [3] Li Y, Qin Y, Li H, Wu R, Yan C, Du H. Lysosomal acid lipase over-expression disruptslamellar body genesis and alveolar structure in the lung[J]. Int J Exp Pathol,2007,88(6):427-36.
    [4] Lian X, Yan C, Yang L, Xu Y, Du H. Lysosomal acid lipase deficiency causes respiratoryinflammation and destruction in the lung[J]. Am J Physiol Lung Cell Mol Physiol,2004,286(4):L801-7.
    [5] Lian X, Yan C, Qin Y, Knox L, Li T, Du H. Neutral lipids and peroxisomeproliferator-activated receptor-{gamma} control pulmonary gene expression andinflammation-triggered pathogenesis in lysosomal acid lipase knockout mice[J]. Am J Pathol,2005,167(3):813-21.
    [6] Issemann I, Green S. Activation of a member of the steroid hormone receptor superfamily byperoxisome proliferators[J]. Nature,1990,347(6294):645-50.
    [7] Keshamouni VG, Arenberg DA, Reddy RC, Newstead MJ, Anthwal S, Standiford TJ.PPAR-gamma activation inhibits angiogenesis by blocking ELR+CXC chemokine productionin non-small cell lung cancer[J]. Neoplasia,2005,7(3):294-301.
    [8] Keshamouni VG, Reddy RC, Arenberg DA, Joel B, Thannickal VJ, Kalemkerian GP, et al.Peroxisome proliferator-activated receptor-gamma activation inhibits tumor progression innon-small-cell lung cancer[J]. Oncogene,2004,23(1):100-8.
    [9] Daynes RA, Jones DC. Emerging roles of PPARs in inflammation and immunity[J]. Nat RevImmunol,2002,2(10):748-59.
    [10] Chinetti G, Griglio S, Antonucci M, Torra IP, Delerive P, Majd Z, et al. Activation ofproliferator-activated receptors alpha and gamma induces apoptosis of humanmonocyte-derived macrophages[J]. J Biol Chem,1998,273(40):25573-80.
    [11] Schmidt A, Endo N, Rutledge SJ, Vogel R, Shinar D, Rodan GA. Identification of a newmember of the steroid hormone receptor superfamily that is activated by a peroxisomeproliferator and fatty acids[J]. Mol Endocrinol,1992,6(10):1634-41.
    [12] Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPARgamma2, a lipid-activated transcription factor[J]. Cell,1994,79(7):1147-56.
    [13] Kliewer SA, Forman BM, Blumberg B, Ong ES, Borgmeyer U, Mangelsdorf DJ, et al.Differential expression and activation of a family of murine peroxisome proliferator-activatedreceptors[J]. Proc Natl Acad Sci U S A,1994,91(15):7355-9.
    [14] Greene ME, Blumberg B, McBride OW, Yi HF, Kronquist K, Kwan K, et al. Isolation of thehuman peroxisome proliferator activated receptor gamma cDNA: expression inhematopoietic cells and chromosomal mapping[J]. Gene Expr,1995,4(4-5):281-99.
    [15] Jiang C, Ting AT, Seed B. PPAR-gamma agonists inhibit production of monocyteinflammatory cytokines[J]. Nature,1998,391(6662):82-6.
    [16] Yang XY, Wang LH, Chen T, Hodge DR, Resau JH, DaSilva L, et al. Activation of human Tlymphocytes is inhibited by peroxisome proliferator-activated receptor gamma (PPARgamma)agonists. PPARgamma co-association with transcription factor NFAT[J]. J Biol Chem,2000,275(7):4541-4.
    [17] Yang XY, Wang LH, Mihalic K, Xiao W, Chen T, Li P, et al. Interleukin (IL)-4indirectlysuppresses IL-2production by human T lymphocytes via peroxisome proliferator-activatedreceptor gamma activated by macrophage-derived12/15-lipoxygenase ligands[J]. J BiolChem,2002,277(6):3973-8.
    [18] Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. Thenuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition ofhelper T cell responses[J]. J Immunol,2000,164(3):1364-71.
    [19] Chtanova T, Mackay CR. T cell effector subsets: extending the Th1/Th2paradigm[J]. AdvImmunol,2001,78:233-66.
    [20] Machu TK, Hamilton ME, Frye TF, Shanklin CL, Harris MC, Sun H, et al. Benzylideneanalogs of anabaseine display partial agonist and antagonist properties at the mouse5-hydroxytryptamine(3A) receptor[J]. J Pharmacol Exp Ther,2001,299(3):1112-9.
    [21] Padilla J, Kaur K, Cao HJ, Smith TJ, Phipps RP. Peroxisome proliferator activatorreceptor-gamma agonists and15-deoxy-Delta(12,14)(12,14)-PGJ(2) induce apoptosis innormal and malignant B-lineage cells[J]. J Immunol,2000,165(12):6941-8.
    [22] Zhang X, Rodriguez-Galan MC, Subleski JJ, Ortaldo JR, Hodge DL, Wang JM, et al.Peroxisome proliferator-activated receptor-gamma and its ligands attenuate biologicfunctions of human natural killer cells[J]. Blood,2004,104(10):3276-84.
    [23] Nencioni A, Grunebach F, Zobywlaski A, Denzlinger C, Brugger W, Brossart P. Dendriticcell immunogenicity is regulated by peroxisome proliferator-activated receptor gamma[J]. JImmunol,2002,169(3):1228-35.
    [24] Szatmari I, Gogolak P, Im JS, Dezso B, Rajnavolgyi E, Nagy L. Activation of PPARgammaspecifies a dendritic cell subtype capable of enhanced induction of iNKT cell expansion[J].Immunity,2004,21(1):95-106.
    [25] Monneret G, Li H, Vasilescu J, Rokach J, Powell WS.15-Deoxy-delta12,14-prostaglandinsD2and J2are potent activators of human eosinophils[J]. J Immunol,2002,168(7):3563-9.
    [26] Sugiyama H, Nonaka T, Kishimoto T, Komoriya K, Tsuji K, Nakahata T. Peroxisomeproliferator-activated receptors are expressed in mouse bone marrow-derived mast cells[J].FEBS Lett,2000,467(2-3):259-62.
    [27] Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM, Evans RM.15-Deoxy-delta12,14-prostaglandin J2is a ligand for the adipocyte determination factor PPAR gamma[J]. Cell,1995,83(5):803-12.
    [28] Lehmann JM, Moore LB, Smith-Oliver TA, Wilkison WO, Willson TM, Kliewer SA. Anantidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activatedreceptor gamma (PPAR gamma)[J]. J Biol Chem,1995,270(22):12953-6.
    [29] Lehmann JM, Lenhard JM, Oliver BB, Ringold GM, Kliewer SA. Peroxisomeproliferator-activated receptors alpha and gamma are activated by indomethacin and othernon-steroidal anti-inflammatory drugs[J]. J Biol Chem,1997,272(6):3406-10.
    [30] Ali FY, Davidson SJ, Moraes LA, Traves SL, Paul-Clark M, Bishop-Bailey D, et al. Role ofnuclear receptor signaling in platelets: antithrombotic effects of PPARbeta[J]. FASEB J,2006,20(2):326-8.
    [31] Camp HS, Li O, Wise SC, Hong YH, Frankowski CL, Shen X, et al. Differential activation ofperoxisome proliferator-activated receptor-gamma by troglitazone and rosiglitazone[J].Diabetes,2000,49(4):539-47.
    [32] Kodera Y, Takeyama K, Murayama A, Suzawa M, Masuhiro Y, Kato S. Ligand type-specificinteractions of peroxisome proliferator-activated receptor gamma with transcriptionalcoactivators[J]. J Biol Chem,2000,275(43):33201-4.
    [33] Olefsky JM. Treatment of insulin resistance with peroxisome proliferator-activated receptorgamma agonists[J]. J Clin Invest,2000,106(4):467-72.
    [34] Beato M, Herrlich P, Schutz G. Steroid hormone receptors: many actors in search of a plot[J].Cell,1995,83(6):851-7.
    [35] Kastner P, Mark M, Chambon P. Nonsteroid nuclear receptors: what are genetic studiestelling us about their role in real life Cell[J],1995,83(6):859-69.
    [36] Wang LH, Yang XY, Zhang X, Mihalic K, Fan YX, Xiao W, et al. Suppression of breastcancer by chemical modulation of vulnerable zinc fingers in estrogen receptor[J]. Nat Med,2004,10(1):40-7.
    [37] Mangelsdorf DJ, Thummel C, Beato M, Herrlich P, Schutz G, Umesono K, et al. The nuclearreceptor superfamily: the second decade[J]. Cell,1995,83(6):835-9.
    [38] Mangelsdorf DJ, Evans RM. The RXR heterodimers and orphan receptors[J]. Cell,1995,83(6):841-50.
    [39] Saez E, Rosenfeld J, Livolsi A, Olson P, Lombardo E, Nelson M, et al. PPAR gammasignaling exacerbates mammary gland tumor development[J]. Genes Dev,2004,18(5):528-40.
    [40] Hevener AL, Olefsky JM, Reichart D, Nguyen MT, Bandyopadyhay G, Leung HY, et al.Macrophage PPAR gamma is required for normal skeletal muscle and hepatic insulinsensitivity and full antidiabetic effects of thiazolidinediones[J]. J Clin Invest,2007,117(6):1658-69.
    [41] Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W. From molecular action tophysiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at thecrossroads of key cellular functions[J]. Prog Lipid Res,2006,45(2):120-59.
    [42] Wang LH, Kirken RA, Yang XY, Erwin RA, DaSilva L, Yu CR, et al. Selective disruption ofinterleukin4autocrine-regulated loop by a tyrosine kinase inhibitor restricts activity ofT-helper2cells[J]. Blood,2000,95(12):3816-22.
    [43] Renauld JC. Class II cytokine receptors and their ligands: key antiviral and inflammatorymodulators[J]. Nat Rev Immunol,2003,3(8):667-76.
    [44] Schindler CW. Series introduction. JAK-STAT signaling in human disease[J]. J Clin Invest,2002,109(9):1133-7.
    [45] Aaronson DS, Horvath CM. A road map for those who don't know JAK-STAT[J]. Science,2002,296(5573):1653-5.
    [46] Gronemeyer H, Gustafsson JA, Laudet V. Principles for modulation of the nuclear receptorsuperfamily[J]. Nat Rev Drug Discov,2004,3(11):950-64.
    [47] Wang LH, Yang XY, Mihalic K, Xiao W, Li D, Farrar WL. Activation of estrogen receptorblocks interleukin-6-inducible cell growth of human multiple myeloma involving molecularcross-talk between estrogen receptor and STAT3mediated by co-regulator PIAS3[J]. J BiolChem,2001,276(34):31839-44.
    [48] Wang LH, Yang XY, Zhang X, Huang J, Hou J, Li J, et al. Transcriptional inactivation ofSTAT3by PPARgamma suppresses IL-6-responsive multiple myeloma cells[J]. Immunity,2004,20(2):205-18.
    [49] Youn JI, Nagaraj S, Collazo M, Gabrilovich DI. Subsets of myeloid-derived suppressor cellsin tumor-bearing mice[J]. J Immunol,2008,181(8):5791-802.
    [50] Bronte V, Apolloni E, Cabrelle A, Ronca R, Serafini P, Zamboni P, et al. Identification of aCD11b(+)/Gr-1(+)/CD31(+) myeloid progenitor capable of activating or suppressing CD8(+)T cells[J]. Blood,2000,96(12):3838-46.
    [51] Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer: the role ofreactive oxygen species[J]. J Leukoc Biol,2003,74(2):186-96.
    [52] Li Q, Pan PY, Gu P, Xu D, Chen SH. Role of immature myeloid Gr-1+cells in thedevelopment of antitumor immunity[J]. Cancer Res,2004,64(3):1130-9.
    [53] Kusmartsev S, Nefedova Y, Yoder D, Gabrilovich DI. Antigen-specific inhibition of CD8+Tcell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J].J Immunol,2004,172(2):989-99.
    [54] Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC, et al. Increasedproduction of immature myeloid cells in cancer patients: a mechanism of immunosuppressionin cancer[J]. J Immunol,2001,166(1):678-89.
    [55] Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, andmyeloid-derived suppressor cells in renal cell carcinoma[J]. Clin Cancer Res,2007,13(2Pt2):721s-6s.
    [56] Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide arethe underlying mechanism of suppression of t-cell function in advanced cancer patients[J].Cancer Res,2001,61(12):4756-60.
    [57] Dietlin TA, Hofman FM, Lund BT, Gilmore W, Stohlman SA, van der Veen RC.Mycobacteria-induced Gr-1+subsets from distinct myeloid lineages have opposite effects onT cell expansion[J]. J Leukoc Biol,2007,81(5):1205-12.
    [58] Zhu B, Bando Y, Xiao S, Yang K, Anderson AC, Kuchroo VK, et al. CD11b+Ly-6C(hi)suppressive monocytes in experimental autoimmune encephalomyelitis[J]. J Immunol,2007,179(8):5228-37.
    [59] Movahedi K, Guilliams M, Van den Bossche J, Van den Bergh R, Gysemans C, Beschin A, etal. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulationswith distinct T cell-suppressive activity[J]. Blood,2008,111(8):4233-44.
    [60] Yang R, Cai Z, Zhang Y, Yutzy WHt, Roby KF, Roden RB. CD80in immune suppression bymouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells[J]. Cancer Res,2006,66(13):6807-15.
    [61] Huang B, Pan PY, Li Q, Sato AI, Levy DE, Bromberg J, et al. Gr-1+CD115+immaturemyeloid suppressor cells mediate the development of tumor-induced T regulatory cells andT-cell anergy in tumor-bearing host[J]. Cancer Res,2006,66(2):1123-31.
    [62] Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, et al. Tumors induce asubset of inflammatory monocytes with immunosuppressive activity on CD8+T cells[J]. JClin Invest,2006,116(10):2777-90.
    [63] Diaz-Montero CM, Salem ML, Nishimura MI, Garrett-Mayer E, Cole DJ, Montero AJ.Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage,metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy[J]. CancerImmunol Immunother,2009,58(1):49-59.
    [64] Kerr EC, Raveney BJ, Copland DA, Dick AD, Nicholson LB. Analysis of retinal cellularinfiltrate in experimental autoimmune uveoretinitis reveals multiple regulatory cellpopulations[J]. J Autoimmun,2008,31(4):354-61.
    [65] Marhaba R, Vitacolonna M, Hildebrand D, Baniyash M, Freyschmidt-Paul P, Zoller M. Theimportance of myeloid-derived suppressor cells in the regulation of autoimmune effectorcells by a chronic contact eczema[J]. J Immunol,2007,179(8):5071-81.
    [66] Cauley LS, Miller EE, Yen M, Swain SL. Superantigen-induced CD4T cell tolerancemediated by myeloid cells and IFN-gamma[J]. J Immunol,2000,165(11):6056-66.
    [67] Bronte V, Wang M, Overwijk WW, Surman DR, Pericle F, Rosenberg SA, et al. Apoptoticdeath of CD8+T lymphocytes after immunization: induction of a suppressive population ofMac-1+/Gr-1+cells[J]. J Immunol,1998,161(10):5313-20.
    [68] Pan PY, Wang GX, Yin B, Ozao J, Ku T, Divino CM, et al. Reversion of immune tolerance inadvanced malignancy: modulation of myeloid-derived suppressor cell development byblockade of stem-cell factor function[J]. Blood,2008,111(1):219-28.
    [69] Sinha P, Clements VK, Fulton AM, Ostrand-Rosenberg S. Prostaglandin E2promotes tumorprogression by inducing myeloid-derived suppressor cells[J]. Cancer Res,2007,67(9):4507-13.
    [70] Serafini P, Carbley R, Noonan KA, Tan G, Bronte V, Borrello I. High-dosegranulocyte-macrophage colony-stimulating factor-producing vaccines impair the immuneresponse through the recruitment of myeloid suppressor cells[J]. Cancer Res,2004,64(17):6337-43.
    [71] Gabrilovich D, Ishida T, Oyama T, Ran S, Kravtsov V, Nadaf S, et al. Vascular endothelialgrowth factor inhibits the development of dendritic cells and dramatically affects thedifferentiation of multiple hematopoietic lineages in vivo[J]. Blood,1998,92(11):4150-66.
    [72] Bromberg J. Stat proteins and oncogenesis[J]. J Clin Invest,2002,109(9):1139-42.
    [73] Nefedova Y, Nagaraj S, Rosenbauer A, Muro-Cacho C, Sebti SM, Gabrilovich DI.Regulation of dendritic cell differentiation and antitumor immune response in cancer bypharmacologic-selective inhibition of the janus-activated kinase2/signal transducers andactivators of transcription3pathway[J]. Cancer Res,2005,65(20):9525-35.
    [74] Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R, et al.Hyperactivation of STAT3is involved in abnormal differentiation of dendritic cells incancer[J]. J Immunol,2004,172(1):464-74.
    [75] Kortylewski M, Kujawski M, Wang T, Wei S, Zhang S, Pilon-Thomas S, et al. InhibitingStat3signaling in the hematopoietic system elicits multicomponent antitumor immunity[J].Nat Med,2005,11(12):1314-21.
    [76] Foell D, Wittkowski H, Vogl T, Roth J. S100proteins expressed in phagocytes: a novel groupof damage-associated molecular pattern molecules[J]. J Leukoc Biol,2007,81(1):28-37.
    [77] Cheng P, Corzo CA, Luetteke N, Yu B, Nagaraj S, Bui MM, et al. Inhibition of dendritic celldifferentiation and accumulation of myeloid-derived suppressor cells in cancer is regulatedby S100A9protein[J]. J Exp Med,2008,205(10):2235-49.
    [78] Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. ProinflammatoryS100proteins regulate the accumulation of myeloid-derived suppressor cells[J]. J Immunol,2008,181(7):4666-75.
    [79] Turovskaya O, Foell D, Sinha P, Vogl T, Newlin R, Nayak J, et al. RAGE, carboxylatedglycans and S100A8/A9play essential roles in colitis-associated carcinogenesis[J].Carcinogenesis,2008,29(10):2035-43.
    [80] Delano MJ, Scumpia PO, Weinstein JS, Coco D, Nagaraj S, Kelly-Scumpia KM, et al.MyD88-dependent expansion of an immature GR-1(+)CD11b(+) population induces T cellsuppression and Th2polarization in sepsis[J]. J Exp Med,2007,204(6):1463-74.
    [81] Kusmartsev S, Gabrilovich DI. STAT1signaling regulates tumor-associatedmacrophage-mediated T cell deletion[J]. J Immunol,2005,174(8):4880-91.
    [82] Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+T cell tolerance inducedby bone marrow-derived immature myeloid cells[J]. J Immunol,2005,175(7):4583-92.
    [83] Bronte V, Serafini P, De Santo C, Marigo I, Tosello V, Mazzoni A, et al. IL-4-inducedarginase1suppresses alloreactive T cells in tumor-bearing mice[J]. J Immunol,2003,170(1):270-8.
    [84] Rutschman R, Lang R, Hesse M, Ihle JN, Wynn TA, Murray PJ. Cutting edge:Stat6-dependent substrate depletion regulates nitric oxide production[J]. J Immunol,2001,166(4):2173-7.
    [85] Sinha P, Clements VK, Ostrand-Rosenberg S. Interleukin-13-regulated M2macrophages incombination with myeloid suppressor cells block immune surveillance against metastasis[J].Cancer Res,2005,65(24):11743-51.
    [86] Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD, et al.Transforming growth factor-beta production and myeloid cells are an effector mechanismthrough which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumorimmunosurveillance: abrogation prevents tumor recurrence[J]. J Exp Med,2003,198(11):1741-52.
    [87] Serafini P, Mgebroff S, Noonan K, Borrello I. Myeloid-derived suppressor cells promotecross-tolerance in B-cell lymphoma by expanding regulatory T cells[J]. Cancer Res,2008,68(13):5439-49.
    [88] Bronte V, Zanovello P. Regulation of immune responses by L-arginine metabolism[J]. NatRev Immunol,2005,5(8):641-54.
    [89] Rodriguez PC, Ochoa AC. Arginine regulation by myeloid derived suppressor cells andtolerance in cancer: mechanisms and therapeutic perspectives[J]. Immunol Rev,2008,222:180-91.
    [90] Rodriguez PC, Hernandez CP, Quiceno D, Dubinett SM, Zabaleta J, Ochoa JB, et al.Arginase I in myeloid suppressor cells is induced by COX-2in lung carcinoma[J]. J Exp Med,2005,202(7):931-9.
    [91] Rodriguez PC, Zea AH, Culotta KS, Zabaleta J, Ochoa JB, Ochoa AC. Regulation of T cellreceptor CD3zeta chain expression by L-arginine[J]. J Biol Chem,2002,277(24):21123-9.
    [92] Rodriguez PC, Quiceno DG, Ochoa AC. L-arginine availability regulates T-lymphocytecell-cycle progression[J]. Blood,2007,109(4):1568-73.
    [93] Bingisser RM, Tilbrook PA, Holt PG, Kees UR. Macrophage-derived nitric oxide regulates Tcell activation via reversible disruption of the Jak3/STAT5signaling pathway[J]. J Immunol,1998,160(12):5729-34.
    [94] Harari O, Liao JK. Inhibition of MHC II gene transcription by nitric oxide andantioxidants[J]. Curr Pharm Des,2004,10(8):893-8.
    [95] Rivoltini L, Carrabba M, Huber V, Castelli C, Novellino L, Dalerba P, et al. Immunity tocancer: attack and escape in T lymphocyte-tumor cell interaction[J]. Immunol Rev,2002,188:97-113.
    [96] Szuster-Ciesielska A, Hryciuk-Umer E, Stepulak A, Kupisz K, Kandefer-Szerszen M.Reactive oxygen species production by blood neutrophils of patients with laryngealcarcinoma and antioxidative enzyme activity in their blood[J]. Acta Oncol,2004,43(3):252-8.
    [97] Sauer H, Wartenberg M, Hescheler J. Reactive oxygen species as intracellular messengersduring cell growth and differentiation[J]. Cell Physiol Biochem,2001,11(4):173-86.
    [98] Goni O, Alcaide P, Fresno M. Immunosuppression during acute Trypanosoma cruzi infection:involvement of Ly6G (Gr1(+))CD11b(+)immature myeloid suppressor cells[J]. Int Immunol,2002,14(10):1125-34.
    [99] Vickers SM, MacMillan-Crow LA, Green M, Ellis C, Thompson JA. Association ofincreased immunostaining for inducible nitric oxide synthase and nitrotyrosine withfibroblast growth factor transformation in pancreatic cancer[J]. Arch Surg,1999,134(3):245-51.
    [100] Cobbs CS, Whisenhunt TR, Wesemann DR, Harkins LE, Van Meir EG, Samanta M.Inactivation of wild-type p53protein function by reactive oxygen and nitrogen species inmalignant glioma cells[J]. Cancer Res,2003,63(24):8670-3.
    [101] Bentz BG, Haines GK,3rd, Radosevich JA. Increased protein nitrosylation in head and necksquamous cell carcinogenesis[J]. Head Neck,2000,22(1):64-70.
    [102] Dairou J, Dupret JM, Rodrigues-Lima F. Impairment of the activity of thexenobiotic-metabolizing enzymes arylamine N-acetyltransferases1and2(NAT1/NAT2) byperoxynitrite in mouse skeletal muscle cells[J]. FEBS Lett,2005,579(21):4719-23.
    [103] Ekmekcioglu S, Ellerhorst J, Smid CM, Prieto VG, Munsell M, Buzaid AC, et al. Induciblenitric oxide synthase and nitrotyrosine in human metastatic melanoma tumors correlate withpoor survival[J]. Clin Cancer Res,2000,6(12):4768-75.
    [104] Kinnula VL, Torkkeli T, Kristo P, Sormunen R, Soini Y, Paakko P, et al. Ultrastructural andchromosomal studies on manganese superoxide dismutase in malignant mesothelioma[J]. AmJ Respir Cell Mol Biol,2004,31(2):147-53.
    [105] Nakamura Y, Yasuoka H, Tsujimoto M, Yoshidome K, Nakahara M, Nakao K, et al. Nitricoxide in breast cancer: induction of vascular endothelial growth factor-C and correlation withmetastasis and poor prognosis[J]. Clin Cancer Res,2006,12(4):1201-7.
    [106] Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I, et al. Boosting antitumorresponses of T lymphocytes infiltrating human prostate cancers[J]. J Exp Med,2005,201(8):1257-68.
    [107] Nagaraj S, Gupta K, Pisarev V, Kinarsky L, Sherman S, Kang L, et al. Altered recognition ofantigen is a mechanism of CD8+T cell tolerance in cancer[J]. Nat Med,2007,13(7):828-35.
    [108] Dugast AS, Haudebourg T, Coulon F, Heslan M, Haspot F, Poirier N, et al. Myeloid-derivedsuppressor cells accumulate in kidney allograft tolerance and specifically suppress effector Tcell expansion[J]. J Immunol,2008,180(12):7898-906.
    [109] Kusmartsev SA, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing miceinhibit primary T cell activation induced through CD3/CD28costimulation[J]. J Immunol,2000,165(2):779-85.
    [110] Watanabe S, Deguchi K, Zheng R, Tamai H, Wang LX, Cohen PA, et al. Tumor-inducedCD11b+Gr-1+myeloid cells suppress T cell sensitization in tumor-draining lymph nodes[J].J Immunol,2008,181(5):3291-300.
    [111] Stoll S, Delon J, Brotz TM, Germain RN. Dynamic imaging of T cell-dendritic cellinteractions in lymph nodes[J]. Science,2002,296(5574):1873-6.
    [112] Miller MJ, Safrina O, Parker I, Cahalan MD. Imaging the single cell dynamics of CD4+Tcell activation by dendritic cells in lymph nodes[J]. J Exp Med,2004,200(7):847-56.
    [113] Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunctionin cancer mediated by immature Gr-1+myeloid cells[J]. J Immunol,2001,166(9):5398-406.
    [114] Haile LA, von Wasielewski R, Gamrekelashvili J, Kruger C, Bachmann O, Westendorf AM,et al. Myeloid-derived suppressor cells in inflammatory bowel disease: a newimmunoregulatory pathway[J]. Gastroenterology,2008,135(3):871-81,81e1-5.
    [115] Willimsky G, Czeh M, Loddenkemper C, Gellermann J, Schmidt K, Wust P, et al.Immunogenicity of premalignant lesions is the primary cause of general cytotoxic Tlymphocyte unresponsiveness[J]. J Exp Med,2008,205(7):1687-700.
    [116] Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ, et al. All-trans-retinoic acidimproves differentiation of myeloid cells and immune response in cancer patients[J]. CancerRes,2006,66(18):9299-307.
    [117] Monu N, Frey AB. Suppression of proximal T cell receptor signaling and lytic function inCD8+tumor-infiltrating T cells[J]. Cancer Res,2007,67(23):11447-54.
    [118] Fricke I, Mirza N, Dupont J, Lockhart C, Jackson A, Lee JH, et al. Vascular endothelialgrowth factor-trap overcomes defects in dendritic cell differentiation but does not improveantigen-specific immune responses[J]. Clin Cancer Res,2007,13(16):4840-8.
    [119] Antonia SJ, Mirza N, Fricke I, Chiappori A, Thompson P, Williams N, et al. Combination ofp53cancer vaccine with chemotherapy in patients with extensive stage small cell lungcancer[J]. Clin Cancer Res,2006,12(3Pt1):878-87.
    [120] Mantovani A, Sozzani S, Locati M, Allavena P, Sica A. Macrophage polarization:tumor-associated macrophages as a paradigm for polarized M2mononuclear phagocytes[J].Trends Immunol,2002,23(11):549-55.
    [121] Muller AJ, Prendergast GC. Indoleamine2,3-dioxygenase in immune suppression andcancer[J]. Curr Cancer Drug Targets,2007,7(1):31-40.
    [122] Tichelaar JW, Lu W, Whitsett JA. Conditional expression of fibroblast growth factor-7in thedeveloping and mature lung[J]. J Biol Chem,2000,275(16):11858-64.
    [123] Qu P, Du H, Wang X, Yan C. Matrix Metalloproteinase12Overexpression in Lung EpithelialCells Plays a Key Role in Emphysema to Lung Bronchioalveolar AdenocarcinomaTransition[J]. Cancer Res,2009.
    [124] Li Y, Du H, Qin Y, Roberts J, Cummings OW, Yan C. Activation of the signal transducers andactivators of the transcription3pathway in alveolar epithelial cells induces inflammation andadenocarcinomas in mouse lung[J]. Cancer Res,2007,67(18):8494-503.
    [125] Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H. Transcriptional activationby tetracyclines in mammalian cells[J]. Science,1995,268(5218):1766-9.
    [126] Shapiro SD, Senior RM. Matrix metalloproteinases. Matrix degradation and more[J]. Am JRespir Cell Mol Biol,1999,20(6):1100-2.
    [127] Marx N, Kehrle B, Kohlhammer K, Grub M, Koenig W, Hombach V, et al. PPAR activatorsas antiinflammatory mediators in human T lymphocytes-Implications for atherosclerosis andtransplantation-associated arteriosclerosis[J]. Circulation Research,2002,90(6):703-10.
    [128] Li M, Pascual G, Glass CK. Peroxisome proliferator-activated receptor gamma-dependentrepression of the inducible nitric oxide synthase gene[J]. Mol Cell Biol,2000,20(13):4699-707.
    [129] Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammation andcancer[J]. J Immunol,2009,182(8):4499-506.
    [130] Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immunesystem[J]. Nat Rev Immunol,2009,9(3):162-74.
    [131] Gearing KL, Gottlicher M, Teboul M, Widmark E, Gustafsson JA. Interaction of theperoxisome-proliferator-activated receptor and retinoid X receptor[J]. Proc Natl Acad Sci U SA,1993,90(4):1440-4.
    [132] Moore KJ, Rosen ED, Fitzgerald ML, Randow F, Andersson LP, Altshuler D, et al. The roleof PPAR-gamma in macrophage differentiation and cholesterol uptake[J]. Nat Med,2001,7(1):41-7.
    [133] Xu HE, Stanley TB, Montana VG, Lambert MH, Shearer BG, Cobb JE, et al. Structural basisfor antagonist-mediated recruitment of nuclear co-repressors by PPARalpha[J]. Nature,2002,415(6873):813-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700