骨髓来源抑制细胞在非小细胞肺癌患者治疗中的变化及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景和目的
     肺癌是目前世界发病率最高的肿瘤,尤其在我国,近年来发病率急剧升高。目前,肺癌的治疗还是以手术,放化疗为主,近些年以EGFR-TKI为主的靶向治疗在非小细胞肺癌中取得了重大突破。肺癌本身恶性程度高,治疗预后不佳。骨髓来源抑制细胞(MDSC)是一组具有高度异质性的细胞群,它可在肿瘤、炎症、感染等疾病中异常升高,并具有显著的抑制T细胞的功能。MDSC可介导肿瘤细胞产生免疫耐受,并成为免疫治疗的重大障碍。目前已在多种肿瘤中发现MDSC的异常聚集,并发现MDSC水平与部分肿瘤患者的预后有关,但MDSC在非小细胞肺癌中的研究还相当匮乏。
     本实验主要研究MDSC在非小细胞肺癌患者治疗前后的变化及其与临床特征、CRP关系,以了解检测MDSC在非小细胞肺癌患者治疗中的意义。
     方法
     采取目标患者治疗前后的外周血,通过流式细胞学,计算外周血中MDSC占白细胞的比例,并同时检测患者外周血CRP水平。
     结果
     1.非小细胞肺癌患者外周血MDSC水平高于健康对照组,差别有统计学意义(P0.05)。
     2. ⅢⅣ期非小细胞肺癌患者其外周血MDSC水平要高于ⅠⅡ期患者,差别有统计学意义(P     3.无论治疗前和治疗后,患者外周血MDSC水平与血清CPR水平均成正相关。
     4.手术治疗患者其术后外周血MDSC水平低于术前(P<0.05)。但术后高CRP组患者其术后MDSC水平与术前无明显变化;术后低CRP组其术后MDSC水平明显低于术前(P<0.05)。
     5.PR组患者化疗后MDSC水平较化疗前降低(P<0.05)。 SD、PD组患者化疗前后MDSC水平无明显变化。
     结论
     1.非小细胞肺癌患者外周血MDSC水平异常增高,提示患者处于免疫抑制状态。
     2.手术切除和有效的化疗可降低非小细胞肺癌的MDSC水平。
     3.非小细胞肺癌患者的MDSC水平与CRP水平呈正相关,CRP水平可作为评估患者免疫抑制状态的指标。
     4.非小细胞肺癌患者的MDSC的水平可能与预后不良有关。
Background and Objectives
     Lung cancer is the disease which has the highest incidence in human cancer in the world.especially in China, the incidence of lung cancer become higher and higher in recent years. Surgery, radiotherapy and chemotherapy are the major measure of therapy in lung cancer. Recently, targeted therapy with ERGR-TKI in non-small cell lung cancer acquires huge progress. Lung cancer has high grade malignancy and poor prognosis. Myeloid derived suppressor cells(MDSCs)are a heterogeneous population of cells that expands during cancer, inflammation and infection,and that has a remarkable ability to suppress T-cell responses. MDSC can induce immune tolerance in the development of tumor cell, and is an obstacle in immune therapy. MDSC accumulate in many kinds of cancer, and relates to prognosis in some cancer. But, studies of MDSC is still limited in non-small cell lung cancer patients.
     To explore the change of MDSC during the therapy in non-small cell lung cancer patients. Analyzing the relationship between MDSC, clinical character and C-reactive protein. Thereby, realizing the significance of MDSC C in non-small cell lung cancer patients.
     Methods
     The population of CDllb+CD33+cells in peripheral blood leucocytes was determined by Flow Cytometer in129patients with NSCLC and30control subjects. Peripheral blood C-reactive protein was determined as well.
     Results
     1. there is higer level of peripheral blood MDSC in NSCLC patients than in healthy person. The differences between the two groups were statistical signifaicance(P<0.05)
     2. Patients with ⅢⅣ stage have higher level of peripheral blood MDSC than patients with ⅠⅡ stage(P<0.05). And the level of peripheral blood MDSC was irrelevant to the age, sex and histology types.
     3. The level of peripheral blood MDSC and CRP have positive correlation whatever before or after therapy.
     4. After remove of tumor,the level of peripheral blood MDSC was reduced in the NSCLC patients(P<0.05). But it is no obvious change in patients who have high level of CRP after surgery. And it is sharp reduced in the patients who have low level of CRP after surgery(P<0.05).
     5. The level of peripheral blood MDSC is reduced in the NSCLC patients who receive PR to the chemotherapy(P<0.05). And it is no obvious change in patients who receive SD or PD to chemotherapy.
     Conclusion
     1. There is higher level of peripheral blood MDSC in NSCLC patients than in healthy person
     2. The. level of peripheral blood MDSC is reduced in the NSCLC patients who had responsiveness to chemotherapy and after removal of tumor.
     3. The level of peripheral blood MDSC and CRP have positive correlation.
     4. High level of peripheral blood MDSC may imply poor prognosis.
引文
[1]Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J].Nat Rev immunol,2009,9:162-174.
    [2]Nagaraj S, Gabrilovich DI.Myeloid-derived suppressor cells in human cancer[J].Cancer J,2010,16:348-353.
    [3]Yang R. CD80in immune suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myelcidcells[J].Cancer Res,2006;66:6807-6815.
    [4]Huang B. Gr-1+CD15+immune suppression cells median the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host[J].Cancer Res,2006;66:1123-1131.
    [5]梁建明,关有彦,钟永等。膀胱癌患者外周血髓系来源的抑制细胞的比例及其临床意义[J]。中国肿瘤临床与康复,2010,17(6):493-497.
    [6]Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CDllb+myeloid suppressor cells in tumor-bearing animals and enhance antitumor immune activity[J]. Clin Cancer Res,2005; 11 (18):6713-6721.
    [7]Longley DB, Harkin DP, Johnston PG.5-fluorouracil:mechanisms of action and clinical strategies[J]. Nat Rev Cancer,2003;3(5):330-8.
    [8]Kodumudi KN, et al. A Nover chemoimmunomodulating property of Docetaxel:Suppression of Myeloid-Derived suppressor Cells in Tumor Bearers[J]. Clin Cancer Res, 2010;16(18):4583-4594.
    [9]O,zao-Choy J, Ma G, Kao J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immunebased cancer therapies[J]. Cancer Res,2009;69(6);2514-22.
    [10]Fricke I,Mirza N,Dupont J, et al.Vascular endothelial growth factor-trap overcomes defects in dendritic cell differentiation but dose not improve antigen-specific immune responses[J]. Clin Cancer Res,2007;13(16):4840-4848.
    [11]Kusmartsev S, Eruslanov E, Kubler H, et al.Oxidative stress regulates expression of VEGFR1 in myeloid cells:link to tumor-induced immune suppression in renal cell carcinoma[J]. immunol,2008; 181 (1):346-353
    [12]Suzanne Ostrand-Rosenberg and Pratima sinha.Myeloid-Derived Suppressor Cells:Linking Inflammation and Cancer[J]. Immumol,2009; 182:4499-4506
    [13]Gaspers RJ, Pidock NB, Cooper EH, et al.The prognostic significance of acute phase proteins in patients with inoperable squamous cell carcinoma of the bronchus[J]. Radiotherapy oncology,1984,2(2); 107-111.
    [14]Helena Enocsson, Christopher Sjowall, Thomas Skogh, et al.Interferon-αMediates Suppression of C-Reative Protein:Explanation for Muted C-Reactive Protein Response in Lupus FlaresArthritis[J]. Rheum,2009;60(12)3755-3760.
    [15]Mundy-Bosse BL, Young GS, Bauer T, et al. Distinct myeloid suppressor cell subsets correlate with plasma IL-6 and IL-10 and reduced interferon-alpha signaling in CD4+T cell from patients with G1 malignancy[J]. Cancer Immunol Immunother,2011;60(9):1269-1279
    [16]Krant MJ, Manskopf G, Brandrui CS, et al.Immunologic alteration in bronchogenic cancer[J].Cancer,1968,21(4):623-631.
    [17]Pan PY. Reversion of immune to tolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function[J]. Blood,2008; 111:219-228.
    [18]Serafini P. High-Dose GM-CSF-producing Vaccines Impair The Immune Response Throuhg The Recruitment Of MyeloidSuppressor Cells[J]. Cancer Res,2004;64:6337-6343
    [19]Bunt SK. Reduced inflammation in the tumor microenviroment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression[J]. Cancer Res,2007;67:10019-10026.
    [20]Grabrilovich D. Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo[J]. Blood,1996;92:4150-4166.
    [21]Sinha P. Proinflammatory sl00 proteins regulate the accumulation of myeloid-derived suppressor cells[J]. Immunol,2008; 181:4666-4675.
    [22]Bromberg J. Stat proteins and oncogensis[J]. Clin Invest,2002;109:1139-1142.
    [23]Nefedova Y. Regulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription3 pathway[J]. Cancer Res,2005;65:9525-9535.
    [24]Nefdova Y. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer[J]. Immuol,2004; 172:464-474.
    [25]Pepy MB. C-reactive protein fifity years on[J]. Lancet,1981,1 (8221):653-657.
    [26]Alifano M, Falcoz PE, Seegers V, et al. Preresction serum C-reactive protein measurement and survival among patients with resectable non-small cell lung cancer[J]. Thorac Cardiovasc Sung,2011; 142(5):1161-7.
    [27]shen L, Li ZM, Lu S. Clinical significance of C-reactive protein in patients with stage I non-small cell lung cancer[J]. Zhonghua Zhong liu Za Zhi,2011;33(6):442-6.
    [28]Fiedel BA, Simpson RM, Gewurz H. Effects of C-reactive protein on platelet function[J]. Ann NY Acad Sci,1982,389(1):263-273.
    [29]Diresta GR, Lee J, Healey JH,et al."Artificial lymphatic system":a new approach to reduce interstitial hypertension and increase blood flow,pH and pO2 in solid tumors [J]. Ann Biomed Eng,2000,28(5):543-555.
    [30]张锟,何方军,白祥军等。创伤患者外周血CD14-/CD11b+/CD33+髓源性抑制细胞数量变化及临床意义[J]。中华创伤杂志,2010;26(9):790-794。
    [1]Young MRI, Newby M, Wepsic TH. Hematopoiesisi and suppressor bone marrow cells in mice bearing large metastatic Lewis lung carcinoma tumors[J].Cancer Res,1987;47:100-106.
    [2]Buessow SC, Paul RD, lopez DM. Influence of mammary tumor progression on phenotype and function of spleen and in situ lymphocytes in mice[J]. Natl Cancer Inst, 1984;73:249-255.
    [3]Sinba P, Clements VK, Bunk SK, et al. Crosstalk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response[J]. Immunol, 2007;179:977-983.
    [4]Murdoch C, Muthana M, Coffelt SB, et al. The role of myeloid cells in the promption of tumour angiogenesis[J]. Nat Rev Cancer,2008;8:618-631.
    [5]Kumartsev S, Nefedova Y, Yoder D, et al. Antigen-specific inhibition of CD8+T cell response by immature myeloid cells in cancer is mediated by reactive oxygen species[J]. Immunol,2004; 172:989-999.
    [6]Ochoa AC, Zea AH, Hernandez C, et al. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma[J]. Clin Cancer,Res 2007; 13:721-726.
    [7]Schmielau J, Finn OJ. Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients[J]. Cancer Res,2001;61:4756-4760.
    [8]Bronte V. Identification of a CDllb(+)/GT-1(+)/cd31(+)myeloid progenitor capable of activating or suppressing CD8(+)T cells[J]. Blood,2000;96;3838.
    [9]Kusmartsev S, Gabrilovich DI. Inhibition of myeloid cell differentiation in cancer:The role of reactive oxygen species[J]. Leukoc Biol,2003;74:186-196.
    [10]Youn JI,Nagaraj S, Collazo M, et al. Subsets of myeloid-derived suppressor cells in tumor bearing mice[J]. Immunol,2008;181:5791-5802.
    [11]Hestdal K. Chatacterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells[J]. Immumol,1991;147:22-28.
    [12]Yang R. CD80 in immume suppression by mouse ovarian carcinoma-associated Gr-1+CD11b+myeloid cells[J]. Cancer Res,2006;66:6807-6815.
    [13]Huang B. Gr-1+CD115+immature myeloid suppressor cells mediate the development of tumor induced T regulatory cells and T-cell anergy in tumor-bearing host[J]. Cancer Res, 2006;66:1123-1131.
    [14]Gallina G. Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+T cells[J]. Clin Invest,2006;116:2777-2790.
    [15]Pan PY. Reversion of immune tolerance in advanced malignancy:modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function[J]. Blood,2008;111:219-228.
    [16]Serafini P. High-Dose GM-CSF-Producing Vaccines Impair The Immune Response Through The Recruitment Of Myeloid Suppressor Cells[J]. Cancer Res,2004;64:6337-6343.
    [17]Bunt SK. Reduced inflammation in the tumor microenvironment delays the accumulation of myeloid-derived suppressor cells and limits tumor progression[J]. Cancer Res, 2007;67:10019-10026.
    [18]Bromberg J. Stat proteins and oncogenesis[J]. Clin Invest,2002; 109:1139-1142.
    [19]Nefedova Y. Regulation of dendritic cell differentiation and antitumor innune response in cancer by pharmacologic-selective inhibition of the janus-activated Kinase 2/signal transducers and activators of transcription 3 pathway[J]. Cancer Res,2005;65:9525-9535.
    [20]Nefedova Y. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer[J]. Immunol,2004; 172:464-474.
    [21]Movahedi K. Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T-cell suppressive activity[J]. Blood,2008; 111:4233-4244.
    [22]Kusmartsev S, Gabrilovivh D. STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion[J]. Immunol,2005; 174:4880-4891.
    [23]Kusmartsev S, Nagaraj S, Gabrilovich DI. Tumor-associated CD8+T cell tolerance induced by bone marrow-derived immature myeloid cell[J].Immunol,175:4538-4592.
    [24]Foell D, Wittkowski H, Vogl T, et al. S100 proteins expressed in phagocytes:a novel group of damage-associated molecular pattern molecules[J]. Leukoc Biol,2007;81:28-37.
    [25]Cheng P. Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein[J]. Exp Med,2008;205:3325-2249.
    [26]Sinha P. Proinflammatory s100 proteins regulate the accumulation of myeloid-derived suppressor cells[J]. Immunol,2008:181:4666-4675.
    [27]Turovskaya O. RAGE, carboxylated glycans and S100A8/A9 paly essential roles in colitis-associated carcinogenesis[J]. Carcinogensis,2008;29:2035-2043.
    [28]Bronte V. IL-4-induced arginase 1 suppresses alloreactive T cells in tumor-bearing mice[J]. Immunol,2003;170:270-278.
    [29]Rutschman R. Cutting edge:Stat6-dependent substrate depletion regulates nitric oxide production[J]. Immunol,2001; 166;2173-2177.
    [30]Sinha P, Clements VK, Ostrand-Roenberg S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis[J]. Cancer Res,2005;65:11743-11751.
    [31]Serafini P, Mgebroff S, Noonan K, et al. Myeloid-derived suppressor cells promote cross-tolerance in B-cell lumphoma by expanding regulatory T cells[J]. Cancer Res, 2008;68:5439-5449.
    [32]Bunt, S. K., P. Sinha, V. K. Clements, et al. Ostrand-Rosenberg. Inflammation induces myeloid-derived suppressor cells that facilitate tumor progression [J]. Immunol, 2006; 176:284-290.
    [33]Tu, S., G. Bhagat, G. Cui, et al. Overexpression of interleukin-1β induce gastric inflammation and cancer and mobilizes myeloid-derived suppressor cells in mice[J]. Cancer Cell. 2008;408-419.
    [34]Song, X., Y. Krelin. CD11b+/Gr-1+immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1β-secreting cells[J]. Immunol,2005; 175:8200-8208.
    [35]Delano, M. J., P. O. cumpia, et al. MyD88-dependent expansion of an immature GR-1+CD11b+population induces T cell suppression and Th2 polarization in sepsis[J]. Exp Med,2007;204:1463-1474.
    [36]Taketo, M. M. Cyclooxygenase-2 inhibitors in tumorigenesis[J]. Natl Cancer Inst, 1998;90:1609-1620.
    [37]Rodriguez, P. C., C. P. Hernandez, et al. Arginase I in myeloid suppressor cells is induced by COX-2 in lung carcinoma[J]. Exp Med,2005;202:931-939.
    [38]Ochoa. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma[J]. Clin Cancer Res,2007; 13:721-726.
    [39]Markiewski. Modulation of the antitumor immune response by complement[J]. Nat Immunol, 2008;9:1225-1235.
    [40]Rodriguez PCI. Arginine regulation by myeloid derived suppressor cells and tolerance in cancer:mechanisms and therapeutic perspectives[J]. Immunol Rev,2008;222:180-191.
    [41]Rivoltini L. Immunity to cancer:attack and escape in T lymphocyte-tumor cell interaction[J]. Immunol Rev,2002;188:97-113.
    [42]Szuster-Ciesielska A. Reactive oxygen species production by blood neutrophils of patients with laryngeal carcinoma and antioxedative enzyme activity in their blood[J]. Acta Oncol, 2004;43:252-258.
    [43]Agostinelli E, Seiler N. Non-irradiation-derived reactive oxygen species (ROS) and cancer[J]: therapeutic implications,Amino Acids 2006;31:341-355.
    [44]Vickers SM, MacMillan-Crow LA, Green M, Ellis C, et al. Association of increased immunostaining for inducible nitric oxide synthase and nitrotyrosine with fibroblast growth factor transformation in pancreatic cancer[J]. Arch Surg,1999; 134:245-251.
    [45]Kinnula VL. Ultrastructural and chromosomal studies on manganese superoxide dismutase in malignant mesothelioma[J]. Am J Respir Cell Mol Biol,2004;31:147-153.
    [46]Nakamura Y. Nitric oxide in breast cancer:induction of vascular endothelial growth factor-C and correlation with metastasis and poor prognosis[J]. Clin Cancer Res,2006;12:1201-1207.
    [47]Bronte V. Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers[J]. Exp Med,2005;201:1257-1268.
    [48]Dietlin TA. Mycobacteria-induced Gr-1+ subsets from distinct myeloid lineages have opposite effects on T cell expansion.[J]. Leukoc Biol,2007;81:1205-1212.
    [49]Dugast AS. Myeloid-derived suppressor cells accumulate in kidney allograft tolerance and specifically suppress effector T cell expansion[J]. Immunol,2008; 180:7898-7906.
    [50]Kusmartsev S, Li Y, Chen SH. Gr-1+myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation[J]. Immunol, 2000;165:779-785.
    [51]Stoll S, Delon J, Brotz TM, et al. Dynamic imaging of T cell-dendritic cell interactions in lymph nodes[J]. Science,2002;296:1873-1876.
    [52]Monu N, Frey AB. Suppression of proximal T cell receptor signaling and lytic function in CD8+tumor-infiltrating T cells[J]. Cancer Res,2007;67:11447-11454.
    [53]Gabrilovich DI, Velders M, Sotomayor E, et al. Mechanism of immune dysfunction in cancer mediated by immature Gr-1+myeloid cells[J]. Immunol,2001;166:5398-5406.
    [54]Mirza N. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients[J]. Cancer Res,2006;66:9299-9307.
    [55]Ozao-Choy J, Ma G, Kao J, et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune- based cancer therapies[J]. Cancer Res,2009;69(6):2514-22.
    [56]Mumprecht S, Matter M, Pavelic V, et al. Imatinib mesylate selectively impairs expansion of memory cytotoxic T cells without affecting the control of primary viral infections[J]. Blood, 2006;108(10):3406-13.
    [57]Mohty M, Jourdan E, Mami NB, et al. Imatinib and plasmacytoid dendritic cell function in patients with chronic myeloid leukemia[J]. Blood,2004;103(12):4666-8.
    [58]Fricke I. Treatment of cancer patients with VEGF-Trap overcomes defects in DC differentiation but is insufficient to improve antigen-specific immune responses[J]. Clin Cancer Res,2007; 13:4840-4848.
    [59]Kusmartsev S. Oxidative stress regulates expression of VEGFR1 in myeloid cells:link to tumor-induced immune suppression in renal cell carcinoma[J]. Immunol,2008;181:346-353.
    [60]Yang L, DeBusk LM, Fukuda K, et al. Expansion of myeloid immune suppressor Gr+CD11b+cells in tumor-bearing host directly promotes tumor angiogenesis[J]. Cancer Cell,2004;6(4):409-21.
    [61]Talmadge JE. Chemoprevention by cyclooxygenase-2 inhibition reduces immature myeloid suppressor cell expansion[J]. Int Immunopharmacol,2007;7:140-151.
    [62]Serafini P. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function[J]. Exp Med,2006;203:2691-2702.
    [63]Vincent J, Mignot G, Chalmin F, et al.5-Fluorouracil selectively kills tumor-associated myeloid-derived suppressor cells resulting in enhanced T cell-dependent antitumor immunity[J]. Cancer Res,2010; 70(8):3052-61.
    [64]Kodumudi KN, Woan K, Gilvary DL, et al. A novel chemoimmunomodulating property of docetaxel:suppression of myeloid-derived suppressor cells in tumor bearers[J]. Clin Caner Res,2010;16(18):4583-94.
    [65]Suzuki E, Kapoor V, Jassar AS, et al. Gemcitabine selectively eliminates splenic Gr-1+/CD11b+myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity[J]. Clin Cancer Res,2005; 11(18):6713-21.
    [66]Gonzalez-Aparicio M, Alzuguren P, Mauleon I, et al. Oxaliplatin in combination with liver-specific expression of interleukin 12 reduces the immunosuppressive microenvironment of tumours and eradicates metastatic colorectal cancer in mice[J]. Gut,2011; 60(3):341-9.
    [67]Zhang B. Bowerman NA, Salama JK, et al. Induced sensitization of tumor stroma leads to eradication of established cancer by T cells[j]. Exp Med,2007;204(1):49-55.
    [68]Lee Y, Auh SL, Wany Y, et al. Therapeutic effects of ablative radiation on local tumor require CD8+T cells:changing strategies for cancer treatment[J]. Blood,2009; 114(3):589-95.
    [69]Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity[J]. Int J Cancer,2010; 127:759-67.
    [70]Raimondi G, Turner MS, Thomson AW, et al. Naturally occurring reg ulatory T cells:recent insights in health and disease[J]. Crit Rev Immunol,2007;27:61-95.
    [71]Roncarolo MG, Bacchetta R, Bordignon C, et al. Type 1 T regulatory cells[J]. Immunol Rev, 2001;182:68-79.
    [72]Hori S, Sakaguchi S. Foxp3:a critical regulator of the development and function of regulatory T cells[J]. Microbes Infect,2004;6:745-51.
    [73]Strauss L, Bergmann C, Whiteside TL. Functional and phenotypic characteristics of CD4+CD25highFoxp3+Treg clones obtained from peripheral blood of patients with cancer[J]. Int J Cancer,2007; 121:2473-83.
    [74]Elkord E, Sharma S, Burt DJ, et al. Expanded subpopulation of Foxp3+T regulatory cells in renal cell carcinoma co-express Helios, indicating they could be derived from natural but not induced Tregs[J]. Clin Immunol,2011;140:218-22.
    [75]Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression[J]. Exp Med, 2007;204:1257-65.
    [76]Mandapathil M, Szczepanski MJ, Szajnik M, et al. Adenosine and prostaglandin E2 cooperate in the suppression of immune responses mediated by adaptive regulatory T cells[J]. Biol Chem,2010;285:27571-80.
    [77]Schmidt A, Oberle N, Weis EM, et al. Human regulatory T cells rapidly suppress T cell-receptor-induced Ca2+, NF-kB, and NFAT signaling in conventional T cells[J]. Sci Signal,2011;4:ra90.
    [78]Mahmoud SM, Paish EC, Powe DG, et al. Tumor-infiltrating CD8+lymphocytes predict clinical outcome in breast cancer[J]. Clin Oncol,2011;29:1949-55.
    [79]Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science,2006;313:1960-4.
    [80]Salama P, Phillips M, Grieu F, et al. Tumorinfiltrating FOXP3+T regulatory cells show strong prognostic significance in colorectal cancer[J]. Clin Oncol,2009;27:186-92.
    [81]Xia D, Wang D, Kim SH, et al. Prostaglandin E(2) promotes intestinal tumor growth via DNA methylation[J]. Nat Med,2012; 18:224-6.
    [82]Kryczek I, Banerjee M, Cheng P, et al. Phenotype, distribution, generation, and functional and clinical relevance of Thl7 cells in the human tumor environments[J]. Blood, 2009;114:1141-9.
    [83]Tosolini M, Kirilovsky A, Miecnik B, et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, thl7) in patients with colorectal cancer[J]. Cancer Res,2011;71:1263-71.
    [84]Lin WW, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer[J]. Clin Invest,2007;117:1175-83.
    [85]Ma Y, Kepp O, Ghiringhelli F, et al. Chemotherapy and radiotherapy:cryptic anticancer vaccines[J]. Semin Immunol,2010;22:113-24.
    [86]Mougiakakos D, Choudhury A, Lladser A, et al. Regulatory T cells in cancer[J]. Adv Cancer Res,2010;107:57-117.
    [87]Petersen RP, Campa MJ, Sperlazza J, et al. Tumor infiltrating Foxp3+regulatory T-cells are associated with recurrence in pathologic stage INSCLC patients[J]. Cancer, 2006;107:2866-72.
    [88]Badoual C, Hans S, Rodriquez J, et al. Prognostic value of tumor-infiltrating CD4+T-cell subpopulations in head and neck cancers[J]. Clin Cancer Res,2006; 12:465-72.
    [89]Ladoire S, Martin F, Ghiringhelli F. Prognostic role of FOXP3+regulatory T cells infiltrating human carcinomas:the paradox of colorectal cancer[J]. Cancer Immunol Immunother, 2011,60:909-18.
    [90]Kryczek I, Liu R, Wang G, et al. FOXP3 defines regulatory T cells in human tumor and autoimmune disease[J]. Cancer Res,2009;69:3995-4000.
    [91]Bromberg J, Wang TC. Inflammation and cancer:IL-6 and STAT3 complete the link[J]. Cancer Cell,2009; 15:79-80
    [92]Whiteside TL. Immunobiology of head and neck cancer[J]. Cancer Metastasis Rev, 2005;24:95-105.
    [93]Kesselring R, Thiel A, Pries R, et al. Human Thl7 cells can be induced through head and neck cancer and have a functional impact on HNSCC development[J]. Br J Cancer, 2010;103:1245-54.
    [94]Strauss L, Bergmann C, Gooding W, Johnson JT, Whiteside TL. The frequency and suppressor function of CD4+CD25highFoxp3+T cells in the circulation of patients with squamous cell carcinoma of the head and neck[J]. Clin Cancer Res,2007;13:6301-11.
    [95]Zhang YL, Li J, Mo HY, et al. Different subsets of tumor infiltrating lymphocytes correlate with NPC progression in different ways[J]. Mol Cancer,2010;9:4.
    [96]Perez SA, Karamouzis MV, Skarlos DV, et al. CD4+CD25+regulatory T-cell frequency in HER-2/neu (HER)-positive and HER-negative advanced-stage breast cancer patients[J]. Clin Cancer Res,2007;13:2714-21.
    [97]Rech AJ, Mick R, Kaplan DE, et al. Homeostasis of peripheral FOXP3+CD4+regulatory T cells in patients with early and late stage breast cancer[J]. Cancer Immunol Immunother, 2010;59:599-607.
    [98]Jacobs JF, Nierkens S, Figdor CG, et al. Regulatory T cells in melanoma:the final hurdle towards effective immunotherapy[J]? Lancet Oncol,2012;13:e32-42.
    [99]Ercolini AM, Ladle BH, Manning EA, et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response[J]. Exp Med,2005;201:1591-602.
    [100]Audia SA, Nicolas D, Cathelin N, et al. Increase of CD4+CD25+regulatory T cells in the peripheral blood of patients with metastatic carcinoma:a Phase I clinical trial using cyclophosphamide and immunotherapy to eliminate CD4+CD25+T lymphocytes[J]. Clin Exp Immunol,2007; 150:523-30.
    [101]de Vries IJ, Castelli C, Huygens C, et al. Frequency of circulating Tregs with demethylated FOXP3 intron 1 in melanoma patients receiving tumor vaccines and potentially Treg-depleting agents[J]. Clin Cancer Res,2011; 17:841-8.
    [102]Whiteside TL, Mandapathil M, Schuler P. The Role of the Adenosinergic pathway in immunosuppression mediated by human regulatory T cells (Treg)[J]. Curr Med Chem, 2011;18:5217-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700