RNA干扰ROCK-Ⅱ基因表达促进脊髓损伤修复的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中枢神经系统(central nervoussystem,CNS)损伤后,髓鞘相关性轴突生长抑制因子Nogo-A、髓磷脂相关糖蛋白(myelin-associated glycoprotein,MAG)、少突胶质细胞-髓磷脂糖蛋白(oligodendrocyte myelinglycoprotein,Omgp)共同作用于高亲和受体NgR,在p75NTR的参与下,激活内源性的Rho后通过活化下游的效应分子ROCK,使其作用底物肌球蛋白磷酸酶磷酸化,从而影响细胞微结构的骨架肌动蛋白系统,最终抑制轴突生长。
     为了研究特异性shRNA-ROCK-Ⅱ对ROCK-Ⅱ基因表达的抑制和对轴突再生修复的作用,在体外和体内中分别进行了实验研究。体外试验中,将构建的小发夹片段RNA (small hairpin RNA,shRNA)与质粒结合后,通过脂质体介导转染自行培养并纯化、鉴定正确的少突胶质细胞后,应用RT-PCR、免疫组化方法检测ROCK-Ⅱ基因沉默效果,并对转染后的细胞在特定的时间点进行流式细胞术检测细胞生长周期情况。结果表明,体外构建的特异性shRNA-ROCK-Ⅱ有效地沉默了ROCK-Ⅱ基因表达。体内实验中通过制作的大鼠脊髓损伤模型进行分组研究,根据体外实验中观察到的转染后基因抑制的有效时间点,在mRNA水平和蛋白表达水平对ROCK-Ⅱ基因的表达进行评价,特异性shRNA-ROCK-Ⅱ抑制了损伤脊髓组织中的ROCK-Ⅱ基因的表达,同时脊髓损伤后轴突再生特异性生长标志物GAP-43蛋白的表达上调,进一步为说明神经细胞轴突具有再生的倾向提供了依据。实验证明,ROCK-Ⅱ基因的抑制与损伤后脊髓的轴突再生有正相关性,特异性shRNA-ROCK-Ⅱ抑制ROCK-Ⅱ基因的表达可以促进脊髓损伤的轴突再生。
     本实验利用小干扰RNA(small or short inferenceRNA,siRNA)的有效性和特异性,有效抑制了ROCK-Ⅱ基因的表达,阻断了Rho-ROCK传导通路,抑制了NogoA、MAG、Omgp等轴突生长抑制因子的作用,为脊髓损伤的治疗提供了新的方法。
Spinal cord injury is a severe disabling central nervous system diseases, in recent years, the incidence of it have a clear upward trend. The pathological basis can be divided into primary injury and secondary injury. Among them, primary injury is irreversible. Therefore, to prevent the occurrence of secondary injury, as far as possible to retain residual neurological function and promote nerve regeneration has become the focus of SCI research and treatment. To date, regeneration and functional reconstruction after spinal cord injury have been plagued problems to medical workers.
     In recent years, experimental and theoretical studies have shown that the key to repairing of spinal cord injury are improve the microenvironment of axon growth and reduce apoptosis of nerve cells and promote axon growth. We have confirmed that Nogo-A, MAG, OMgP are major factors in inhibiting axonal regeneration until now. They are united by a common receptor (NgR), in the P75NTR participation, to enable it bonding with theαhelix structural domain of ROCK by activating the Rho, thereby activating ROCK. When ROCK is activated, ROCK will make myosin phosphatase (MP) which is it’s substrate to phosphorylation, then the substrate will be inactivation, thus affecting the actin system. The final result is the axon growth cone will be retraction, degradation, collapse, inhibit axon growth.
     ROCK is a Rho-associated coiled-coil forming protein kinase, also known as Rho-kinase. ROCK belongs to serine / threonine protein kinase, the molecular weight of it is about 160 kDa. ROCK mainly exists in the cytoplasm. ROCK, there are two subtypes ROCKⅠand ROCKⅡ, ROCKⅡmainly expressed in the brain, while the ROCKⅠexpressed mainly in non-neural tissues, such as the lung, kidney and skeletal muscles. Two kinds of subtypes in structure has 65% homology, ROCK is the most important downstream effector molecule of Rho.
     ROCK involved in regulation of MLC phosphorylation is a classic way of Rho-kinase system signaling pathway. ROCK increase the level of MLC phosphorylation by direct phosphorylation of MLC and indirectly inhibit MLCP activity, thereby increasing myosin interaction with actin to regulate actin cytoskeleton reorganization, leading to growth cone collapse and neurite retraction. At present, the studies which Rho / ROCK signaling pathway by regulating the gene expression involved in the development of a variety of diseases are in progress. Studies have found that Rho / ROCK system have inhibitory effect in spinal cord injury repair. The inhibitory molecule which comes from myelin is one of the chief hindrances to central nervous system axonal regeneration after injury. Founding Rho / ROCK signal transduction pathway not only further clarifies the mechanism of its role, but also provides a new research ideas and therapeutic targets for regeneration after CNS injury, which has potential application value.
     RNA interference is a post-transcriptional gene silencing. Small interfering RNA (small or short RNA) can trigger some kind of post-transcriptional control procedures to identify homologous sequence mRNA, specifically cutting them, thus blocking its translation.
     In recent years, Rho-ROCK pathway in the nervous system mainly focused on specificity inhibitors for the Rho and ROCK. The experimental study which using RNA interference to treat acute spinal cord injury in vitro and in vivo has not been reported. So we designed experiments using RNA interference ROCK-Ⅱin adult rat model of SCI to promote cell axon regeneration for the study of the therapeutic effect of ROCK-Ⅱin cell apoptosis in the acute phase of spinal cord injury.
     In this study, using RNA interference method to silence ROCK-Ⅱgene specifically, inhibiting the mRNA, blocking Rho-ROCK pathway, so that the activity of myosin phosphatase downstream is inhibited, thereby promoting axon regeneration of injured spinal cord cells, providing a new strategy and method to research and treatment of post-SCI.
     1. Methods
     In vitro experiments, we designed four shRNA sequences for the ROCK-Ⅱgene in rat, and connected with the cloning vector pGPU6/GFP/Neo, then syntheticed recombinant plasmid, enzyme digestion and sequencing at last. At the same time, making spinal cord oligodendrocyte separation, purification, identification, and putting the recombinant plasmid transfect into oligodendrocytes. After that, detecting the expression level of ROCK-Ⅱby using RT-PCR and immunohistochemistry, and testing the transfected cells by flow cytometry to observe the cell apoptosis, thus evaluate the shRNA interference effects which we designed.
     In vivo experiment, we chose the utility frag in vitro experiment first, then recombinated it with lipoplast. Preparation of spinal cord injury model in rats accordance with the modified Allen's, and randomized three groups, each group respectively 1,3,7,10,15 day randomly selected three were killed, and put spinal cord injury samples for RT-PCR and Western Blot analysis. Meanwhile, to detected GAP-43 in the treatment group and untreated group by using Western Blot in spinal cord injury areas.
     2. Results
     In vitro experiments, I constructed four disruption plasmids for the ROCK-Ⅱgene of rats successfully, and identified as positive plasmids after restriction enzyme digestion, sequencing is correct, then transfected the recombinant plasmids into oligodendrocytes. The RT-PCR results showed that ROCK-Ⅱgene in the relative expression level had a downward trend, which showed that four interfering vector pairs ROCK-Ⅱgene are inhibitory, but ROCK-Ⅱ-2951 fragment inhibited the best results. The data obtained are with statistical significance.
     In vivo experiments, in accordance with modified Allen's method I prepared rat model of spinal cord injury successfully. I put the recombinant plasmid into the spinal cord injury zone through the method of liposome-mediated. Western Blot and RT-PCR analysis showed that the treatment group ROCK-Ⅱgene in the damage zone relative level of expression of a downward trend, but the untreated group ROCK-Ⅱgene expression continued to rise. The expression of ROCK gene in treatment group and untreated group and normal group had statistically significant difference, P <0.05. At the same time, as compared with the untreated group, the expression of GAP-43 was significantly upward in treatment group. Two sets of data had statistically significant difference, P <0.05.
     3.Conclusion
     In this experiment, ROCK as a target goal, I constructed a small hairpin structure in inhibiting its expression successfully, this hairpin structure can inhibited endogenous ROCK-Ⅱgene expression in oligodendrocyte cells specifically, which gene silencing effect of a high efficiency, specificity, and in effect five days after transfection, the most obvious. In the rat animal model of SCI , the experimental results confirmed that specific transfected shRNA were able to successfully interfere with the expression levels of mRNA of ROCK-Ⅱgene, and it was a reliable evidence which the expression of GAP-43 increase is a tendency to axonal regeneration.
     To sum up, our future work is to investigate Rho-ROCK signal conduction pathway and other associated genes by multiple gene combination RNAi strategy. We hope to develop gene therapy medicine that inhibits ROCK-Ⅱproliferation specifically and effectively.
引文
[1]Cajal S R Y. Degeneration and regeneration of the neuronal system[M]. London: Oxford University press, 1928: 3.
    [2]David S,Aguayo A J. Axonal elongation into peripheral neryous Systembridges after central nervous system injury in adult rats [J].Science, 1981, 214: 931-933.
    [3]Xiao-Ming Xu, Stephen M. Oniferd Transplantation-mediated strategies to promote axonal regeneration following spinal cord injury [J].Respiratory Physiology & Neurobiology, 2009, 169: 171–182.
    [4]Ji B, Li M, Wu W T, et al.LINGO-1 antagonist promotes functional recovery and axonal sprouting after spinal cord injury[J].Mol Cell Neurosci, 2006, 33(3): 311-320.
    [5]Allen A. Surgery for experimental lesions of spinal cord equivalent to crush injury of fracture dislocation of spinal column: a preliminary report. JAMA, 1911, 57: 878-880.
    [6]Tator C H, Koyanagi I. Vascular mechanisms in the pathophysiology of human spinal cord injury[J].Neurosurg, 1997, 86(3): 483-492.
    [7]Wang P, Cao X, Nagel D J, et al. Activation of ASK1 during reperfusion of ischemic spinal cord. Neurosci Lett, 2007, 415(3): 248-252.
    [8]Blomgren K, Mcrae A, Elmered A, et al. The calpain proteolytic system in neonatal hypoxic-isxhemia[J]. Ann N Y Acad Sic, 1997, 825: 104-119.
    [9]Yong J, Robak G, Liu D, et al. A sampling artifact in the microdialysis study of changes in extracellular[Mg2+]upon apinal cord injury[J]. Anal Biochem, 1997, 245(2): 203-206.
    [10]Krenz N R, Weaver L G.. Effect of spinal cord transtection on N Methy1D aspartate receptors in the cord[J]. Neurotrauma, 1998, 15: 1027-1036.
    [11]Gaviria M, Privat A, Arbigny P, et al. Neuroprotective effects of gacyclidinea after experimental photochenmical spinal coed lesion in adultrats: dose window and time window effects[J]. Neurotrauma, 2000, 17: 19~30.
    [12]Le Y L, Shih K, Bao P, et al. Cytokine chemokine expression in contused rat spinal cord[J]. NeurochemInt, 2000, 36(4-5): 417-425.
    [13]Wu W. Neurol nitricoxide synthaseis induced in spinal neurons by traumatic injury[J]. Neurosience, 1994, 61: 719.
    [14]Growe M J, Bresnahan J C, Shuman S L, et al. Apoptosis and delayed degeneration after spinal cord injury in rats and monkey[J]. Nature Medicine, 1997, 3: 73-76.
    [15]Dusart I, Schwad E M. Secondary cell death and inflammatory reaction after dorsalhenisction of the rat spinal cord[J]. Neurosci, 1994,6: 712-724.
    [16]Zain J, Huang Y Q, Feng X, et al. Concentration-dependent dual effect of thombin on impaired growth/apoptosis or mitogenes in tumor cells [J]. Blood, 2000, 95(10):3133-3189.
    [17]吴永超,郑启新,胡东,等.骨髓间充质干细胞表达神经营养因子及对神经干细胞的保护作用[J].中国康复理论与实践, 2006, 12(9): 780-782.
    [18]Widenfalk J, Lundstromer K, Jubran M, et al. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid[J]. Neurosci, 2001, 21(10): 3457-3475.
    [19]王钢,刘世清.丹参和神经生长因子并用对急性脊髓损伤患者血液流变学和脂质过氧化的保护作用[J].中国临床康复, 2004, 8(14):2696-2697.
    [20]孙广运,蔡培强, Oudega Martin等.移植分泌神经营养因子-3的人胚神经干细胞对大鼠脊髓损伤后功能恢复的影响[J].中华创伤杂志, 2007, 23(2): 122-126.
    [21]林森,徐建光,胡韶楠,等.神经营养因子-3诱导大鼠脊髓神经干细胞分化为胆碱能神经元的实验研究[J].中华创伤骨科杂志, 2007,9(6): 546-549.
    [22]Charles D M, Andrew J A, Robert S G, et al. GDNF selectively promotes regeneration of injury-primed sensory neurons in the lesioned spinal cord[J]. Molecular and Cellular Neurosciene, 2007, 36(2):185-194.
    [23]刘雷,裴福兴,李起鸿,等.碱性成纤维细胞生长因子对牵张性脊髓损伤后一氧化氮合酶活性的影响[J].中国骨与关节损伤杂志,2005,20(6):393-394.
    [24]Zujovic V, Bachelin C, Baron-Van Evercooren. Remyelination of the Central Nervous System: A valuable contribution from the periphery[J].Neuroscientist,2007,13(4):383-391.
    [25]Tsai M C, Shen L F, Kuo H S, et al. Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach[J].Mol Cell, 2008, 796: 1668-1687.
    [26]Putz U, Harwell C, Nedivi E. Soluble CPG15 expresse during early development rescues cortical progenitors from apoptosis[J]. Nat.Neurosci, 2005, 8(3):322-331.
    [27]Karamoysoyli E,Burnand RC,TomLinson DR,et al.Neuritin mediates nerve growth factor-induced axonal regeneration and is deficient in experimental diabetic neuropathy [J].Diabetes,2008,57(1):181-189.
    [28]Hayashi M, Ueyama T, Nemoto K, et al. Sequential mRNA Expression for Immediate Early Genes, Cytokines, and Neuro-trophins in Spinal Cord Injury[J]. Neurotrauma, 2000,17: 203- 218.
    [29]Gold B G, Yew J Y. The Immunosuppressant FK506 IncreasesGAP-43 mRNA Levels in Axotomized Sensory Neurons[J]. Neurosci Lett, 1998,241:25-28.
    [30] Ramón y Cajal, S. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats[J]. Nat. Med, 1998, 4:814-821.
    [31]Saberi H., Moshayedi P, Aghayan H R., Arjmand B, Hosseini S K., Emami-Razavi S H, Rahimi-Movaghar V, Raza M, Firouzi M. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes[J]. Neurosci Lett, 2008,443:46-50.
    [32]Ye J H, Houle J D. Treatment of the chronically injured spinal cord with neurotrophic factors can promote axonal regeneration from supraspinal neurons[J]. Exp Neurol, 1997,143: 70-81.
    [33]Novikova L N, Novikov L N, Kellerth J O. Differential effects of neurotrophins on neuronal survival and axonal regeneration after spinal cord injury in adult rats[J]. Comp Neurol, 2002, 452: 255-263.
    [34]Oudega M, Hagg T. Nerve growth factor promotes regeneration of sensory axons into adult rat spinal cord[J]. Exp Neurol, 1996,140: 218-229.
    [35]Houle J D, Tom V J, Mayes D, Wagoner G, Phillips N, Silver J. Combining an autologous peripheral nervous system "bridge" and matrix modification by chondroitinase allows robust, functional regeneration beyond a hemisection lesion of the adult rat spinal cord[J]. Neurosci, 2006,26:7405- 7415.
    [36]Cheng H, Cao Y, Olson L. Spinal cord repair in adult paraplegic rats: partial restoration of hind limb function[J]. Science, 1996, 273:510-513.
    [37]Lee Y S, Hsiao I, Lin V W. Peripheral nerve grafts and aFGF restore partial hindlimb function in adult paraplegic rats[J]. Neurotrauma , 2002,19:1203-1216.
    [38]Rasouli A, Bhatia N, Suryadevara S, Cahill K, Gupta R. Transplantation of preconditioned Schwann cells in peripheral nerve grafts after contusion in the adult spinal cord. Improvement of recovery in a rat model[J]. Bone Joint Surg Am, 2006,88:2400-2410.
    [39]Sandrow H R, Shumsky J S, Amin A, Houle J D. Aspiration of a cervical spinal contusion injury in preparation for delayed peripheral nerve grafting does not impair forelimb behavior or axon regeneration[J]. Exp Neurol, 2008, 210:489- 500.
    [40]Campos L, Meng Z, Hu G, Chiu D T W, Ambron R T, Martin J H. Engineering novel spinal circuits to promote recovery after spinal injury[J]. Neurosci, 2004,24:2090-2101.
    [41]Decherchi P, Gauthier P. Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts[J]. Neuro- science, 2002,112:141-152.
    [42]Gauthier P, Réga P, Lammari-Barreault N, Polentes J. Functional reconnections establi- shed by central respiratory neurons regenerating axons into a nerve graft bridging the respiratory centers to the cervical spinal cord[J]. Neurosci Res, 2002,70:65-81.
    [43]Horvat J C. Transplants of fetal neural tissue and autologous peripheral nerves in an attempt to repair spinal cord injuries in the adult rat[J]. Paraplegia,1991,29:299-308.
    [44]Ribotta M G, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A, Orsal D. Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level[J]. Neurosci,2000,20:5144-5152.
    [45]Jakeman L B, Reier P J. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions[J]. Comp Neurol, 1991,307:311-334.
    [46]Bregman B S, McAtee M, Dai H N, Kuhn P L. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat[J]. Exp Neurol, 1997, 148:475-494.
    [47]Bregman B S, Broude E, McAtee M, Kelley M S. Transplants and neurotrophic factors prevent atrophy of mature CNS neurons after spinal cord injury[J]. Exp Neurol, 1998, 149:13-27.
    [48]Iarikov D E, Kim B G, Dai H N., McAtee M, Kuhn P L, Bregman B S. Delayed transplantation with exogenous neurotrophin administration enhances plas- ticity of corticofugal projections after spinal cord injury[J]. Neurotrauma, 2007,24:690-702.
    [49]Lynskey J V, Sandhu F A, Dai H N, McAtee M, Slotkin J R, MacArthur L, Bregman B S. Delayed intervention with transplants and neurotrophic factors supports recovery of forelimb function after cervical spinal cord injury in adult rats[J]. Neurotrauma, 2006, 23:617-634.
    [50]Houle J D, Morris K, Skinner R D, Garcia-Rill E, Peterson C A. Effects of fetal spinal cord tissue transplants and cycling exercise on the soleus muscle in spinalized rats[J]. Muscle Nerve, 1999,22:846-856.
    [51]Barres B A, Hart I K, Coles H S R, Burne J F, Voyvodic J T, Richardson W D, Raff M C. Cell death and control of cell survival in the oligodendrocyte lineage[J]. Cell, 1992,70:31-46.
    [52]Nikulina E, Tidwell J L, Dai H N, Bregman B S, Filbin M T. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery[J]. Proc Natl Acad Sci U.S.A, 2004,101:8786- 8790.
    [53] Reier P J. Cellular transplantation strategies for spinal cord injury and translational neurobiology[J]. NeuroRx, 2004,1:424-451.
    [54]Thompson F J, Reier P J, Uthman B, Mott S, Fessler R G., Behrman A, Trimble M,Anderson D K, Wirth 3rd E D. Neurophysiological assessment of the feasibility and safety of neural tissue transplantation in patients with syringomyelia[J]. Neurotrauma, 2001,18:931-945.
    [55]Oudega M, Xu X M. Schwann cell transplantation for repair of the adult spinal cord[J]. Neurotrauma, 2006,23:453-467.
    [56]Decherchi P, Gauthier P. Regeneration of acutely and chronically injured descending respiratory pathways within post-traumatic nerve grafts[J]. Neuro- science, 2002, 112:141-152.
    [57]Wood P M. Separation of functional Schwann cells and neurons from normal peripheral nerve tissue[J]. Brain Res, 1976,196:247-252.
    [58]Raff M C, Hornby-Smith A, Brockes J P. Cyclic AMP as a mitogenic signal for cultured rat Schwann cells[J]. Nature, 1978,273:672-673.
    [59]Evans P D, Reale V, Villegas J. The role of cyclic nucleotides in modulation of the membrane potential of the Schwann cell of squid giant nerve fibre[J]. Physiol, 1985,363:151-167.
    [60]Xu X M, Chen A, Guenard V, Kleitman N, Bunge M B. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of transected adult rat spinal cord[J]. Neurocytol, 1997,26:1-16.
    [61]Xu X M, Guenard V, Kleitman N, Aebischer P, Bunge M B. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann cell grafts in adult rat thoracic spinal cord[J]. Exp Neurol, 1995,134:261-272.
    [62]Saberi H, Moshayedi P, Aghayan H R, Arjmand B, Hosseini S K, Emami-Razavi S H, Rahimi-Movaghar V, Raza M, Firouzi M. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation: an interim report on safety considerations and possible outcomes[J]. Neurosci Lett, 2008, 443:46-50.
    [63]Franklin R J, Blakemore W F. Transplanting oligodendrocyte progenitors into the adult CNS[J]. Anat, 1997, 190:23-33.
    [64]Barnett S C, Hutchins A M, Noble M. Purification of olfactory nerve ensheathing cells from the olfactory bulb[J]. Dev Biol, 1993, 155:337-350.
    [65]Doucette R. Glial cells in the nerve fiber layer of the main olfactory bulb of embryonic and adult mammals[J]. Microsc Res Tech, 1993, 24:113-130.
    [66]Svendsen C N, Smith A G. New prospects for human stem-cell therapy in the nervous system[J]. Trends Neurosci, 1999, 22:357-364.
    [67]Ramon-Cueto A, Plant G W, Avila J, Bunge M B. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants[J]. Neurosci, 1998, 18:3803-3815.
    [68]Negredo P, Rivero J L, Gonzalez B, Ramon-Cueto A, Manso R. Slow- and fast-twitch rat hind limb skeletal muscle phenotypes 8 months after spinal cord transection and olfactory ensheathing glia transplantation[J]. Physiol, 2008, 586:2593-2610.
    [69]Guest J D, Herrera L, Margitich I, Oliveria M, Marcillo A, Casas C E. Xenografts of expanded primate olfactory ensheathing glia support transient behavioral recovery that is independent of serotonergic or corticospinal axonal regeneration in nude rats following spinal cord transection[J]. Exp Neurol, 2008, 212:261-274.
    [70]Lopez-Vales R, Fores J, Navarro X, Verdu E. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat[J]. Glia, 2007, 55:303-311.
    [71]Li Y, Decherchi P, Raisman G. Transplantation of olfactory ensheathing cells into spinal cord lesions restores breathing and climbing[J]. Neurosci, 2003, 23: 727- 731.
    [72]Takami T, Oudega M, Bates M L, Wood P M, Kleitman N, Bunge M B. Schwann cell but not olfactory ensheathing glia transplants improve hindlimb locomotor performance in the moderately contused adult rat thoracic spinal cord[J]. Neurosci, 2002, 22:6670-6681.
    [73]Lakatos A, Smith P M, Barnett S C, Franklin R J. Meningeal cells enhance limited CNS remyelination by transplanted olfactory ensheathing cells[J]. Brain, 2003, 126:598-609.
    [74]Fouad K, Pearse D D, Tetzlaff W, Vavrek R. Transplantation and repair: combined cell implantation and chondroitinase delivery prevents deterioration of bladder function in rats with complete spinal cord injury. Spinal Cord. 2009.
    [75]Pearse D D, Marcillo A E, Oudega M, Lynch M P, Wood P M, Bunge M B. Transplantation of Schwann cells and olfactory ensheathing glia after spinal cord injury: does pretreatment with methylprednisolone and interleukin-10 enhance recovery? [J]. Neurotrauma, 2004, 21:1223-1239.
    [76]Xiao M, Klueber K M, Lu C, Guo Z, Marshall C T, Wang H, Roisen F J. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery[J]. Exp Neurol, 2005, 194:12-30.
    [77]Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, Fronek P, Gray C, Kerr G., Licina P, Nowitzke A, Perry C, Silburn P A, Urquhart S, Geraghty T. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial[J]. Brain, 2008, 131:2376-2386.
    [78]Guest J, Herrera L P, Qian T. Rapid recovery of segmental neurological function in a tetraplegic patient following transplantation of fetal olfactory bulb- derived cells[J]. Spinal Cord, 2006, 44:135-142.
    [79]Hirschberg D L, Schwartz M. Macrophage recruitment to acutely injured central nervous system is inhibited by a resident factor: a basis for an immune-brain barrier[J]. Neuroimmunol, 1995, 61:89-96.
    [80]Lazarov-Spiegler O, Solomon A S, Zeev-Brann A B, Hirschberg D L, Schwartz M. Transplantation of activated macrophages overcomes central nervous system regrowth failure[J]. FASEB, 1996, 10:1296-1302.
    [81]Rapalino O, Lazarov-Spiegler O, Agranov E, Velan G J, Yoles E, Fraidakis M, Solomon A, Gepstein R, Katz A, Belkin M, Hadani M, Schwartz M. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats[J]. Nat Med, 1998, 4:814-821.
    [82]Knoller N, Auerbach G, Fulga V, Zelig G., Attias J, Bakimer R, Marder J B, Yoles E, Belkin M, Schwartz M, Hadani M. Clinical experience using incubated autologous macrophages as a treatment for complete spinal cord injury: phase I study results[J]. Neurosurg Spine, 2005, 3: 173-181.
    [83]Popovich P G, Guan Z, Wei P, Huitinga I, van Rooijen N, Stokes B T. Deple- tion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury[J]. Exp Neurol, 1999, 158:351-365.
    [84]Oudega M, Xu X M. Schwann cell transplantation for repair of the adult spinal cord[J]. Neurotrauma, 2006, 23:453-467.
    [85]Hu J G, Fu S L, Zhang K H, Li Y, Yin L, Lu P H, Xu X M. Differential gene expression in neural stem cells and oligodendrocyte precursor cells: a cDNA microarray analysis[J]. Neurosci Res, 2004, 78:637-646.
    [86]Chow S Y, Moul J, Tobias C A, Himes B T, Liu Y, Obrocka M, Hodge L, Tessler A, Fischer I. Characterization and intraspinal grafting of EGF/bFGF- dependent neurospheres derived from embryonic rat spinal cord[J]. Brain Res, 2000, 874:87-106.
    [87]Liu Y, Himes B T, Solowska J, Moul J, Chow S Y, Park K I, Tessler A, Murray M, Snyder E Y, Fischer I. Intraspinal delivery of neurotrophin-3 using neural stem cells genetically modified by recombinant retrovirus[J]. Exp Neurol, 1999, 158:9-26.
    [88]Srivastava N, Seth K, Khanna VK, et a1. Long-term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co-transplantation with olfactory ensheathingcells for eurotrophic factor support[J]. International Journal of Developmental Neu- roscience, 2009, 27(1): 103-110.
    [89]Cogle C R, Yachnis A T, Laywell E D, Zander D S, Wingard J R, Steindler D A, Scott E W. Bone marrow transdifferentiation in brain after transplantation: a retrospective study[J]. Lancet,2004, 363:1432-1437.
    [90]Shihabuddin L S, Horner P J, Ray J, Gage F H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus[J]. Neurosci, 2000, 20:8727-8735.
    [91]McDonald J W, Liu X-Z, Qu Y, Liu S, Mickey S K, Turetsky D, Gottlieb D I, Choi D W. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord[J]. Nat Med, 1999, 5:1410-1412.
    [92]Vescovi A L, Parati E A, Gritti A, Poulin P, Ferrario M, Wanke E, Frolichsthal-Schoeller P, Cova L, Arcellana-Panlilio M, Colombo A, Galli R. Isolation and cloning of multipotential stem cells from the embryonic human CNS and establishment of transplantable human neural stem cell lines by epigenetic stimulation[J]. Exp Neurol, 1999, 156:71-83.
    [93]Carpenter M K, Cui X, Hu Z-Y, Jackson J, Sherman S, Seiger A, Wahlberg L U. In vitro expansion of a multipotent population of human neural progenitor cells[J]. Exp Neurol, 1999, 158:265-278.
    [94]Raff M C, Miller R H, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium[J]. Nature, 1983, 303:390-396.
    [95]McKinnon R D, Matsui T, Dubois-Dalcq M, Aaronson S A. FGF modulates the PDGF-driven pathway of oligodendrocyte development[J]. Neuron, 1990, 5:603-614.
    [96]Karimi-Abdolrezaee S, Eftekharpour E, Wang J, Morshead C M, Fehlings M G. Delayed transplantation of adult neural precursor cells promotes remyeli- nation and functional neurological recovery after spinal cord injury[J]. Neurosci, 2006, 26:3377-3389.
    [97]Bunge R P, Puckett W R, Becerra J L, Marcillo A, Quencer R M. Observations on the Pathology of Human Spinal Cord Injury. A Review and Classification of 22 New Cases with Details from a Case of Chronic Cord Compression with Extensive Focal Demyelination. Raven Press Ltd, New York. 1993.
    [98]Blight A R. Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury[J]. Cent Nerv Syst Trauma, 1985, 2:299-315.
    [99]Warrington A E, Barbarese E, Pfeiffer S E. Differentiation myelinogenic capacity of specific developmental stages of the oligodendrocyte lineage upon transplantation into hypo- myelinating hosts[J]. Neurosci Res, 1993, 34:1-13.
    [100]Groves A K, Barnett S C, Franklin R J M, Crang A J, Mayer M, Blakemore W F, Noble M. Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells[J]. Nature, 1993, 362:453-455.
    [101]Franklin R J, Bayley S A, Milner R, Ffrench-Constant C, Blakemore W F. Differentiationof the O-2A progenitor cell line CG-4 into oligodendrocytes and astrocytes following transplantation into glia-deficient areas of CNS white mat- ter[J]. Glia, 1995, 13:39-44.
    [102]Cao Q, Xu X M, Devries W H, Enzmann G U, Ping P, Tsoulfas P, Wood P M, Bunge M B, Whittemore S R. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells[J]. Neurosci, 2005, 25:6947-6957.
    [103]Keirstead H, Nistor G, Bernal G, Totoiu M, Cloutier F, Sharp K, Steward O. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury[J]. Neurosci, 2005, 25:4694-4705.
    [104]Ma Z, Cao Q, Zhang L, Hu J, Howard R M, Lu P, Whittemore S R, Xu X M. Oligodendrocyte precursor cells differentially expressing Nogo-A but not MAG are more permissive to neurite outgrowth than mature oligodendrocytes[J]. Exp Neurol, 2009, 217:184-196.
    [105]Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284:143-147.
    [106]Terada N, Hamazaki T, Oka M, Hoki M, Mastalerz D M, Nakano Y, Meyer E M, Morel L, Petersen B E, Scott E W. Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion[J]. Nature, 2002, 416:542-545.
    [107]Ankeny D, McTigue D M, Guan Z, Yan Q, Kinstler O, Stokes B T, Jakeman L B. Pegylated brain-derived neurotrophic factor shows improved distribution into the spinal cord and stimulates locomotor activity and morphological changes after injury[J]. Exp Neurol, 2001, 170:85-100.
    [108]Lu P, Tuszynski M H. Transplantation of bone marrow stromal cells (MSCS) and BDGF-transduced MSCS promotes robust axonal growth after spinal cord injury[J]. Soc Neurosci Abstr, 2002.
    [109]Akiyama Y, Radtke C, Honmou O, Kocsis J D. Remyelination of the spinal cord following intravenous delivery of bone marrow cells[J]. Glia, 2002, 39:229-236.
    [110]Sasaki M, Honmou O, Akiyama Y, Uede T, Hashi K, Kocsis J D. Transplantation of an acutely isolated bone marrow fraction repairs demyelinated adult rat spinal cord axons[J]. Glia, 2001, 35:26-34.
    [111]Reier P J. Cellular transplantation strategies for spinal cord injury and trans- lational neurobiology[J]. NeuroRx, 2004, 1:424-451.
    [112]Yoon S H, Shim Y S, Park Y H, Chung J K, Nam J H, Kim M O, Park H C, Park S R, Min B H, Kim E Y, Choi B H, Park H, Ha Y. Complete spinal cord injury treatment usingautologous bone marrow cell transplantation and bone marrow stimulation with granulocyte macrophage-colony stimulating factor: phase I/II clinical trial[J]. Stem Cells, 2007, 25:2066-2073.
    [113]Blits B, Bunge M B. Direct gene therapy for repair of the spinal cord[J]. Neurotrauma, 2006, 23(3-4): 508-520.
    [114]Pearse D D, Bunge M B. Designing cell and gene-based regeneration strategies to repair the injured spinal cord[J]. Neurotrauma, 2006, 23(3-4): 438-452.
    [115]贾连顺.甲基强的松龙对急性脊髓损伤治疗与预防性用药的研究[J].中国脊柱脊髓杂志, 2005, 15(7): 392-393.
    [116]Bracken M B, Holford T R. Neurological and functional status 1 year afteracute spinal cord injury: estimatesof functional recovery inNationalAcute SpinalCord InjuryStudy II from resultsm- odeled in NationalAcute SpinalCord Injury Study III[J]. Neurosurg, 2002, 96: 259-266.
    [117]Teng Y D, Choi H, Onario R C, et al. Minocycline inhibits contusion triggered mitochondrial cytochromec release andmitigates functional deficits after spinal cord injury[J]. Proc Natl Acad Sci U S A, 2004, 101(9):3071-3076.
    [118]Fournier A E, Takizawa B T, Strittmatter S M. Rho kinase inhibition enhances axonal regeneration in the injured CNS[J]. Neurosci, 2003, 23(4): 1416-1423.
    [119]Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis[J]. Curr Opin Cell Biol, 2006, 18:199-205.
    [120]Mueller B K, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders[J]. Nat Rev Drug Discov, 2005, 4:387-98.
    [121]Bustelo X R, Sauzeau V, Berenjeno I M. GTP-binding proteins of the Rho /Rac family: regulation, effectors and functions in vivo[J]. Bioessays, 2007, 29 ( 4 ): 356-370.
    [122]Nakajima E, Nakajima T, Minagawa Y, et al. Contribution of ROCK in contraction of trabecular meshwork: proposed mechanism for regulating aqueous out?ow in monkey and human eyes[J]. Pharm Sci, 2005, 94:701-708.
    [123]Schwab M E, Thoenen H. Dissociated neurons regenerate into sciatic but not optic nerve explants in culture irrespective of neurotrophic factors[J]. Neurosci, 1985, 5: 2415-2423.
    [124]Schwab M E, Caroni P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro[J]. Neurosci, 1988, 8: 2381-2393.
    [125]Yamashita T, Fujitani M, Yamagishi S, Hata K, Mimura F. Multiple signals regulate axon regeneration through the Nogo receptor complex[J]. Mol Neurobiol, 2005, 32: 105-111.
    [126]Caroni P, Schwab M E. Antibody against myelin-associated inhibitor of neurite growth neutralizes nonpermissive substrate properties of CNS white matter[J]. Neuron, 1988, 1: 85-96.
    [127]Spillmann A A, Bandtlow C E, Lottspeich F, Keller F, Schwab M E. Identification and characterization of a bovine neurite growth inhibitor (bNI-220)[J]. Biol Chem, 1998,273: 19283-93.
    [128]Schnell L, Schwab M E. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors[J]. Nature, 1990, 343: 269-72.
    [129]Bregman B S, Kunkel-Bagden E, Schnell L,Dai H N, Gao D, Schwab M E. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors[J]. Nature, 1995, 378: 498-501.
    [130]Prinjha R, Moore S E, Vinson M, et al. Inhibitor of neurite outgrowth in humans[J]. Nature, 2000, 403: 383-84.
    [131]GrandPre T, Nakamura F, Vartanian T, Strittmatter S M. Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein[J]. Nature, 2000, 403: 439-44.
    [132]Mukhopadhyay G, Doherty P, Walsh F S, Crocker P R, Filbin M T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration[J]. Neuron, 1994, 13: 757-67.
    [133]McKerracher L, David S, Jackson D L, Kottis V, Dunn R J, Braun P E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth[J]. Neuron, 1994, 13: 805-811.
    [134]Cai D, Qiu J, Cao Z, McAtee M, Bregman B S, Filbin M T. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate[J]. Neurosci, 2001, 21: 4731-39.
    [135]Kottis V, Thibault P, Mikol D, et al. Oligodendrocyte-myelin glycoprotein(OMgp) is an inhibitor of neurite outgrowth[J]. Neurochem, 2002, 82: 1566-69.
    [136]Wang KC, Koprivica V, Kim J A, et al. Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth[J]. Nature, 2002, 417:941-44.
    [137]Josephson A, Trifunovski A, Widmer H R, Widenfalk J, Olson L, Spenger C. Nogo-receptor gene activity: cellular localization and developmental regulation of mRNA in mice and humans[J]. Comp Neurol, 2002, 453: 292-304.
    [138]Wang X, Chun S J, Treloar H, Vartanian T, Greer C A, Strittmatter S M. Localization of Nogo-A and Nogo-66 receptor proteins at sites of axonmyelin and synaptic contact[J]. Neurosci, 2002, 22: 5505-15.
    [139]Zheng B, Atwal J, Ho C, et al. Genetic deletion of the Nogo receptor does not reduce neurite inhibition in vitro or promote corticospinal tract regeneration in vivo[J]. Proc Natl Acad Sci USA, 2005, 102:1205-210.
    [140]Chivatakarn O, Kaneko S, He Z, et al. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors[J]. Neurosci, 2007, 27: 7117-7124.
    [141]Yamashita T, Higuchi H, Tohyama M. The p75 receptor transduces the signal from myelin-associated glycoprotein to Rho[J]. Cell Biol, 2002, 157:565-70.
    [142]Wang K C, Kim J A, Sivasankaran R, Segal R, He Z. p75 interacts with the Nogo receptor as a co-receptor for Nogo, MAG and OMgp[J]. Nature, 2002, 420: 74-78.
    [143]Wong S T, Henley J R, Kanning K C, Huang K H, Bothwell M, Poo M M. A p75 (NTR) and Nogo receptor complex mediates repulsive signaling by myelin-associated glycoprotein[J]. Nat Neurosci, 2002, 5: 1302-308.
    [144]Chivatakarn O, Kaneko S, He Z, et al. The Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors[J]. Neurosci, 2007, 27: 7117- 7124.
    [145]Mi S, Lee X, Shao Z, et al. LINGO-1 is a component of the NOGO-66 receptor/p75 signaling complex[J]. Nat Neurosci, 2004, 7: 221-28.
    [146]Park J B, Yiu G, Kaneko S, et al. A TNF receptor family member, TROY, is a coreceptor with Nogo receptor in mediating the inhibitory activity of myelin inhibitors[J]. Neuron, 2005, 45: 345-51.
    [147]Shao Z, Browning J L, Lee X, et al. TAJ/TROY, an orphan TNF receptor family member, binds Nogo-66 receptor 1 and regulates axonal regeneration[J]. Neuron, 2005, 45: 353-59.
    [148]Fukata M, Nakagawa M, Kaibuchi K. Roles of Rho-family GTPases in cell polarisation and directional migration[J]. Curr Opin Cell Biol, 2003, 15:590-97.
    [149]Narumiya S, Yasuda S. Rho GTPases in animal cell mitosis[J]. Curr Opin Cell Biol, 2006, 18:199-205.
    [150]Hata K, Fujitani M, Yasuda Y, et al. RGMa inhibition promotes axonal growth and recovery after spinal cord injury[J]. Cell Biol, 2006, 173: 47-58.
    [151]Riento K, Ridley A J. Rocks: multifunctional kinases in cell behaviour[J]. Nat Rev Mol Cell Biol, 2003, 4:446-56.
    [152]Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell W D, McKerracher L. Rho signaling pathway targeted to promote spinal cord repair[J]. Neurosci, 2002, 22: 6570-77.
    [153]Fournier A E, Takizawa B T, Strittmatter S M. Rho kinase inhibition enhances axonal regeneration in the injured CNS[J]. Neurosci, 2003, 23: 1416-23.
    [154]Yamashita T, Tohyama M. The p75 receptor acts as a displacement factor that releases Rho from Rho-GDI[J]. Nat Neurosci, 2003, 6: 461-67.
    [155]Domeniconi M, Zampieri N, Spencer T, et al. MAG induces regulated intramembraneproteolysis of the p75 neurotrophin receptor to inhibit neurite outgrowth[J]. Neuron, 2005, 46: 849-55.
    [156]Brown M E, Bridgman P C. Myosin function in nervous and sensory systems[J]. Neurobiol, 2004, 58: 118-30.
    [157]Ohashi K, Nagata K, Maekawa M, Ishizaki T, Narumiya S, Mizuno K. Rhoassociated kinase ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation loop[J]. Biol Chem, 2000, 275: 3577-82.
    [158]Sumi T, Matsumoto K, Nakamura T. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase[J]. Biol Chem, 2001, 276: 670-76.
    [159]Arimura N, Inagaki N, Chihara K, et al. Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse[J]. Biol Chem, 2000, 275: 23973-80.
    [160]Arimura N, Menager C, Fukata Y, Kaibuchi K. Role of CRMP-2 in neuronal polarity[J]. Neurobiol, 2004, 58: 34-47.
    [161]Mimura F, Yamagishi S, Arimura N, et al. MAG inhibits microtubule assembly by a Rho-kinase dependent mechanism[J]. Biol Chem, 2006, 281:15970-79.
    [162]Alabed Y Z, Pool M, Ong Tone S, Fournier A E. Identification of CRMP4 as a convergent regulator of axon outgrowth inhibition[J]. Neurosci, 2007, 27:1702-11.
    [163]Sivasankaran R, Pei J, Wang K C, et al. PKC mediates inhibitory effects of myelin and chondroitin sulfate proteoglycans on axonal regeneration[J]. Nat Neurosci, 2004, 7: 261-8.
    [164]Hasegawa Y, Fujitani M, Hata K, Tohyama M, Yamagishi S, Yamashita T. Promotion of axon regeneration by myelin-associated glycoprotein and Nogo through divergent signals downstream of Gi/G[J]. Neurosci, 2004, 24: 6826-32.
    [165]Conrad S, Genth H, Hofmann F, Just I, Skutella T. Neogenin-RGMa signaling at the growth cone is bone morphogenetic protein-independent and involves RhoA, ROCK, and PKC[J]. Biol Chem, 2007, 282: 16423-33.
    [166]Koprivica V, Cho K S, Park J B, et al. EGFR activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans[J]. Science, 2005, 310: 106-10.
    [167]Simonen M, Pedersen V, Weinmann O, et al. Systemic deletion of themyelin-associated outgrowth inhibitor Nogo-A improves regenerative and plastic responses after spinal cord injury[J]. Neuron, 2003, 38: 201-11.
    [168]Zheng B, Ho C, Li S, Keirstead H, Steward O, Tessier-Lavigne M. Lack of enhancedspinal regeneration in Nogo-deficient mice[J]. Neuron, 2003, 38: 213-24.
    [169]Dimou L, Schnell L, Montani L, et al. Nogo-A-deficient mice reveal straindependent differences in axonal regeneration[J]. Neurosci, 2006, 26: 5591-603.
    [170]Kim J E, Liu B P, Park J H, Strittmatter S M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury[J]. Neuron, 2004, 44: 439-51.
    [171]GrandPre T, Li S, Strittmatter S M. Nogo-66 receptor antagonist peptide promotes axonal regeneration[J]. Nature, 2002, 417: 547-51.
    [172]Li S, Strittmatter S M. Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury[J]. Neurosci, 2003, 23: 4219-27.
    [173]Song X Y, Zhong J H, Wang X, Zhou X F. Suppression of p75NTR does not promote regeneration of injured spinal cord in mice[J]. Neurosci, 2004, 14:542-46.
    [174]Schwab J M, Conrad S, Monnier P P, Julien S, Mueller B K, Schluesener H J. Spinal cord injury-induced lesional expression of the repulsive guidance molecule (RGM) [J]. Neurosci, 2005, 21: 1569-76.
    [175]De Winter F, Holtmaat A J, Verhaagen J. Neuropilin and class 3 semaphorins in nervous system regeneration[J]. Adv Exp Med Biol, 2002, 515: 115-39.
    [176]Schwab J M, Monnier P P, Schluesener H J, et al. Central nervous system injury-induced repulsive guidance molecule expression in the adult human brain[J]. Arch Neurol, 2005, 62: 1561-68.
    [177]Rajagopalan S, Deitinghoff L, Davis D, et al. Neogenin mediates the action of repulsive guidance molecule[J]. Nat Cell Biol, 2004, 6: 756-62.
    [178]Schmidtmer J, Engelkamp D. Isolation and expression pattern of three mouse homologues of chick Rgm[J]. Gene Expr Patterns, 2004, 4: 105-10.
    [179]Matsunaga E, Nakamura H, Chedotal A. Repulsive guidance molecule plays multiple roles in neuronal differentiation and axon guidance[J]. Neurosci, 2006, 26: 6082-88.
    [180]Matsunaga E, Tauszig-Delamasure S, Monnier P P, et al. RGM and its receptor neogenin regulate neuronal survival[J]. Nat Cell Biol, 2004, 6: 749-55.
    [181]Hata K, Fujitani M, Yasuda Y, et al. RGMa inhibition promotes axonal growth and recovery after spinal cord injury[J]. Cell Biol, 2006, 173: 47-58.
    [182]Dubreuil C I, Winton M J, McKerracher L. Rho activation patterns after spinal cord injury and the role of activated Rho in apoptosis in the central nervous system[J]. Cell Biol, 2003, 162: 233-43.
    [183]Fischer D, Petkova V, Thanos S, Benowitz L I. Switching mature retinal ganglion cells to a robust growth state in vivo: gene expression and synergy with RhoA inactivation[J]. Neurosci, 2004, 24:8726-40.
    [184]Bertrand J, Winton M J, Rodriguez-Hernandez N, Campenot R B, McKerracher L. Application of Rho antagonist to neuronal cell bodies promotes neurite growth in compartmented cultures and regeneration of retinal ganglion cell axons in the optic nerve of adult rats[J]. Neurosci, 2005, 25:1113-21.
    [185]Laufs U, Endres M, Stagliano N, et al. Neuroprotection mediated by changes in the endothelial actin cytoskeleton[J]. Clin Invest, 2000, 106: 15-24.
    [186]Hara M, Takayasu M, Watanabe K, et al. Protein kinase inhibition by fasudil hydrochloride promotes neurological recovery after spinal cord injury in rats[J]. Neurosurg, 2000, 93: 94-101.
    [187]Sung J K, Miao L, Calvert J W, Huang L, Louis Harkey H, Zhang J. A possible role of RhoA/Rho-kinase in experimental spinal cord injury in rat[J]. Brain Res, 2003, 959: 29-38.
    [188]Tanaka H, Yamashita T, Yachi K, Fujiwara T, Yoshikawa H, Tohyama M. Cytoplasmic p21(Cip1/WAF1) enhances axonal regeneration and functional recovery after spinal cord injury in rats[J]. Neuroscience, 2004, 127: 155-64.
    [189]Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension[J]. Nature, 1997, 389:990-94.
    [190]Mueller B K, Mack H, Teusch N. Rho kinase, a promising drug target for neurological disorders[J]. Nat Rev Drug Discov, 2005, 4: 387-98.
    [191]McKerracher L, Higuchi H. Targeting Rho to stimulate repair after spinal cord injury[J]. Neurotrauma, 2006, 23: 309-17.
    [192]Shimokawa H. Rho-kinase as a novel therapeutic target in treatment of cardiovascular diseases[J]. Cardiovasc Pharmacol, 2002, 39:319-27.
    [193]Hidaka H, Matsuura A, Matsuzaki T. EP0885888A1 (1997).
    [194]Sasaki Y, Suzuki M, Hidaka H. The novel and specific Rho-kinase inhibitor (S)-(+)-2- methyl-1-[(4-methyl-5-isoquinoline)sulfonyl]-homopiperazine as a probing molecule for Rho- kinase-involved pathway[J]. Pharmacol Ther, 2002, 93: 225-32.
    [195]Shibuya M, Hirai S, Seto M, Satoh S, Ohtomo E. Effects of fasudil in acute ischemic stroke: results of a prospective placebo-controlled double-blind trial[J]. Neurol Sci, 2005, 238: 31-39.
    [196]Tamura M, Nakao H, Yoshizaki H, et al. Development of specific Rhokinase inhibitorsand their clinical application[J]. Biochim Biophys Acta, 2005, 1754: 245-52.
    [197]Jacobs M, Hayakawa K, Swenson L, et al. The structure of dimeric ROCK I reveals the mechanism for ligand selectivity[J]. Biol Chem, 2006, 281: 260-68.
    [198]Ishizaki T, Uehata M, Tamechika I, et al. Pharmacological properties of Y- 27632, a specific inhibitor of rho-associated kinases[J]. Mol Pharmacol, 2000, 57: 976-83.
    [199]Yamaguchi H, Miwa Y, Kasa M, et al. Structural basis for induced-fit binding of Rho-kinase to the inhibitor Y-27632[J]. Biochem, 2006, 140: 305-11.
    [200]Uehata M, Ono T, Satoh H, Yamagami K, Kawahara T. EP0956865A1(1998).
    [201]Doe C, Bentley R, Behm D J, et al. Novel Rho kinase inhibitors with antiinflammatory and vasodilatory activities[J]. Pharmacol Exp Ther, 2007, 320:89-98.
    [202]Stavenger R A, Cui H, Dowdell S E, et al. Discovery of aminofurazanazabenzimidazoles as inhibitors of Rho-kinase with high kinase selectivity and antihypertensive activity[J]. Med Chem, 2007, 50: 2-5.
    [203]Goodman K B, Cui H, Dowdell S E, et al. Development of dihydropyridone indazole amides as selective Rho-kinase inhibitors[J]. Med Chem, 2007, 50: 6-9
    [204]James S E, Burden H, Burgess R, et al. Anti-cancer drug induced neurotoxicity and identification of Rho pathway signaling modulators as potential neuro protectants[J]. Neurotoxicology, 2008, 29(4): 605-12.
    [205]Ichikawa M, Yoshida J, Saito K, et al. Differential effects of two ROCK inhibitors, Fasudil and Y-27632, on optic nerve regeneration in adult cats[J]. Brain Res, 2008, 1201(1): 23-33.
    [206]Koyanagi M, Takahashi J, Arakawa Y, et al. Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neuralprecursors[J]. NeurosciRes, 2008, 86 (2):270-80.
    [207]Lingor P, Tonges L, Pieper N, et al. ROCK inhibition and CNTF interact on intrinsic signalling pathways and differentially regulate survival and regeneration in retinalganglion cells[J]. Brain, 2008, 131 (Pt1): 250-63.
    [208]Huang L, He Z, Guo L J, et al. Improvementof cognitive deficitand neuronal damage in rats with chronic cerebral ischemia via relative longterm inhibition ofRho-kinase[J]. CellMol Neurobio, 2008, 28(5):757-68.
    [209]Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurismal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial[J]. Neurosurg, 1992, 76:571-77.
    [210]Shimokawa H , Hiramori K, Iinuma H, et al. Anti-anginal effect of fasudil, a Rho-kinaseinhibitor, in patients with stable effort angina: a multicenter study[J]. Cardiovasc Pharmacol, 2002, 40: 751-61.
    [211]Vicari R M, Chaitman B, Keefe D, et al. Efficacy and safety of fasudil in patients with stable angina: a double-blind, placebo-controlled, phase 2 trial[J]. Am Coll Cardiol, 2005, 46: 1803-11.
    [212]Shimizu Y, Thumkeo D, Keel J, et al. ROCK-I regulates closure of the eyelids and ventral body wall by inducing assembly of actomyosin bundles[J]. Cell Biol, 2005, 168: 941-53.
    [213]Thumkeo D, Keel J, Ishizaki T, et al. Targeted disruption of the mouse rhoassociated kinase 2 gene results in intrauterine growth retardation and fetal death[J]. Mol Cell Biol, 2003, 23: 5043-55.
    [214]Wei L, Roberts W, Wang L, et al. Rho kinases play an obligatory role in vertebrate embryonic organogenesis[J]. Development, 2001, 128: 2953-62.
    [215]Xie Zhao-Hui. Advances in mechanism of small RNAs[J]. Yichuan, 2009, 31(12): 1205-1213.
    [216]Deans T L, Cantor C R, Collins J J.A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells[J]. Cell, 2007,130(2):363-372.
    [217]Parker G S, Maity T S, Bass B L. dsRNA binding properties of RDE-4 and TRBP reflect their distinct roles in RNAi[J]. Mol Biol, 2008,384(4):967-979.
    [218]Colmenares S U, Buker S M, Buhler M, et al. Coupling of double-stranded RNA synthesis and siRNA generation in ssion yeast RNAi[J]. Mol Cell, 2007,27(3):449-461.
    [219]Gheysen G,V anholme B. RNAi from plants to nematodes[J].Trends Biotechnol, 2007,25(3): 89-92.
    [220]Parry D H, Xu J, Ruvkun G A. whole-genome RNAi screen for C.elegans miRNA pathway genes[J]. CurrBiol, 2007,17(23):2013-2022.
    [221]González-González E, López-Casas P P, del Mazo J. Expression paerns of genes involved in the RNAi pathways are tissue-dependent and di er in the germ and somatic cells of mouse testis[J]. Biochim Biophys Acta, 2008, 1779(5):306-311.
    [222]Dang L T, Kondo H, Aoki T, et al. Engineered virus-encoded pre-microRNA(pre-miRNA) induces sequence-specific antiviral response in addition to nonspecific immunity in a fish cell line:Convergence of RNAi-related pathways and IFN-related pathways in antiviral response[J]. Antiviral Res, 2008, 80(3):316-323.
    [223]Yang C Y, Cai L. RNAi and non-small cell lung cancer[J]. Chin J Lung Cancer, 2008, 11(4):595-597.
    [224]Wurst M, Robles A, Po J, et al. An RNAi screen of the RRM-domain proteins of Trypanosoma brucei[J]. Mol Biochem Parasitol, 2009,163(1):61-65.
    [225]Müller P, Boutros M, Zeidler M P Identification of JAK/STAT pathwayregulators-insights from RNAi screens[J]. Semin Cell Dev Biol, 2008,19(4):360-369.
    [226]Liang Y G, Liu H Y, Liu B X, et al. Detection of IFN response of non-specific effects on RNAi[J]. Chin J Lung Cancer, 2009,12(1):16-22.
    [227]Loniewski K J, Patial S, Parameswaran N. Sensitivity of TLR4-and-7-induced NF kappa B1 p105-TPL2-ERK pathway to TNF-receptor-associated-factor-6revealed by RNAi in mouse macrophages[J]. Mol Immunol, 2007,44(15):3715-3723.
    [228]Perrimon N, Friedman A, Mathey-Prevot B, et al. Drug-target identi cation in drosophila cells:combining high-throughout RNAi and small-molecule screens[J]. Drug Discov Today, 2007, 12(1-2):28-33.
    [229]Elbashir S M, Lendeckel W, Tuschl T, et al. RNA interference is mediated by 21 and 22 nucleotide RNAs[J]. Gene Dev,2001,15(2):188.
    [230]Miyagishi M, Taira K. U6 promoter-driven siRNAs with four uridine overhangs suppress targeted gene expression in mammalian cells[J]. Nat Biotech, 2002,19:497.
    [231]Brummelkamp T R, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells[J]. Science, 2002, 296:550-553.
    [232] HARBORTH J,ELBASHIR S M,BECHERTK, et al. Identification of essential genes in cultured mammalian cells using small interfering RNAs[J]. Journal of Cell Science, 2001, 114(Pt24):4557-4565.
    [233]袁婺洲, BODMER R,朱传炳,等.利用RNAi技术研究果蝇心脏发育基因的功能[J].遗传学报, 2002, 29(1): 34-38.
    [234]Heidersbach A, Gaspar-Maia A, McManus M T, et al. RNA interference in embryonic stem cells and the prospects for future therapies[J]. Gene Ther, 2006,13(6):478-486.
    [235]Ivanova N, Dobrin R, Lu R, et al. Dissecting selfrenewal in stem cells with RNA interference[J]. Nature,2006,442(7102):533-538.
    [236]WILDAM, FUCHSU,WOSSMANNW, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi) [J]. Oncogene, 2002,21(37):5716-5724.
    [237]CIOCA D P, AOKIY, KIYOSAWA K. RNA interference is a functional pathway with therapeutic potential in human myeloid leukemia cell lines[J]. Cancer Gene Therapy, 2003, 10(2):125-133.
    [238]BRUMMELKAMP T R,BERNARDS R,AGAMI R. Stable suppression of tumorigenicityby virus-mediated RNA interference[J]. Cancer Cel, 2002,2(3):243-247.
    [239]LIN S L, CHUONG C M, YING S Y. ANovelmRNA-cDNA interference phenomenon for silencing bcl-2 expression in human LNCaP cells[J]. Biochem BiophysResCommun, 2001, 281 (3):639-644.
    [240]NPVONA C D, MURRAY M F, DYKXHOORN D M, et al. siRNAdirected inhibition ofHIV-1 infection[J]. NatureMedicine, 2002,8(7): 681-686.
    [241]CAPODICI J, KARIKOK, WEISSMAND. Inhibition ofHIV-1 infection by small interfering- RNA-mediated RNA interference[J]. Immunol, 2002, 169(9):5196-5201.
    [242]JACQUE J M, TRIQUES K, STEVENSONM. Modulation ofHIV-1 replication byRNA interf- erence[J]. Nature, 2002, 418(6896): 435-438.
    [243]LEE N S,DOHJIMA T, BAUER G, et al. Expression of small interfering RNAs targeted againstHIV-1 rev transcripts in human cells [J]. Nature Biotechnology, 2002, 20(5):500-505.
    [244] Barton W A, Liu B P, Tzvetkova D, et al. Structure and axon out-growth inhibitor binding of the Nogo-66 receptor and related Proteins[J]. EMBO, 2003, 22:3291-3302.
    [245]王延洲,梁志清,刘晓芳,徐惠成.Smad3基因RNAi慢病毒载体的构建与鉴定[J].第三军医大学学报,2009(31):701-702.
    [246] NISHIO Y KODA M, KITAJO K, et al. Delayed Treatment with Rho-kinase Inhibior Dose not Enhance Axonal Regenera-tion or Functional Recovery after Spinal Cord Injury in Rats[J]. Exp Neurol(S0014-4886), 2006,200:392-397.
    [247]QIAO FU, JEONGSIM HUE, SHUXIN LI. Nonsteroidal Anti-Inflammatory Drugs Promote Axon Regeneration Via RhoA In-hibition[J]. The Journal of Neuroscience (S0270-6474), 2007,27(15):4154-4164.
    [248] CHEN H, FIRESTEIN B L. RhoA Regulates Dendrite Branching in Hippocampal Neurons by Decreasing Cypin Protein Levels[J]. Neurosci(S0270-6474),2007,27(31):8378-8386.
    [249] LINGOR P, TEUSCH N, SCHWARZ K, et al. Inhibition of Rho Kinase(ROCK) Increases Neurite Outgrowth on Chondroitin Sulphate Proteoglycan in Vitro and Axonal Regeneration in the Zdult Optic Nerve in Vivo [J]. Neurochem(S0022-3042),2007,103(1):181-189.
    [250] WALMSLEY A R, MIR A K. Targeting the Nogo-A Signaling Pathway to Promote Recovery Following Acute CNS Injury[J]. Current Pharmaceutical Design(S1381-6128), 2007,13 (24): 2470- 2484.
    [251]Xie Zhao-Hui. Advances in mechanism of small RNAs[J].Yichuan, 2009, 31(12): 1205-1213.
    [252]Totoiu M O,Keirstead H S. Spinal cord injury is accompanied by chronic progressivedemyelination[J]. Comp Neurol, 2005, 486:373-383.
    [253]Baumann N,Pham-Dinh D. Biology of Oligodendrocyte and Myelin in the Mammalian Central Nervous System[J]. Physiol Rev, 2001, 81:871-927.
    [254]Armstrong R C, Dorn H H, Kufta C V, et al. Preoligodendrocytes from adult human CNS [J]. Neurosci,1992(12):1538-1547.
    [255]杨辉,王玮.少突胶质细胞体外培养、纯化、鉴定及缺氧模型的建立.四川解剖学杂志[J],2009, 17(4):1-4.
    [256]Connell L E,Helfman D M. Myosin light chain kinase plays a role intheregulation of epithelial cell survival[J]. CellSci, 2006,119:2269-2281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700