免疫抑制性细胞Treg/Th17、MDSCs在胃癌发生发展中作用的临床研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的CD4~+CD25~+Foxp3~+Treg、Th17及单核样髓源性抑制细胞(MDSCs)被认为是最为关键的参与肿瘤免疫逃逸机制的细胞。本研究检测Treg/Th17、MDSCs在胃癌患者外周血中表达变化,以初步探讨CD4~+CD25~+Foxp3~+Treg、Th17及MDSCs在胃癌发生发展中的作用。
     方法收集77例胃癌、21例胃上皮内瘤变、31例萎缩性胃炎、45例胃溃疡、20例正常对照外周血,流式细胞仪分析CD4~+CD25~+Foxp3~+Treg表达,PMA+Ionomycin联合刺激后,流式细胞仪检测CD4+IL-17+Th17表达,结合临床资料初步分析Treg及Th17表达与胃癌患者年龄、性别、肿瘤生长部位、临床TNM分期、浸润深度及淋巴结转移的相关性;流式细胞仪检测循环单核样MDSCs占单核样细胞百分比,并初步探讨MDSCs与胃癌患者年龄、性别、肿瘤生长部位、临床TNM分期、浸润深度及淋巴结转移的相关性。
     结果(1)外周血CD4~+CD25~+Foxp3~+Treg细胞占CD4~+T细胞百分比分别为胃癌患者(4.72±1.01)%、胃上皮内瘤变(3.23±0.38)%、萎缩性胃炎(2.57±0.41)%、胃溃疡(2.02±0.63)%、及正常对照(1.57±0.99)%,胃癌患者Treg细胞表达水平较胃上皮内瘤变、萎缩性胃炎、胃溃疡及正常对照组明显升高,统计学显示各组之间均具有显著差异(P<0.01)。外周血Th17占CD4~+T细胞百分比分别为胃癌患者(8.16±3.13)%、胃上皮内瘤变(6.80±2.12)%、萎缩性胃炎(5.79±1.40)%、胃溃疡(4.94±1.06)%及正常对照组(4.85±1.85)%,胃癌患者外周血中Th17所占比例较胃上皮内瘤变组、萎缩性胃炎组、胃溃疡组及正常对照组明显升高,统计学显示各组之间均具有显著差异(P<0.01),胃癌患者外周血中Treg细胞表达水平与胃癌临床分期、肿瘤浸润深度及淋巴结转移有关,但与患者性别、年龄、肿瘤生长部位无关;Th17与胃癌患者年龄、性别、临床分期、浸润深度及淋巴结转移均无相关性。(2)外周血MDSCs占单核样细胞百分比分别为胃癌患者(21.72±10.12)%、胃上皮内瘤变(13.16±3.79)%、萎缩性胃炎(7.74±1.14)%、胃溃疡(4.79±1.07)%及正常对照组(2.90±1.80)%,胃癌患者较其余各组外周血MDSC细胞呈高表达状态,统计学显示各组之间均具有显著差异(P<0.01);进展期胃癌(IIA、IIB、IIIA、IIIB、IIIC、IV期)MDSCs(23.79±9.48)%较早期胃癌(IA、IB期)MDSCs(11.74±4.01)%水平明显升高(P<0.05);MDSCs比例与胃癌患者年龄、性别、肿瘤浸润深度、淋巴结转移均无相关性。(3)外周血MDSCs与Treg(r=0.681)及Th17(r=0.724)呈正相关。
     结论(1)胃癌患者外周血存在Treg及Th17细胞高表达现象,提示胃癌患者可能存在Treg/Th17平衡紊乱。(2)胃癌患者外周血MDSCs水平明显升高,可能与胃癌免疫功能低下和胃癌发生发展密切相关。
Objective CD4~+CD25~+Foxp3~+Treg, Th17and myeloid-derived suppressor cells(MDSCs) are considered to be the most critical cells participating in tumor immune escapemechanism. This studies were detected the changes of Treg/Th17, MDSCs expressions inthe peripheral blood of patients with gastric cancer, to preliminary approach to the role ofCD4~+CD25~+Foxp3~+Treg, Th17, MDSCs in the development and progression of the gastriccancer.
     Methods The peripheral blood specimens from77cases gastric cancer,21cases gastricintraepithelial neoplasia,33cases atrophic gastritis,45cases gastric ulcer and20caseshealthy controls were collected. The CD4~+CD25~+Foxp3~+Treg expressions were measuredby flow cytometry, and the CD4+IL-17+Th17expressions after the co-stimulation of PMAand Ionomycin were also measured by flow cytometry The correlations between the Tregand Th17expressions with age, sex, tumor location, TNM stage, depth of invasion andlymph node metastasis of gastric cancer were preliminary analyzed based on the clinicaldata. The peripheral blood mononuclear MDSCs percentage were measure by flowcytometry, and the correlation between the MDSCs with age, sex, tumor location, TNMstage, depth of invasion and lymph node metastasis of gastric cancer were preliminaryanalyzed.
     Results (1) The peripheral blood percentage CD4~+CD25~+Foxp3~+Treg cells of CD4+T cell in gastric cancer[(4.72±1.01)%] was significantly higher than in gastricintraepithelial neoplasia[(3.23±0.38)%], in atrophic gastritis[(2.57±0.41)%], in gastriculcer [(2.02±0.63)%], in healthy controls[(1.57±0.99)%](p<0.01), and were showedstatistically significantly difference among the five groups(p<0.01). The peripheral bloodTh17percentage of CD4~+T cells in gastric cancer[(8.16±3.13)%]was significantlyhigher than in gastric intraepithelial neoplasia[(6.80±2.12)%], in atrophic gastritis[(5.79±1.40)%], in gastric ulcer[(4.94±1.06)%] and in healthycontrols[(4.85±1.85)%], and were showed statistically significantly difference among thefive groups(p<0.01). The peripheral blood percentage CD4~+CD25~+Foxp3~+Treg cells ofCD4~+T cell in gastric cancer patients were correlated to the depth of infiltration,lymphatic metastasis, and clinical TNM stages, but were no related to the age, gender andtumor location. The peripheral blood Th17percentage of CD4~+T cells in gastric cancerpatients were no related with the age, gender, clinical TNM stages, depth of infiltration,and lymphatic metastasis.
     (2) The peripheral blood mononuclear MDSCs percentage in gastriccancer[(21.72±10.12)%] were significantly higher than in gastric intraepithelialneoplasia[(13.16±3.79)%], in atrophic gastritis[(7.74±1.14)%], in gastric ulcer[(4.79±1.07)%], in healthy controls[(2.90±1.80)%], and were showed statisticallysignificantly difference among the five groups(p<0.01). The peripheral blood mononuclearMDSCs percentage in advanced gastric cancer (IIA, IIB, IIIA, IIIB, IIIC,IVstage)[(23.79±9.48)%] was significantly higher than in early gastric cancer(IA, IBstage)[(11.74±4.01)%](P<0.05), but were no related with the age, gender, depth ofinfiltration, and lymphatic metastasis in gastric cancer patients.
     (3)The peripheral blood mononuclear MDSCs percentage were showed positiverelation to the peripheral blood percentage CD4~+CD25~+Foxp3~+Treg cells of CD4+Tcell(r=0.680) and the peripheral blood Th17percentage of CD4~+T cells(r=0.724).
     Conclusion (1) Gastric cancer patients may exist the high Treg and Th17cellsexpressions in peripheral blood, That suggested there is a disturbance of Treg/Th17ingastric cancer.(2) The peripheral blood mononuclear MDSCs percentage in gastric cancerpatients is remarkable rise, which may be related with low immune function of gastriccancer and development in the gastric cancer
引文
[1]孙秀娣、牧人、周有尚等,中国胃癌死亡率20年变化情况分析及其发展趋势预测[J].中华肿瘤杂志,2004,26:4-9.
    [2] Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+CD25+CD4+natural regulatory Tcells in dominant self-tolerance and autoimmune disease[J]. Immunol Rev,2006,212:8-27.
    [3] Feuerer M, Hill JA, Mathis D, et al. Foxp3+regulatory T cells: differentiation,specification, subphenotypes[J]. Nat Immunol,2009,10:689-95.
    [4] Oberle N, Eberhardt N, Falk CS, et a1.Rapid, suppression of cytokine transcription inhuman CD4+CD25+T cells by CD4+Foxp3+regulatory T cells:independence of IL-2consumption,TGF-beta,and various inhibitors of TCR signaling[J]. J Immunol,2007,179:3578-87.
    [5] Ichihara F, Kono K, Takahashi A, et a1. Increased populations of regulatory T cells inpefipherai blood and tumor-infiltrating lymphocytes in patients with gastric andesophageal cancers[J]. Clin Cancer Res,2003,9:4404-8.
    [6] Baecher-Allan C, Brown JA, Freeman GJ, et a1. CD4+CD25Highregulatory cells inhuman peripheral blood[J]. J lmmunol,2001,167:1245-53.
    [7] Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for thegeneration of pathogenic effector TH17and regulatory T cells[J]. Nature,2006,441:235–8.
    [8] Korn T, Bettelli E, Oukka M, et al. IL-17and Th17Cells[J]. Annu Rev Immunol,2009,27:485–517.
    [9] Dong C. Diversification of T-helper-cell lineages: finding the family root ofIL-17-producing cells[J]. Nat Rev Immunol,2006,6:329–33.
    [10] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammatdirects the differentiation program of proinflammatory IL-17+T helper cells[J]. Cell,2006,126:1121–33.
    [11] Yang XO, Pappu BP, Nurieva R, et al. T helper17lineage differentiation isprogrammed by orphan nuclear receptors ROR alpha and ROR gamma[J]. Immunity,2008,28:29–39.
    [12] Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper17cell effectorcytokines in inflammation[J]. Immunity,2008,28:454–67.
    [13] Bettelli E, Oukka M, Kuchroo VK. T(H)-17cells in the circle of immunity andautoimmunity[J]. Nat Immunol,2007,8:345–50.
    [14] Gabrilovieh D, Bronte V, Chen SH, et al. The terminology issue for myeloid-derivedsuppressor cells[J]. Cancer Res,2007,67:425.
    [15] Ko JS, Bukowski RM, Fincke JH. Myeloid-derived suppressor cells: anoveltherapeutic target[J]. Curr Oncol Rep,2009,11:87-93.
    [16] Greene FL, Page DL, Fleming ID, et al. AJCC cancer staging manual[M].7th ed. NewYork: Springer-Verlag,2010.
    [17] Hartgrink HH, Jansen EP, van Grieken NC, et al. Gastric cancer[J]. Lancet,2009,374:477-90.
    [18] Zou W. Immunosuppressive networks in the tumour environment and their therapeuticrelevance[J]. Nat Rev Cancer,2005,5:263-74.
    [19]Bhardwaj N. Harnessing the immune system to treat cancer[J]. J Clin Invest,2007,117:1130-6.
    [20]刘秋燕,曹雪涛,MDSCs与肿瘤免疫逃逸[J].中国肿瘤生物治疗杂志,2009,16:319-324.
    [21]Sakaguchi S,Sakaguchi N,Shimizu J,et a1.Immunologic tolerance maintmned byCD25+CD4+regulatory T cells: their common role in controlling autoimmunity,tumor immunity, and transplantation tolerance[J]. Immunol Rev,2001,182:18-32.
    [22] Shevach EM. Mechanisms of Foxp3+T regulatory cell-mediated suppression[J].Immunity,2009,30:636–45.
    [23] Ji Q, Gondek D, Hurwitz AA. Provision of granulocyte–macrophagecolony-stimulating factor converts an autoimmune response to a self-antigen into anantitumor response[J]. J Immunol,2005,175:1456–63.
    [24] Boissonnas A, Scholer-Dahirel A, Simon-Blancal V, et al. Foxp3+T cells induceperforin-dependent dendritic cell death in tumor-draining lymph nodes[J]. Immunity,2010,32:266–78.
    [25] Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4control over Foxp3+regulatory Tcell function[J]. Science,2008,322:271–5.
    [26] Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, andfunctional and clinical relevance of Th17cells in the human tumor environments[J].Blood,2009,114:1141-9.
    [27] Curiel TJ, Coukos G, Zou L,et al. Specific recruitment of regulatory T cells in ovariancarcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10:942-9.
    [28] Su X, Ye J, Hsueh EC, et al. Tumor microenvironments direct the recruitment andexpansion of human Th17cells[J]. J Immunol,2010,184:1630-41.
    [29] Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltratinglymphocytes reveals TH17and Treg skewing[J]. Clin Cancer Res,2008,14:3254-61.
    [30] Wakita D, Sumida K, Iwakura Y, et al. Tumor-infitrating IL-17-producing gammadeltaT cells support the progression of tumor by promoting angiogenesis[J]. Eur JImmunol,2010,40:1927-37.
    [31] Tartour E, Fossiez F, Joyeux I, et al. Interleukin17, a T-cell-derived cytokine,promotes tumorigenicity of human cervical tumors in nude mice[J]. Cancer Res,1999,59:3698-704.
    [32] Benchetrit F, Ciree A, Vives V, et al. Interleukin-17inhibits tumor cell growth byMeans of a T-cell-dependent mechanism[J]. Blood,2002,99:2114-21.
    [33] O'Garra A, Stockinger B, Veldhoen M. Differentiation of human T(H)-17cells doesrequire TGF-beta![J]. Nat Immunol,2008,9:588-90.
    [34] Dumitriu IE, Dunbar DR, Howie SE, et al. Human dendritic cells produce TGF-beta1under the influence of lung carcinoma cells and prime the differentiation ofCD4+CD25+Foxp3+regulatory T cells[J]. J Immunol,2009,182:2795-807.
    [35] Mucida D, Cheroutre H. TGF-beta and retinoic acid intersect in immune-regulation[J].Cell Adh Migr,2007,1:142-4.
    [36] Zheng Q, Xu Y, Liu Y, et al. Induction of Foxp3demethylation increases regulatoryCD4+CD25+T cells and prevents the occurrence of diabetes in mice[J]. J Mol Med,2009,87:1191-205.
    [37] Audia S, Nicolas A, Cathelin D, et al. Increase of CD4+CD25+regulatory T cells inthe peripheral blood of patients with metastatic carcinoma: a Phase I clinical trialusing cyclophosphamide and immunotherapy to eliminate CD4+CD25+Tlymphocytes[J]. Clin Exp Immunol,2007,150:523-30.
    [38]Ormandy LA, Hillemann T, Wedemeyer H, et al. Increased populations of regulatory Tcells in peripheral blood of patients with hepatocellular carcinoma[J]. Cancer Res,2005,65:2457-64.
    [39] Wang HY, Wang RF. Regulatory T cells and cancer[J]. Curr Opin Immunol,2007,19:217-23.
    [40] Zheng Q, Xu Y, Liu Y, et al. Induction of Foxp3demethylation increases regulatoryCD4+CD25+T cells and prevents the occurrence of diabetes in mice[J]. J Mol Med,2009,87:1191-205.
    [41] Mucida D, Park Y, Kim G, et al. Reciprocal TH17and regulatory T cell differentiationmediated by retinoic acid[J]. Science,2007,317:256-60.
    [42] Coombes JL, Siddiqui KR, Arancibia-Carcamo CV, et al. A functionally specializedpopulation of mucosal CD103+DCs induces Foxp3+regulatory T cells via aTGF-beta and retinoic acid-dependent mechanism[J]. J Exp Med,2007,204:1757-64.
    [43] Sun CM, Hall JA, Blank RB, et al. Small intestine lamina propria dendritic cellspromote de novo generation of Foxp3T reg cells via retinoic acid[J]. J Exp Med,2007,204:1775-85.
    [44] Benson MJ, Pino-Lagos K, Rosemblatt M, et al. All-trans retinoic acid mediatesenhanced T reg cell growth, differentiation, and gut homing in the face of high levelsof co-stimulation[J]. J Exp Med,2007,204:1765-74.
    [45] Schambach F, Schupp M, Lazar MA, et al. Activation of retinoic acid receptor-alphafavours regulatory T cell induction at the expense of IL-17-secreting T helper celldifferentiation[J]. Eur J Immunol2007,37:2396-9.
    [46] Xu L, Kitani A, Fuss I, et al. Cutting edge: regulatory T cells induceCD4+CD25+Foxp3+T cells or are self-induced to become Th17cells in the absenceof exogenous TGF-beta[J]. J Immunol,2007,178:6725-9.
    [47] Yi T, Chen Y, Wang L, et al. Reciprocal differentiation and tissue-specificpathogenesis of Th1, Th2, and Th17cells in graft-versus-host disease[J]. Blood,2009,114:3101-12.
    [48] Tournadre A, Porcherot M, Cherin P, et al. Th1and Th17balance in inflammatorymyopathies: interaction with dendritic cells and possible link with response tohigh-dose immunoglobulins[J]. Cytokine,2009,46:297-301.
    [49] Lee YK, Turner H, Maynard CL, et al. Late developmental plasticity in the T helper17lineage[J]. Immunity,2009,30:92-107.
    [50] Diaz-Montero CM, Salem ML, Nishimura MI, et al. Increased circulatingmyeloid-derived suppressor cells correlate with clinical cancer stage, metastatictumor burden, and doxorubicin-cyclophosphamide chemotherapy[J]. CancerImmunol Immunother,2009,58:49-59.
    [51]沈春,于津浦,李慧,等.乳腺癌患者髓系来源抑制性细胞的鉴定与免疫抑制作用研究[J].中国肿瘤临床,2009,36:1010-5.
    [52]Ostrand-Rosenberg S, Sinha P. Myeloid-derived suppressor cells: linking inflammationand cancer[J]. J Immunol,2009,182:4499-506.
    [53] Liu CY, Wang YM, Wang CL, et al. Population alterations of L-arginase-and induciblenitric oxide synthase-expressed CD11b+/CD14-/CD15+/CD33+myeloid-derivedsuppressor cells and CD8+T lymphocytes in patients with advanced-stage non-smallcell lung cancer[J]. J Cancer Res Clin Oncol,2010,136:35-45.
    [54]朱立宁,徐岷,张尤历,等.幽门螺旋杆菌感染诱导髓源抑制细胞在胃癌发生中的作用[J].江苏医药,2012,38:1404-6.
    [55] Ko JS, Zea AH, Rini BI, et al. Sunitinib mediates reversal of myeloid-derivedsuppressor cell accumulation in renal cell carcinoma patients[J]. Clin Cancer Res,2009,15:2148-57.
    [56] Zea AH,Redriguez PC,Atkins MB,et al.Arginase-producing myeloid suppressorcells in renal ceH carcinoma patients:a mechanJsm of tumor evasion[J]. Cancer Res,2005,65:3044-8.
    [57] Redriguez PC, Ouiceno DG, Zabaleta J, et a1.Argjnase I produetion in the tumormiercenvirenment by mature myelold cells inhibits T-cell receptor expression andantigen·specific T-cell responses[J]. Cancer Res,2004,64:5839-49.
    [58] Hoechst B, Ormandy LA, Ballmaier M, et al. A new population of myeloid-derivedsuppressor cells in hepatocellular carcinoma patients inducesCD4(+)CD25(+)Foxp3(+) T cells[J]. Gastroenterology,2008,135:234-43.
    [59] Hoechst B, Voigtlaender T, Ormandy L, et al. Myeloid derived suppressor cells inhibitnatural killer cells in patients with hepatocellular carcinoma via the NKp30receptor[J]. Hepatology,2009,50:799-807.
    [60] Rodriguez PC, Ernstoff MS, Hernandez C, et al. Arginase I-producingmyeloid-derived suppressor cells in renal cell carcinoma are a subpopulation ofactivated granulocytes[J]. Cancer Res,2009,69:1553-60.
    [1] Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+CD25+CD4+natural regulatory T cellsin dominant self-tolerance and autoimmune disease[J]. Immunol Rev,2006,212:8–27.
    [2] Feuerer M, Hill JA, Mathis D,et al. Foxp3+regulatory T cells: differentiation,specification, subphenotypes[J]. Nat Immunol,2009,10:689–95.
    [3] Wolf D, Wolf AM, Rumpold H, et al. The expression of the regulatory T cell-specificforkhead box transcription factor FoxP3is associated with poor prognosis in ovariancancer[J]. Clin Cancer Res,2005,11:8326–31.
    [4] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovariancarcinoma fosters immune privilege and predicts reduced survival[J]. Nat Med,2004,10:942–9.
    [5] Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for thegeneration of pathogenic effector TH17and regulatory T cells[J]. Nature,2006,441:235–8.
    [6] Korn T, Bettelli E, Oukka M,et al. IL-17and Th17Cells[J]. Annu Rev Immunol,2009,27:485–517.
    [7] Dong C. Diversification of T-helper-cell lineages: finding the family root ofIL-17-producing cells[J]. Nat Rev Immunol,2006,6:329–33.
    [8] Ivanov II, McKenzie BS, Zhou L et al. The orphan nuclear receptor RORgammatdirects the differentiation program of proinflammatory IL-17+T helper cells[J]. Cell,2006,126:1121–33.
    [9] Yang XO, Pappu BP, Nurieva R, et al. T helper17lineage differentiation isprogrammed by orphan nuclear receptors ROR alpha and ROR gamma. Immunity,2008,28:29–39.
    [10] Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper17cell effectorcytokines in inflammation[J]. Immunity,2008,28:454–67.
    [11] Bettelli E, Oukka M, Kuchroo VK. T(H)-17cells in the circle of immunity andautoimmunity[J]. Nat Immunol,2007,8:345–50.
    [12] Afzali B, Lombardi G, Lechler RI, et al. The role of T helper17(Th17) andregulatory T cells (Treg) in human organ transplantation and autoimmune disease[J].Clin Exp Immunol,2007,148:32–46.
    [13] Sakaguchi S.The origin of Foxp3-expressing CD4+regulatory T cells:thymus orperiphery[J]. J Clin Invest,2003,112:1310-2.
    [14] Mavroudis D, Bolonakis I, Comet S, et al. A phase I study of the optimized crypticTERT(572y) in patients with advanced malignancies[J]. Oncology,2006,70:306-14.
    [15] Bolonaki I, Kostakis A, Papadimitraki E, et al. Vaccination of patients with asvancednon-small-cell lung cancer with an optimized cryptic human telomerase reversetransciptase peptide[J]. J Clin Oncol,2007,25:2727-34.
    [16] Sun JB, Raghavan S, Sjoling A, et al. Oral tolerance induction with antigenconjugated to cholera toxin B subunit generates both Foxp3+CD25+andFoxp3-CD25-CD4+regulatory T cells[J]. J Immunol,2006,177:7634-44.
    [17] Pillai V, Ortega SB, Wang CK, et al. Transient regulatory T-cells: a state attained byall activated human T-cells[J]. Clin Immunol,2007,123:18–29.
    [18] Rao PE, Petrone AL, Ponath PD. Differentiation and expansion of T cells withregulatory function from human peripheral lymphocytes by stimulation in thepresence of TGF-{beta}[J]. J Immunol,2005,174:1446-55.
    [19] Shevach EM, Tran DQ, Davidson TS, et al. The critical contribution of TGF-betato the induction of Foxp3expression and regulatory T cell function[J]. Eur JImmunol,2008,38:915-7.
    [20] Wohlfert E, Belkaid Y. Role of endogenous and induced regulatory T cells duringinfections[J]. J Clin Immunol,2008,28:707-15.
    [21] Jaensson E, Uronen-Hansson H, Pabst O, et al. Small intestinal CD103+dendriticcells display unique functional properties that are conserved between mice andhumans[J]. J Exp Med,2008,205:2139–49.
    [22] Mangan PR, Harrington LE, O'Quinn DB, et al. Transforming growth factor-betainduces development of the T(H)17lineage[J]. Nature,2006,441:231-4.
    [23] Korn T, Bettelli E,GaoW, et al. IL-21initiates an alternative pathway to induceproinflammatory T(H)17cells[J]. Nature,2007,448:484-7.
    [24] Kimura A, Naka T, Kishimoto T. IL-6-dependent and-independent pathways in thedevelopment of interleukin17-producing T helper cells[J]. Proc Natl Acad Sci U S A,2007,104:12099-104.
    [25] Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORgammatdirects the differentiation program of proinflammatory IL-17+T helper cells[J]. Cell,2006,126:1121-33.
    [26] Yang XO, Pappu BP, Nurieva R, et al. T helper17lineage differentiation isprogrammed by orphan nuclear receptors ROR alpha and ROR gamma[J]. Immunity,2008,28:29-39.
    [27] Diveu C, McGeachy MJ, Boniface K, Stumhofer JS, et al. IL-27blocks RORcexpression to inhibit lineage commitment of Th17cells[J]. J Immunol,2009,182:5748-56.
    [28] Mathur AN, Chang HC, Zisoulis DG, et al. Stat3and Stat4direct development ofIL-17-secreting Th cells[J]. J Immunol,2007,178:4901-7.
    [29] Brüstle A, Heink S, Huber M,et al. The development of inflammatory T(H)-17cellsrequires interferon-regulatory factor4[J]. Nat Immunol,2007,8:958-66.
    [30] Rangachari M, Mauermann N, Marty RR, et al. T-bet negatively regulatesautoimmune myocarditis by suppressing local production of interleukin17[J]. J ExpMed,2006,203:2009-19.
    [31] Kimura A, Naka T, Nohara K, et al. Aryl hydrocarbon receptor regulates Stat1activation and participates in the development of Th17cells[J]. Proc Natl Acad Sci US A,2008,105:9721-6.
    [31] Li MO, Wan YY, Sanjabi S, et al. Transforming growth factor-teba regulation ofimmune responses[J]. Annu Rev Immunol,2006,24:99-146.
    [33] Zhang L, Yang XQ, Cheng J, et a1.Increased Thl7cells are accompanied by Foxp3(+)Treg cell accumulation and correlated with psoriasis disease severity[J]. clinImmunol,2010,135:108-17.
    [34]胡斯明,罗雅玲,赖文岩,等.调节性T细胞/Thl7在支气管哮喘小鼠气道炎症过程中的变化[J].中国现代医学杂志,2009,19:28812884.
    [35] Shevach EM. Mechanisms of Foxp3+T regulatory cell-mediated suppression[J].Immunity,2009,30:636-45.
    [36] Ji Q, Gondek D, Hurwitz AA. Provision of granulocyte–macrophagecolony-stimulating factor converts an autoimmune response to a self-antigen into anantitumor response[J]. J Immunol,2005,175:1456-63.
    [37] Boissonnas A, Scholer-Dahirel A, Simon-Blancal V, et al. Foxp3+T cells induceperforin-dependent dendritic cell death in tumor-draining lymph nodes[J]. Immunity,2010,32:266-78.
    [38] Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4control over Foxp3+regulatory Tcell function[J]. Science,2008,322:271-5.
    [39] Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39andCD73expressed on regulatory T cells mediates immune suppression[J]. J Exp Med,2007,204:1257-65.
    [40] Stagg J, Smyth MJ. Extracellular adenosine triphosphate and adenosine in cancer[J].Oncogene,2010,29:5346-58.
    [41] Hoskin DW, Mader JS, Furlong SJ, et al. Inhibition of T cell and natural killer cellfunction by adenosine and its contribution to immune evasion by tumor cells(review)[J]. Int J Oncol,2008,32:527-35.
    [42] Mandapathil M, Szczepanski MJ, Szajnik M, et al. Increased ectonucleotidaseexpression and activity in regulatory T cells of patients with head and neck cancer[J].Clin Cancer Res,2009,15:6348-57.
    [43] Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+T(R) cells suppress innate immunepathology through cytokine-dependent mechanisms[J]. J Exp Med,2003,197:111-9.
    [44] Coussens LM, Werb, Z. Inflammation and cancer[J]. Nature,2002,420:860-7.
    [45] Zou W. Immunosuppressive networks in the tumour environment and their therapeuticrelevance[J]. Nat Rev Cancer,2005,5:263-74.
    [46] Kryczek I, Wei S, Gong W, et al. Cutting edge: IFN-gamma enables APC to promotememory Th17and abate Th1cell development[J]. J Immunol,2008,181:5842-6.
    [47] Kryczek I., Banerjee M, Cheng P, et al. Phenotype, distribution, generation, andfunctional and clinical relevance of Th17cells in the human tumor environments[J].Blood,2009,114:1141-9.
    [48] Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells inovarian carcinoma fosters immune privilege and predicts reduced survival[J]. NatMed,2004,10:942-9.
    [49] Su X, Ye J, Hsueh EC,et al. Tumor microenvironments direct the recruitment andexpansion of human Th17cells[J]. J Immunol,2010,184:1630-41.
    [50] Sfanos KS, Bruno TC, Maris CH, et al. Phenotypic analysis of prostate-infiltratinglymphocytes reveals TH17and Treg skewing[J]. Clin Cancer Res,2008,14:3254-61.
    [51] Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlatewith poor survival in hepatocellular carcinoma patients[J]. J Hepatol,2009,50:980-9.
    [52] Numasaki M, Lotze MT, Sasaki H. Interleukin-17augments tumor necrosisfactor-alpha-induced elaboration of proangiogenic factors from fibroblasts[J].Immunol Lett,2004,93:39-43.
    [53] Takahashi H, Numasaki M, Lotze M, et al. Interleukin-17enhances bFGF-, HGF-andVEGF-induced growth of vascular endothelial cells[J]. Immunol Lett,2005,98:189-93.
    [54] Honorati MC, Neri S, Cattini L.et al. Interleukin-17, a regulator of angiogenic factorrelease by synovial fibroblasts[J]. Osteoarthritis Cartilage,2006,14:345-52.
    [55] Tartour E, Fossiez F, Joyeux I.,et al. Interleukin17, a T-cell-derived cytokine,promotes tumorigenicity of human cervical tumors in nude mice[J]. Cancer Res,1999,59:3698-704.
    [56] Numasaki M, Watanabe M, Suzuki T, et al. IL-17enhances the net angiogenic activityand in vivo growth of human non-small cell lung cancer in SCID mice throughpromoting CXCR-2-dependent angiogenesis[J]. J Immunol,2005,175:6177-89.
    [57] Benatar T, Cao MY, Lee Y, et al. IL-17E, a proinflammatory cytokine, has antitumorefficacy against several tumor types in vivo[J]. Cancer Immunol Immunother,2010,59:805-17.
    [58] Xie Y, Sheng W, Xiang J, et al. Interleukin-17F suppresses hepatocarcinoma cellgrowth via inhibition of tumor angiogenesis[J]. Cancer Invest,2010,28:598-607.
    [59] Shen Z, Zhou S, Wang Y, et al. Higher intratumoral infiltrated Foxp3+Tregnumbers and Foxp3+/CD8+ratio are associated with adverse prognosis in resectablegastric cancer[J]. J Cancer Res Clin Oncol,2010,136:1585-95.
    [60] Mizukami Y, Kono K, Kawaguchi Y, et al. Localisation pattern of Foxp3+regulatoryT cells is associated with clinical behaviour in gastric cancer[J]. Br J Cancer,2008,98:148-53.
    [61] Yuan XL, Chen L, Li MX, et al. Elevated expression of Foxp3in tumor-infiltratingTreg cells suppresses T-cell proliferation and contributes to gastric cancerprogression in a COX-2-dependent manner[J]. Clin Immunol,2010,134:277-88.
    [62] Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25highregulatory T cells increasewith tumor stage in patients with gastric and esophageal cancers[J]. Cancer ImmunolImmunother,2006,55:1064-71.
    [63]Zhang B, Rong G, Wei H, et al. The prevalence of Th17cells in patients with gastriccancer[J]. Biochem Biophys Res Commun,2008,374:533-7.
    [64] Lundgren A, Stromberg E, Sjoling A, et al. Mucosal Foxp3-expressing CD4+CD25highregulatory T cells in Helicobacter pylori-infected patients[J]. Infect Immun,2005,73:523-31.
    [65] Fox JG, Wang TC. Inflammation, atrophy, and gastric cancer[J]. J Clin Invest,2007,117:60-9.
    [66] Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: animmunologic functional perspective[J]. Annu Rev Immunol,2009,27:451-83.
    [67] Lewis CE, Pollard JW. Distinct role of macrophages in different tumormicroenvironments[J]. Cancer Res.2006,66:605-12.
    [68] Schoppmann SF, Birner P, Stockl J, et al. Tumor-associated macrophages expresslymphatic endothelial growth factors and are related to peritumorallymphangiogenesis[J]. Am J Pathol,2002,161:947-56.
    [69] Sica A, Larghi P, Mancino A, et al. Macrophage polarization in tumour progression[J].Semin Cancer Biol,2008,18:349-55.
    [70] Marigo I, Dolcetti L, Serafini P, et al. Tumor-induced tolerance and immunesuppression by myeloid derived suppressor cells[J]. Immunol Rev,2008,222:162-79.
    [71] Sakaguchi S, Sakaguchi N, Shimizu J, et al. Immunologic tolerance maintained byCD25+CD4+regulatory T cells: their common role in controlling autoimmunity,tumor immunity, and transplantation tolerance[J]. Immunol Rev,2001,182:18–32.
    [72] Stephens GL, McHugh RS, Whitters MJ, et al. Engagement of glucocorticoid-inducedTNFR family-related receptor on effector T cells by its ligand mediates resistance tosuppression by CD4+CD25+T cells[J]. J Immunol,2004,173:5008-20.
    [73] Fontenot JD, Dooley JL, Farr AG, et al. Developmental regulation of Foxp3expression during ontogeny[J]. J Exp Med,2005,202:901-6.
    [74] Sporn MB, Roberts AB. Transforming growth factor-beta: recent progress and newchallenges[J]. J Cell Biol,1992,119:1017-21.
    [75] Karlsson M, Marits P, Dahl K, et al. Pilot study of sentinel-node-based adoptiveimmunotherapy in advanced colorectal cancer[J]. Ann Surg Oncol,2010,17:1747-57.
    [76] Klebanoff CA, Acquavella N, Yu Z, et al. Therapeutic cancer vaccines: are we thereyet?[J]. Immunol Rev,2011,239:27–44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700