厚板轧机主传动轴系统力学行为分析和修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宝钢5000mm厚板轧机是世界上第一架采用十字轴式万向接轴作为主传动轴的厚板轧机,也是迄今为止国内最先进的轧机。宝钢厚板轧机主传动系统由电机、减速箱、分配箱、联接轴、联轴器等组成,其具有传递扭矩大、应力大、冲击大、尺寸受空间严格限制等特点。自投产以来,宝钢厚板轧机的主传动系统多次发生断裂的特大设备事故。主要失效形式有,法兰过渡圆角部位断裂、激光修复后万向节叉头断裂,严重影响了厚板轧机的正常生产,大大增加了设备检修和备品备件的成本。
     为解决厚板主传动轴异常断裂的问题和提高其修复技术,有必要对主传动系统进行相关分析。本文将有限元分析技术和实验研究相结合,探讨主传动轴异常断裂的原因,分析断裂叉头的失效机理。探明失效原因后,有必要开展激光修复工艺的研究工作,取得了下列研究成果:
     第一,建立了厚板轧机主传动系统的数学模型。通过MATLAB对数学模型进行仿真分析,得到了主传动系统的固有频率和扭矩放大系数(TAF);根据轧机设计原则,结果表明:厚板轧机设计是合理的;对厚板轧机的现场扭矩进行了测试,测试结果的频谱分析和仿真计算结果基本吻合,验证了数学模型的正确性,进一步证明了轧机主传动系统设计的合理性。
     第二,对经常发生断裂的主传动系统法兰圆角和叉头处进行了有限元和工程力学方法分析。计算结果得出,在稳态轧制力矩为4000 kN·m时,60mm和80mm的法兰圆角半径其最大等效应力值分别为111MPa和101MPa;圆角弧度为2mm、60mm、80mm其安全系数分别为1.4,、3.131、3.269,由此可见,法兰过渡圆角过小是造成主传动轴法兰断裂的根本原因,提出加大过渡圆角的改进建议,应用到现场后,杜绝了主传动轴法兰断裂的设备事故;还得出叉头的最大等效应力为361.196Mpa,远低于材料的屈服应力,叉头应属于疲劳失效断裂,计算出叉头疲劳安全系数仅为0.303,远低于其设计要求,在现有载荷条件下疲劳寿命严重不足是叉头多次断裂失效的原因,提出了降低轧机载荷的改进措施,避免了新品万向节叉头断裂的设备事故。
     第三,对断裂的叉头进行失效机理分析。通过对万向节叉头进行宏微观断口形貌分析、化学成分分析、机械性能测试、金相组织分析,得出叉头的断裂形式为疲劳断裂,其疲劳断裂的主要原因除了叉头设计寿命不足外,叉头轴承孔工作面及次表层的激光熔覆、局部补焊缺陷产生了裂纹源,在周期应力的作用下,疲劳裂纹加速扩展,最终导致叉头的断裂。失效机理分析结果表明:不恰当的激光熔覆工艺是造成激光熔覆叉头在短期内即发生断裂失效的根本原因。
     第四,在失效分析的基础上,对万向节的修复工艺进行研究。根据万向节叉头的材料性能、使用工况以及应力状态等,选择两个不同部位(叉头和叉头法兰处)和两种不同Ni选择了进行激光熔覆工艺研究,对表面硬度、残余应力和金相组织检测结果进行分析,得出Ni基粉末DL2在低残余应力部位熔覆效果更好,从而得出了适合叉头的激光熔覆工艺。通过上机考核试验,新工艺熔覆的叉头,到目前其使用寿命已经超过了3个月,远远高于原先熔覆工艺3周的使用寿命。
     厚板轧机主传动轴为大扭矩(最大实测扭矩为7000KNm)、高应力并承受强烈冲击的机械零件。激光熔覆作为一门新兴技术,其具有不同与常规堆焊、电镀、喷涂等工艺的一些特点和优势,正在日益广泛地应用于工业上。对激光熔覆技术在大扭矩、高应力机械零件的修复方面应用的研究,有助于拓展激光熔覆技术的工业应用,也有助于提高大型机械传动零件修复和再制造的技术水平。
Baosteel Company is the first used of the 5000mm width heavy plated mill in domestic, it is also one of the most advanced heavy plated mill in the world. The main drive system of rolling mill in Baosteel company is composed of motor, reducer, distribution box, connecting shaft and couplings etc, it has the characteristics that transmission torque is large, stress is great, impact is big, dimension is strictly limited etc. Since its operation, the main transmission system of Baosteel thick heavy rolling mill repeatedly happens super-large equipment fracture accidents, mainly including: flange transition rounded part fracture, laser repaired joint head fracture, which seriously affected the thick heavy rolling mill normal production and greatly increased equipment repairing and spare parts cost. This paper focuses on main shaft accident in the Baosteel company, carrying out the related research.
     To solve the thick heavy plated mill's main shaft abnormal fracture problem and improve its repair technology, it is necessary to analyze its main transmission system. This paper combines finite element analysis method with experimental research, discussing unusual cracking reasons of the main shaft , analyzing the failure mechanism of fracture fork head. After finding the failure reason, it is necessary to study laser repair technology and achieved the following research results:
     First, establishing the mathematical model of the main transmission system. Simulating the mathematical model through MATLAB, calculating the spindle of natural frequencies and torque amplitude factor for the inspection of the design, through the field test data analysis verify the correctness of the mathematical model, it is concluded that the spindle design is reasonable.
     Second, applying finite element analysis and engineering mechanics method to often fractured flange and fork head. It obtained the calculation results,for the steady rolling torque of 4000 kN?m, 60mm 80mm flange fillet radius have the maximum equivalent stress value 111MPa and 101MPa respectively, Rounded radian of 2mm 80mm 60mm,its safety coefficient is respectively 3.131, 1.4 3.269, thus it can be seen, flange failure due to too small fillet caused by the local stress concentration, and advances improving opinions, after implementing the correct action, the flange fracture has not occurred, fork head analysis get the feedback fork head of the maximum equivalent stress is 361.196Mpa, far from reaching its ultimate strength, fork head fracture should belong to fatigue damage failure, according to fatigue failure theory fork head safety coefficient is 0.303, far from meeting the design requirements, which leads to the fork head failure, proposed reducing mill load improvement measures, to avoid the new joint head rupture.
     Third, failure mechanism analysis of fractured fork head. Though the disassembly analysis of the fractured fork head, looking for fork head of failure mechanism, Through performing macro and micro morphology analysis, chemical composition analysis, mechanical property testing, microstructure analysis, obtains that the fracture mode for fork head is fatigue fracture, The main reasons of the fatigue fracture besides the fork head design life expectancy is insufficient, the fork head bearing hole working face, the laser cladding of inner surface and local repair caused the defects, these defects caused crack expanding further under periodic stress, The failure mechanism analysis results showed that inappropriate laser caused the ford head fracture, if we can raise fork head hole repairing process, it can greatly improve expected life of the fork head.
     Fourth, on the foundation of the failure analysis, studying the repair technology of universal joint. According to the joint head materials properties, operating conditions and stress state etc, choose two different parts (fork head and fork head flange) and two different Ni based powder for laser cladding process research, analyze the surface hardness results, residual stress and microstructure detection results, it got the conclusion that DL2 Ni based powder in low residual stress position cladding effect is better, and also got the suitable fork head laser cladding process, through computer tests, the new laser cladding repaired fork head, its service life already amounted to 3 months at present, far longer than previously cladding process 3 weeks using life.
     Thick heavy rolling mill shaft has the maximum torque (the measured lord is 7000KNm), high stress and under strong impact. Laser cladding as a new technology is different from conventional surfacing, electroplating, spraying process, it has some features and advantages, which are increasingly widely used in industry. By means of application research about laser cladding on big torque and high stress of mechanical parts repairing , it helps to develop laser cladding industrial application, also helps to improve the large mechanical transmission parts repair and remanufacturing technology level.
引文
[1]邹家祥等,轧钢机现代设计理论,北京,冶金工业出版社,1991
    [2]周至良,李世品,十字头万向接轴实验与分析,武汉钢铁学院学报, 1979,04
    [3]王建农,轧机用大型万向联轴器的设计与应用,重型机械,1983,2
    [4]殷吉和,无螺栓十字万向接轴的应用设计,重型机械,1983,2
    [5]景志红,管克智,李斌,李爱群,十字轴的有限元分析,北京科技大学学报,1997(19),增刊
    [6]臧勇,崔超,十字型万向接轴强度分析及结构优化,重型机械,2000,5
    [7]张宏梅,黄康,无螺栓十字轴万向联轴器叉头三维有限元分析,机械工程师,2001,6
    [8]邹家祥,康贵信,国内带钢热连轧机出传动系统扭振计算分析,北京钢铁学院学报,1981,4
    [9]张显,四辊板带轧机主传动系统的承载能力研究,武汉科技大学硕士论文
    [10]马华,1580PC轧机F2机座主传动系统扭振研究和动态强度校核,燕山大学硕士论文
    [11]金晓光,滑块式万向接轴在厚板轧机上的应用及轧辊扁头的强度校核,鞍钢技术,1995,4
    [12]李雪民,刘震,新型滑块式万向接轴的设计特点及应用,一重技术,2001,1
    [13]林鹤,4200厚板轧机扭振动力学研究,北京钢铁学院学报,1981,4
    [14]李率民,邢相勤,陈松,王钧,3200mm轧机主传动系统扭振研究,轧钢,2004(21),1
    [15]钟剑鹏,十字轴式万向联轴节的修复技术,宽厚板,2004(3),6
    [16]刘录录,孙荣禄,激光熔覆技术及工业应用研究进展,热加工工艺,2007,11
    [17]孙宽,激光熔覆修复技术的研究,河北工业大学硕士学位论文
    [18]沈燕娣,激光熔覆工艺基础研究,上海海事大学硕士学位论文
    [19]杨坤,镍基合金激光熔覆层质量改善的研究及其应用,郑州大学硕士学位论文
    [20]汪中玮,张清辉,肖逸锋,镍基高温耐磨无渣堆焊焊条及其热处理工艺[J],焊接学报,2006(01),110-111
    [21] G. DEHM*, M .BAMBERGER,“Laser cladding of Co-based hardfacing on Cu substrate”journal of materials science 37 (2002) 5345– 5353
    [22] j.d. kim k.h. kang j.n. kim,“Nd :YAG laser cladding of marine propeller with hastelloy C-22”Appl. Phys. A 79, 1583–1585 (2004)
    [23]高学民,迟秀丽等,大板坯连铸机的连铸辊耐热耐磨合金带极堆焊[J],焊接,2003(12),39-41.
    [24]陈国喜,沈宗树等,SP侧框架堆焊修复技术及改进措施[J],机械工人,2005(2),47-48
    [25]单际国,任家烈,镍基合金粉末光束堆焊层的微观组织及强化机理研究[J],材料研究学报,2002,16(2),151-157
    [26]关振中,激光加工工艺手册[M],北京,中国计量出版社,1998,236-306
    [27]戴华,气门密封面激光熔覆钴基合金层凝固组织特征及其残余应力研究,武汉理工大学硕士学位论文
    [28] [日]米谷茂,残余应力的产生和对策,北京,机械工业出版社,1983
    [29]张定铨,何家义,材料中残余应力的X射线衍射分析和作用,西安,西安交通大学出版社,1999
    [30]方博武,受控喷丸与残余应力理论,济南,山东科技出版社,1991
    [31]宋天民,焊接残余应力的产生与消除,北京,中国石化出版社,2006
    [32]薛垂义,中厚板轧机扭矩在线监测系统分析,《重型机械科技》2005(1),济南钢铁集团总公司,山东,20-22
    [33]张向阳,张显,李友荣,基于有限元分析的万向联轴器十字轴优化设计,湖北省机械工程学会机械设计与传动专业委员会第十五届学术年会论文集(二),2008,湖北
    [34]申延智,杜国君,高亚南,熊杰,刘宏民,厚板轧机万向节疲劳破坏分析,轧钢,2010年02期,湖北武汉,32-34
    [35]韩永康,基于有限元分析的输出轴的设计[J],机械制造与自动化, 2006, (05)
    [36]罗松,张晓黎,在随机载荷下构件的动态有限元分析及疲劳强度计算[J],重型机械, 1988, (08)
    [37]谢逸泉,利用有限元分析软件ANSYS计算轴的刚度[J],现代机械,2005,(01)
    [38]陈龙,文湘隆,丁国平,基于有限元分析的轴的设计[J],现代机械,2005,(01)
    [39]靳慧,周奇才,张其林,应变疲劳可靠性分析的有限元法[J],同济大学学报(自然科学版), 2006,(04)
    [40]张文格,王煜东,李永泰,张长会,曲轴疲劳强度的有限元分析[J],压缩机技术, 1992, (04)
    [41]袁凤阳,汽车等速驱动轴结构强度的有限元分析,吉林大学硕士论文,2004
    [42]刘恒忠,部国光,鞍钢中板轧机接轴疲劳强度及寿命估算,一重技术,1994(4),河北,6-13
    [43]朱如鹏,潘升材,高向群,基于有限元分析的轴的疲劳强度计算方法,机械强度,1993(1),南京,57-61
    [44]王庆祺,轴的疲劳强度计算[J],中南矿冶学院学报, 1987, (06)
    [45]陈文宏,童朋战,转轴疲劳强度的可靠性设计[J],新疆钢铁, 2006, (02)
    [46]王振基,轴的疲劳强度计算新方法的建议[J],机械设计, 1984, (03)
    [47]孙玉秋,转轴疲劳强度的可靠性设计[J],机械设计与制造, 2006, (08)
    [48]彭行金,万向接轴叉头激光堆焊修复技术的基础研究,上海交通大学硕士学位论文,2007
    [49]金冈优,付长德,最新的激光加工技术[J]电气制造, 2007(3)
    [50]林文松,张光钧,王慧萍,激光熔覆技术的研究进展[J]热处理技术与装备, 2008,(02)
    [51]黄尚猛,李华川,激光熔覆技术在工业中的应用及其发展[J],装备制造技术,2007,(06)
    [52]邱星武,李刚,邱玲,激光熔覆技术发展现状及展望[J],稀有金属与硬质合金,2008,36(3),54-57
    [53]闫忠琳,叶宏,激光熔覆技术及其在模具中的应用[J],激光,2006,27 (2): 73-74
    [54]邱星武,Ni基大面积激光熔覆涂层制备工艺及组织性能研究[D],辽宁工程技术大学,2008
    [55]王晓荣,激光熔覆陶瓷相颗粒增强Fe基熔覆层的研究[D],山东大学,2010
    [56]王一博,激光熔覆制备耐磨耐蚀涂层[D],哈尔滨工程大学,2009
    [57]杨宁,晁明举,杨文超,激光熔覆工艺方法及熔覆材料现状,科技信息
    [58]金冈优,付长德,最新激光加工技术[J],金属加工,2007(3),40-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700