典型旱作区施肥对农田氮淋溶以及温室气体排放的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施肥可以增加土壤肥力和提高作物产量,但过量施肥加剧了农田的氮淋溶和温室气体排放,导致了资源浪费和环境污染。本研究在典型的旱作农业区以长武农业生态试验站的长期定位试验为基础,研究了长期施肥对小麦产量、氮淋溶、N20排放、CO2排放以及土壤肥力的影响。
     1.施肥能显著提高小麦的产量。2006~2009年不施肥处理小麦产量最低,平均为1345kghm-2。施用N肥后平均产量为1594 kg hm-2,增加18.55%。NP配施时小麦产量大幅度增加,为3778kghm-2,是单施氮的2.37倍。施用有机肥能大幅增加小麦产量,单施M时平均产量为3884kghm-2,是不施肥的2.88倍。NPM配施时平均产量最高,可达4438kghm-2,是单施M的1.14倍。
     施肥能增加小麦的株高、穗长、小穗数和穗粒数,其中以NP配施和NPM配施时达到显著水平。单施N和单施M对株高、穗长、穗粒数、穗数和千粒重的影响不显著。
     不施肥时小麦植株吸氮量和吸钾量最低,2006~2009年均值分别为30.93kghm-2和34.79kghm-2。施肥后植株吸氮量和吸钾量增加,NPM配施时最高,分别可达152.55kghm-2和111.22kghm-2,是不施肥的4.93倍和3.20倍;单施N时植株吸磷量最低,仅3.99kghm-2,NPM配施最高,可达14.62kghm-2。不同肥料施用条件下氮肥利用率以NP配施时最高,可达61.81%,而单施N时最低,仅15.17%;磷肥利用率以NP配施最高,平均值为21.54%,单施M和NPM配施较低,分别为4.94%和4.57%。
     2.长期NPM配施后土壤养分增幅最高,有机质、全氮、全磷、有效磷和有效钾含量分别增加81.88%、115.97%、45.52%、1810.56%和242.85%。不施肥时有机质、全氮、全磷和有效磷含量增加幅度最低,仅10.02%、33.84%、-2.87%、-49.44%,NP配施时有效钾含量增加幅度最低,仅-1.56%。
     3.过量施用氮肥是造成硝态氮淋溶的主要因素。单施氮肥土壤硝态氮淋溶最为剧烈,不仅在60~180 cm土层出现累积层,而且部分硝态氮进入3m以下并在320 cm处形成累积峰,0~400 cm土层残留量最高可达1498.68 kg hm-2;NPM配施土壤剖面出现20-160 cm和160~320 cm两个累积区;NP配施时土壤剖面虽然也形成2个累积区,但硝态氮累积峰低于单施N和NPM配施;不施肥和单施M土壤深层均无硝态氮累积现象,且不施肥土壤硝态氮残留量最低,为61.34kghm-2。土壤铵态氮在土壤剖面的分布呈不规则的波动,其值大部分均在10.00~20.00 mgkg-1之内,不同肥料施用条件下0~400 cm土层残留量在650.85~989.73kghm-2之间。
     不同量的氮、磷肥配施条件下,1999至2007年土壤硝态氮向深层移动100 cm以上,无氮和低氮肥施用的土壤硝态氮主要集中在0-160 cm土层;过量施用氮肥土壤硝态氮分别在120~140 cm和240~260 cm附近形成累积峰;单施N肥量等于或大于90kghm-2 a-1时,硝态氮在80~100 cm土层出现累积峰,且部分硝态氮进入300 cm以下土壤,0~300 cm土层硝态氮残留量可达1500.18kghm-2。与NP配施相比,单施氮肥将导致更多的硝态氮进入土壤深层,且硝态氮残留量随着施氮量增加而显著增加。磷肥在不施氮和低氮肥用量条件下对土壤硝态氮残留量无影响,当施N量增加到90kghm-2或更高,硝态氮残留量将随着施磷量增加而减小
     施用NPM肥23年后硝态氮在小麦地土壤剖面出现2个累积层,分别在20~100cm和140~320 cm处,而苜蓿地硝态氮主要分布在0~60 cm土层,仅在200~300 cm土层处出现少量累积,土壤总残留量比小麦连作地减少了588.06kghm-2。
     4.不同肥料施用条件下土壤N2O排放通量在0.32~78.66μg N2O-N m-2h-1之间。年平均N2O排放通量以不施肥时最低,NPM配施时最高。单施N、NP配施和NPM配施时小麦萌芽期和出苗期N2O排放通量明显增加,其排放总量约占全年总排放量的25~30%。
     不施肥时土壤的N2O年排放总量为0.21kgN2O-N hm-2,单施M后N20年排放总量没有增加。单施N时土壤的N2O年排放总量显著增加,为0.34kg N2O-N hm-2,比不施肥增加了64%。NP配施时土壤的N2O年排放总量比单施N时略有降低,为0.33kgN2O-N hm-2,比不施肥增加了60%。NPM配施时土壤N2O年排放总量最高,可达0.37kgN2O-N hm-2,比不施肥增加了80%。
     5.不同肥料施用条件下土壤CO2排放通量在0.96-117.94 mg CO2-C m-2 h-1之间,不施肥土壤CO2年均排放通量最低,施用NPM时最高。小麦返青期和休闲期CO2排放通量较高,而越冬期最低。
     不施肥土壤CO2年排放总量为1391kgCO2-C hm-2,施用氮肥后增加至1464kgCO2-C hm-2,增加了5.25%。NP配施时土壤CO2的年排放总量显著增加,比不施肥增加了36.93%。单施M和NPM配施土壤CO2的年排放总量分别为2301kgCO2-Chm-2和2211lgCO2-C hm-2,比不施肥处理分别增加了53.64%和46.89%。此外,土壤CO2排放通量与气温以及0 cm、5 cm、10 cm、15 cm、20 cm、40 cm地温均呈线性显著相关。
     6.施肥加剧了作物对土壤深层水分的吸收利用,不同肥料施用条件下土壤干燥化一般出现在100~260 cm土层。不施肥时土壤100~260 cm土层含水量最高,2006~2009年平均为16.29%;NPM配施时最低,为9.99%;不同量的氮肥和磷肥施用条件下,100~260 cm深度出现土壤干燥化现象,播前0~300 cm土层贮水量差异在-136.5~5.4mm之间。
Fertilization can increase soil fertility and crop yield, but excessive fertilization can enhance nitrate leaching and the emissions of greenhouse gases in the cropland, leading to waste of resources and environmental pollution. Based on the long-term fertilization experiment at the Changwu Agro-ecological experimental station in the typical dry-farming area, the objective of this work was to study the effect of fertilization on wheat yield, nitrate leaching, N2O emission, CO2 emission and soil fertility.
     1. Fertilization can increase the wheat yield significantly. The average yield of wheat was only 1345 kg hm-2 in unfertilized plot from 2006 to 2009, which reached to 1594 kg hm"2 and increased by 18.55% after single application of N fertilizer. The wheat yield was up to 3778 kg hm"2 and 2.37 times as high as that in N treatment when N and P fertilizer were applied together. Appling organic manure can increase more crop yield. The wheat yield of M plot was 3884 kg hm-2 and 2.88 times as high as that in unfertilized plot. When N fertilizer, P fertilizer and manure were applied in combination, the wheat yield was highest and up to 4438 kg hm-2, and 1.14 times as high as that in M treatment.
     Fertilization can increase height, ear length, spikelet number and grain per spike of winter wheat. The differences of height, ear length, spikelet number and grain per spike of winter wheat were significant in NP or NPM treatments compared with unfertilized plot, but Single application of N or M did not significantly affect height, ear length, grain per spike and 1000-grain weight of winter wheat.
     N and K uptake rates by wheat were lowest in unfertilized soil, and the average values were 30.93 kg hm"2 and 34.79 kg hm-2 from 2006 to 2009, respectively. N and K uptake rates by wheat increased after fertilization, N uptake rate were the highest (152.55 kg hm-2) in NPM treatment, which was 3.93 times higher than that in unfertilized plot. K uptake rate was the highest (111.22 kg hm-2) in NPM treatment, which was 2.20 times higher than that in unfertilized plot. P uptake rate was the highest (14.62 kg hm-2) when N, P and M were applied in combination, which was the lowest (only 3.99 kg hm-2) in N treatment. N recovery rate was the highest and up to 61.81% in NP plot under different fertilizer application conditions, and it was the lowest (15.17%) in N treatment. The highest value of P recovery rate was found in NP treatment, the average of which was 21.54% from 2006 to 2009. P recovery rates in M and NPM treatments were 4.94% and 4.57%, respectively.
     2. The increased rate of soil nutrition was the highest after the long-term combined application of N, P and M, and the concentrations of organic matter, total N, total P, available P and available K were increased by 81.88%,115.97%,45.52%,1810.56% and 242.85%, respectively. The increased rate of organic matter, total N, total P and available P were the lowest and increased by 10.02%,33.84%,-2.87% and-49.44% in unfertilized plot, and the increased rate of available K was only-1.56%.
     3. Excessive N fertilizer application was a main factor for nitrate leaching. NO3--N leached sharply into deep soil in N treatment. NO3--N was not only accumulated in 60~180 cm soil layer, but it also leached below 3 m depth and formed an accumulation peak near 320 cm depth in soil. Residual NO3--N amount was the highest (1498.68 kg hm-2) in 0~400 cm soil layer. NO3--N was accumulated in 20~160 cm soil layer and 160~320 soil layer in the vertical soil profile when N, P and M were applied in combination. NO3--N formed two accumulation zones in the vertical soil profile in NP treatment, but the highest value of NO3--N accumulation peaks were lower than that in N and NPM treatments. NO3--N accumulation were not found in deep soil in unfertilized and M plots, and residual NO3--N amount was the lowest (61.34 kg hm-2) in 0~400 cm soil layer in unfertilized plot. NH4+-N changed irregularly in the vertical soil profiles, the concentration range of which was 10.00 mg kg-1 to 20.00 mg kg-1, and residual amount of NH4+-N in 0~400 cm soil layer was from 650.85 kg hm-2 to 989.73 kg hm-2 under different fertilizer application conditions.
     From 1999 to 2007, the moving distance of NO3--N was over 100 cm from topsoil to subsoil under different N and P fertilizer application conditions. NO3--N was concentrated mainly in 0~160 cm soil layer under no and low N application conditions in the vertical soil profiles. However, NO3--N accumulation peaks were found in 120~140 cm and 240-260 cm soil layers under excessive N application conditions. When the rate of N single application was 90 kg N hm-2 or more per year, NO3--N was accumulated in 80~100 cm soil layer, and part of which had leached into subsoil below 300 cm depth, and residual NO3--N amount was up to 1500.18 kg hm-2 in 0~300 cm soil layer. Applying N alone easily led to NO3--N leaching compared with N and P combined application, and residual NO3--N amount increased significantly with increasing N application rate. There was no effect of P fertilizer on NO3--N leaching at no or low N level. When annual N application rate was increased to 90 kg hm-2 or more, residual NO3--N would decrease with increasing P application rate.
     There were two accumulation zones of NO3--N in the vertical soil profile after 23-year NPM application under continuous wheat cropping, one at 20~100 cm depth and the other at 140~320 cm depth. However, NO3--N was concentrated mainly in 0~60 cm soil layer under continuous alfalfa cropping, and accumulated slightly in 200~300 cm soil layer. Residual NO3--N amount in alfalfa field was 588.06 kg hm-2 less than that in continuous wheat cropping.
     4. The fluxes of N2O emission were 0.31~78.66μg N2O-N m-2 h-1 under different fertilizer application conditions. The average flux of N2O emission was the lowest in unfertilized plot and highest in NPM treatment per year. N2O emission fluxes of germination and seeding growth stages increased in N, NP and NPM treatments, and total N2O emission amounts of germination and seeding growth stages were 25~30% of total N2O emission amount in the whole growth year.
     Total amount of N2O emission was 0.21 kg N2O-N hm-2 in unfertilized soil per year, which did not increase after M application alone. However, Annual amount of N2O emission increased significantly when N fertilizer was applied alone, which was 64% higher than that in unfertilized plot, and the value was up to 0.34 kg N2O-N hm-2. Annual amount of N2O emission in NP treatment was lower than that in N treatment, which was 0.33 kg N2O-N hm-2 and increased by 60% compared with annual amount of N2O emission in unfertilized plot. Annual amount of N2O emission was the highest in NPM treatment and up to 0.37 kg N2O-N hm-2, which was 80% higher than that in unfertilized plot.
     5. The fluxes of CO2 emission were 0.96~117.94 mg CO2-C m-2 h-1 under different fertilizer application conditions. The annual average flux of CO2 emission was the lowest in unfertilized plot and highest in NPM treatment. The fluxes of CO2 emission in reviving and fallow stages were higher than other growth stages, and the lowest in over-wintering stage.
     Total amount of CO2 emission was 1391 kg CO2-C hm-2 in unfertilized plot per year, which was up to 1464 kg CO2-C hm-2 and increased by 5.25% after N fertilizer application alone. Annual amount of CO2 emission increased significantly when N and P fertilizers were applied in combination, which was 36.93% higher than that in unfertilized plot. Annual amounts of CO2 emission in M and NPM treatments were 2301 kg CO2-C hm-2 and 2211 kg CO2-C hm-2, which were 53.64% and 46.89% higher than that in unfertilized plot, respectively. In addication, CO2 emission flux was significantly linear correlated with air temperature and ground temperatures of 0 cm、5 cm、10 cm、15 cm、20 cm、40 cm soil lavers.
     6. Fertilization enhanced the water absorption and utilization of deep soil, and the desiccation of deep soil was found in the 100~260 cm soil layer under different fertilizer application conditions. The water content of soil was the highest in the 100~260 cm soil layer in unfertilized plot, and the average value was 16.29% from 2006 to 2009. The water content of soil was the lowest in the 100~260 cm soil layer in NPM treatment, and the average value was 9.99%. The desiccation of deep soil was found in the 100~260 cm soil layer under the condition of different N and P fertilizer application rates. The differences of moisture storage ranged from-136.5 mm to 5.4 mm in 0~300 soil layer before sowing.
引文
[1]彭琳,彭珂珊.陕西省粮食生产与化肥施用[J].西北农业学报,1998,7(2):104-108
    [2]叶优良,韩燕来,谭金芳,等.中国小麦生产与化肥施用状况研究[J].麦类作物学报,2007,27(1):127-133
    [3]黄景梁.中国化肥现状与发展[J].化肥工业,1994,(1):3-9
    [4]郭胜利,郝明德,党廷辉.黄土高原沟壑区小流域土壤NO3--N的积累特征及其影响因素[J].自然资源学报,2003,18(1):37-43
    [5]同延安,Ove Emteryd,张树兰,等.陕西省氮肥过量施用现状评价[J].中国农业科学,2004,37(8):1239-1244
    [6]郭胜利,张文菊,党廷辉,等.干旱半干旱地区农田土壤NO3--N深层积累及其影响因素[J].地球科学进展,2003,18(4):37-43
    [7]李文军,王继军,郝明德.黄土高原沟壑区王东沟小流域农业生态经济系统演变过程初探[J].中国农学通报,2007,23(7):593-597
    [8]党廷辉,郝明德.黄土塬区不同水分条件下冬小麦氮肥效应与土壤氮素调节[J].中国农业科学,2000,33(4):62-67
    [9]李世娟,李建民.氮肥损失研究进展[J].农业环境保护,2001,20(5):377-379
    [10]兰霞,周殿玺,兰林旺.灌水和施磷对冬小麦根系的影响[J].农业与技术,2005,25(2):154-156
    [11]王振华,张喜英,陈素英,等.分层施肥及供水对冬小麦生理特性、根系分布和产量的影响[J].华北农学报,2008,23(6):176-180
    [12]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报,1983,(2):91-101
    [13]王力,邵明安,侯庆春.黄土高原土壤干层初步研究[J].西北农林科技大学学报(自然科学版),2001,29(4):34-38
    [14]王国粱,刘国彬,周生路.黄土高原土壤干层研究述评[J].水土保持学报,2003,17(6):156-159
    [15]何福红,黄明斌,党廷辉.黄土高原沟壑区小流域土壤干层的分布特征[J].自然资源学报,2003,18(1):30-36
    [16]樊军,郝明德.旱地长期定位施肥土壤水氮资源利用的研究[J].中国生态农业学报,2003,11(2):57-60
    [17]魏孝荣,郝明德,张春霞.旱地长期施肥对土壤水分的影响[J].水土保持研究, 2003,10(1):95-97
    [18]王兵,刘文兆,党廷辉,等.黄土塬区旱作农田长期定位施肥对冬小麦水分利用的影响[J].植物营养与肥料学报,2008,14(5):829-834
    [19]胡伟,李军,王学春,等.宁南旱地连作春小麦产量动态与土壤干燥化效应模拟研究[J].麦类作物学报,2008,28(2):295-300
    [20]赵云英,谢永生,郝明德.施肥对黄土旱塬区黑垆土土壤肥力及硝态氮累积的影响[J].植物营养与肥料学报,2009,15(6):1273-1279
    [21]朱平,彭畅,高洪军,等.长期培肥对土壤肥力及玉米产量的影响[J].玉米科学,2009,17(06):105~108,111
    [22]张平良,王淑英,姜小凤,等.长期不同施肥方式对黄土高原旱地黑垆土土壤酶活性及其肥力的影响[J].西北农业学报,2009,18(6):338-341
    [23]彭令发,郝明德,来璐,等.黄土旱塬区长期施氮对土壤剖面养分分布的影响[J].西北植物学报,2003,23(8):1475-1478
    [24]魏孝荣,郝明德,张春霞.黄土区长期定位培肥试验对土壤肥力的影响[J].水土保持研究,2003,10(1):37-39
    [25]林继雄,林葆,艾卫.磷肥后效与利用率的定位试验[J].土壤肥料,1995,(6):1-5
    [26]Hao MD, Fan J, Wei XR, et al. Effect of fertilization on soil fertility and wheat yield of dryland in the Loess Plateau[J]. Pedosphere,2005,15(2):189-195
    [27]来璐,郝明德,彭令发.黄土旱塬长期施肥条件下土壤磷素变化及管理[J].水土保持研究,2003,10(1):68-70
    [28]来璐,郝明德,彭令发,等.黄土高原旱地长期施肥条件下土壤有机磷的变化[J].土壤,2003,35(5):413-418
    [29]杨学云,孙本华,古巧珍,等.长期施肥对塿土磷素状况的影响[J].植物营养与肥料学报,2009,15(4):837-842
    [30]郝明德,来璐,王改玲,等.黄土高原塬区旱地长期施肥对小麦产量的影响[J].应用生态学报,2003,14(11):1893-1896
    [31]郝明德,王旭刚,党廷辉,等.黄土高原旱地小麦多年定位施用化肥的产量效应分析[J].作物学报,2004,30(11):1108-1112
    [32]李芳林,郝明德,杨晓,等.黄土旱塬施肥对土壤水分和冬小麦产量的影响[J].麦类作物学报,2010,30(1):154-157
    [33]许晶晶,郝明德,赵云英.黄土高原旱地小麦氮磷钾与有机肥优化配施试验[J]. 干旱地区农业研究,2009,27(3):143-147,153
    [34]陈磊,郝明德,张少民.黄土高原长期施肥对小麦产量及肥料利用率的影响[J].麦类作物学报,2006,26(5):101-105
    [35]张益望,刘文兆,王俊,等.定位施肥对冬小麦生长、产量及水分利用的影响[J].生态经济,2009,(10):35-39
    [36]赵云英,谢永生,郝明德.黄土旱塬小麦长期施肥的产量效应及土壤肥力变化[J].西北农业学报,2007,16(5):75-79,88
    [37]张少民,郝明德,陈磊.黄土高原长期施肥对小麦产量及土壤肥力的影响[J].干旱地区农业研究,2006,24(6):85-89
    [38]李燕敏,郝明德,赵云英.黄土旱塬长期施肥条件下小麦钾素营养和肥料利用率的研究[J].安徽农业科学,2008,36(18):7769-7773,7796
    [39]杨晓,郝明德,李芳林.黄土区长期施肥对小麦产量和养分吸收的影响[J].土壤通报,2010,41(1):164-169
    [40]宇万太,姜子绍,赵鑫,等.不同施肥制度对肥料利用率的影响[J].土壤通报,2009,40(1):122-126
    [41]摄晓燕,谢永生,郝明德,等.黄土旱塬长期施肥对小麦产量及养分平衡的影响[J].干旱地区农业研究,2009,27(6):27-32
    [42]陈磊,郝明德,张少民,等.黄土高原旱地长期施肥对小麦养分吸收和土壤肥力的影响[J].植物营养与肥料学报,2007,13(2):230-235
    [43]张少民,郝明德,柳燕兰.黄土区长期施用磷肥对冬小麦产量、吸氮特性及土壤肥力的影响[J].西北农林科技大学学报(自然科学版),2007,35(7):159-163
    [44]李慧成,郝明德,何晓燕,等.黄土高原长期施用磷肥效应研究[J].华北农学报,2008,23(S2):279-282
    [45]王学春,李军,郝明德.施肥水平对长武旱塬地冬小麦产量影响的模拟[J].农业工程学报,2008,24(8):45-50
    [46]郭胜利,党廷辉,郝明德.施肥对半干旱地区小麦产量、NO3--N累积和水分平衡的影响[J].中国农业科学,2005,38(4):754-760
    [47]李忠芳,徐明岗,张会民,等.长期施肥下中国主要粮食作物产量的变化[J].中国农业科学,2009,42(7):2407-2412
    [48]张国梁,章申.农田氮素淋失研究进展[J].土壤,1998,(6):291-297
    [49]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6
    [50]党廷辉,蔡贵信,郭胜利,等.用15N标记肥料研究旱地冬小麦氮肥利用率与去向[J].核农学报,2003,17(4):280-285
    [51]Jaynes DB, Dinnes DL, Meek DW, et al. Using the late spring nitrate test to reduce nitrate loss within a watershed[J]. Journal of Environmental Quality,2004,33(2): 669-677
    [52]Spalding RF, Exner ME. Occurrence of nitrate in groundwater:A review[J]. Journal of Environmental Quality,1993,22(3):392-402
    [53]Benbi DK, Biswas CR, Kalkat JS. Nitrate distribution and accumulation in an Ustochrept soil profile in a long term fertilizer experiment[J]. Fertilizers Research, 1991,28(2):173-177
    [54]Hooker ML GRE, Herron GM, Gallagher P. Effects of long-term, annual applications of N and P on corn grain yields and soil chemical properties[J]. Agronomy Journal, 1983,75:94-99
    [55]Jolley VD, Pierre WH. Profile accumulation of fertilizer-derived nitrate and total nitrogen recovery in two long-term nitrogen-rate experiments with corn[J]. Soil Science Society of America Journal,1977,41(2):373-378
    [56]石玉,于振文.施氮量及底追比例对小麦产量、土壤硝态氮含量和氮平衡的影响[J].生态学报,2006,26(11):3661-3669
    [57]王春阳,周建斌,郑险峰,等.不同栽培模式对小麦—玉米轮作体系土壤硝态氮残留的影响[J].植物营养与肥料学报,2007,13(6):991-997
    [58]Raun WR, Johnson GV. Soil-plant buffering of inorganic nitrogen in continuous winter-wheat[J]. Agronomy Journal,1995,87(5):827-834
    [59]袁新民,同延安,杨学云,等.施用磷肥对土壤N03--N累积的影响[J].植物营养与肥料学报,2000,6(4):397-403
    [60]孙克刚,李锦辉,姚健,等.不同施肥处理对作物产量及土体N03--N累积的长期定位试验[J].土壤肥料,1999,(6):18-20
    [61]Fan J, Hao MD, Shao MA. Nitrate accumulation in soil profile of dry land farming in northwest China[J]. Pedosphere,2003,13(4):367-374
    [62]樊军,郝明德.旱地农田土壤剖面硝态氮累积的原因初探[J].农业环境科学学报,2003,22(3):8-11
    [63]Bergstrom L, Brink N. Effects of differentiated applications of fertilizer N on leaching losses and distribution of inorganic N in the soil[J]. Plant and Soil,1986,93:333-345
    [64]Addiscott TM, Powlson DS. Partioning losses of nitrogen fertilizer between leaching and denitrification[J]. Journal of Agricultural Science,1992,118:101-107
    [65]Powlson DS, Pruden G, Johnston AE, et al. The nitrogen cycle in the broadbalk wheat experiment:recovery and losses of 15N-labelled fertilizer applied in spring and inputs of nitrogen from the atmosphere[J]. Journal of Agricultural Science,1986,107:591-609
    [66]Halvorson AD, Reule CA. Nitrogen-fertilizer requirements in an annual dryland cropping system[J]. Agronomy Journal,1994,86(2):315-318
    [67]Westerman RL, Bo man RK, Raun WR, et al. Ammonium and nitrate nitrogen in soil profiles of long-term winter wheat fertilization experiments[J]. Agronomy Journal, 1994,86(1):94-99
    [68]杨学云,张树兰,袁新民,等.长期施肥对塿土硝态氮分布、累积和移动的影响[J].植物营养与肥料学报,2001,7(2):134-138
    [69]杨莉琳,胡春胜.施肥对华北高产区土壤NO3--N淋失与作物NO3--N含量及产量的影响[J].应用与环境生态学报,2003,9(5):501-505
    [70]李晓欣,胡春胜,程一松.不同施肥处理对作物产量及土壤中硝态氮累积的影响[J].干旱地区农业研究,2003,(3):38-42
    [71]范丙全,胡春芳,平建立.灌溉施肥对壤质潮土硝态氮淋溶的影响[J].植物营养与肥料学报,1998,4(1):16-21
    [72]Magdoff F. Minimizing nitrate leaching in agricultural production-how good can we get[J]. Communications in Soil Science and Plant Analysis,1992,23(17-20):2103-2109
    [73]向敏超,毛端明.15N研究新疆灌淤土—冬小麦系统中尿素氮的利用和去向[J].土壤肥料,1994,(4):18-21
    [74]王小彬,Bailey LD, Grant CA保持耕作土壤体系中肥料氮的行为及氮的有效管理的探讨[J].土壤学进展,1995,23(2):1-11
    [75]杨林,薛栋森,Henry CL,等.生物固体对土壤氮循环和硝态氮淋洗的影响[J].农业环境保护,1997,16(4):182-186
    [76]袁锋明,陈子明,姚造华,周春生,傅高明,宋永林,李小平.北京地区潮土表层中NO3--N的转化积累及其淋洗损失[J].土壤学报,1995,32(4):388-399
    [77]许学前,吴敬民.小麦氮肥的有效利用和对水体环境污染的影响[J].土壤通报, 1999,30(6):268-270
    [78]杜建军,李生秀,李世清,等.不同肥水条件对旱地土壤供氮能力的影响[J].西北农业大学学报,1998,(6):1-5
    [79]Wang FL, Alva AK. Leaching of nitrogen from slow-release urea sources in sandy soils[J]. Soil Science Society of America Journal,1996,60(5):1454-1458
    [80]Zhou S, Wu Y, Wang Z, et al. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain[J]. Environmental Pollution,2008,152(3):723-730
    [81]王俊,刘文兆,李凤民,等.半干旱黄土区苜蓿草地轮作农田土壤氮素变化[J].草业学报,2006,15(5):32-37
    [82]Robbins CW, Carter DL. Nitrate-nitrogen leached below the root zone during and following alfalfa[J]. Journal of Environmental Quality,1980,9(3):447-450
    [83]郭维俊,黄高宝,王芬娥,等.农业土壤应力状态与作物根系生长相关性研究[J].兰州大学学报(自然科学版),2006,42(2):120-123
    [84]赵秉强,张福锁,李增嘉,等.间作冬小麦根系数量与活性的空间分布及变化规律[J].植物营养与肥料学报,2003,9(2):214-219
    [85]吴新卫,韩清芳,贾志宽.不同苜蓿品种根颈和根系形态学特性比较及根系发育能力[J].西北农业学报,2007,16(2):80-86
    [86]Raun WR, Johnson GV, Phillips SB, et al. Alfalfa yield response to nitrogen applied after each cutting[J]. Soil Science Society of America Journal,1999,63(5):1237-1243
    [87]邹亚丽,马效国,沈禹颖,等.苜蓿后茬冬小麦对氮素的响应及土壤氮素动态研究[J].草业学报,2005,14(4):82-88
    [88]王效科,庄亚辉,李长生.中国农田土壤N20排放通量分布格局研究[J].生态学报,2001,21(8):1225-1232
    [89]Raun WR, Johnson GV. Improving nitrogen use efficiency for cereal production[J]. Agronomy Journal,1999,91(3):357-363
    [90]Kamp T, Steindl H, Hantschel RE, et al. Nitrous oxide emissions from a fallow and wheat field as affected by increased soil temperatures[J]. Biology and Fertility of Soils, 1998,27(3):307-314
    [91]朱兆良.中国土壤氮素研究[J].土壤学报,2008,45(5):779-783
    [92]Klemedtsson L, Svensson BH, Rosswall T. Relationships between soil-moisture content and nitrous-oxide production during nitrification and denitrification[J]. Biology and Fertility of Soils,1988,6(2):106-111
    [93]Macduff JH, White RE. Net mineralization and nitrification rates in a clay soil measured and predicted in permanent grassland from soil-temperature and moisture-content[J]. Plant and Soil,1985,86(2):151-172
    [94]Linn DM, Doran JW. Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils[J]. Soil Science Society of America Journal,1984,48(6):1267-1272
    [95]Keeney DR, Fillery IR, Marx GP. Effect of temperature on the gaseous nitrogen products of denitrification in a silt loam soil[J]. Soil Science Society of America Journal,1979,43(6):1124-1128
    [96]梁东丽,同延安,Ove Emteryd,等.干湿交替对旱地土壤N2O气态损失的影响[J].干旱地区农业研究,2002,20(2):29-31
    [97]杨兰芳,蔡祖聪.施氮和玉米生长对土壤氧化亚氮排放的影响[J].应用生态学报,2005,16(1):100-104
    [98]蔡祖聪,Mosier A.土壤水分状况对CH4氧化,N2O和CO2排放的影响[J].土壤,1999,(6):289-298
    [99]梁东丽,同延安,Ove Emteryd,等.灌溉和降水对旱地土壤N2O气态损失的影响[J].植物营养与肥料学报,2002,8(03):298-302
    [100]Bouwman AF. Direct emission of nitrous oxide from agricultural soils[J]. Nutrient Cycling Agroecosys,1996,46(1):53-70
    [101]Granli T, Bckman OC. Nitrous oxide from agriculture[J]. Norwegian Journal of Agricultural Sciences,1994,(Supp.12):128
    [102]梁东丽,同延安,Ove Emteryd,等.菜地不同施氮量下N2O逸出量的研究[J].西北农林科技大学学报(自然科学版),2002,30(2):73-77
    [103]董玉红,欧阳竹,李鹏,等.长期定位施肥对农田土壤温室气体排放的影响[J].土壤通报,2007,(1):98-100
    [104]Corre MD, Vankessel C, Pennock DJ, et al. Ambient nitrous-oxide emissions from different landform complexes as affected by simulated rainfall[J]. Commun Soil Sci Plan,1995,26(13-14):2279-2293
    [105]Kaiser EA, Kohrs K, Kucke M, et al. Nitrous oxide release from arable soil: importance of perennial forage crops[J]. Biology and Fertility of Soils,1998,28(1): 36-43
    [106]Sanchez L, Diez JA, Vallejo A, et al. Denitrification losses from irrigated crops in central Spain[J]. Soil Biology & Biochemistry,2001,33(9):1201-1209
    [107]Skiba U, Smith KA, Fowler D. Nitrification and denitrification as sources of nitric-oxide and nitrous-oxide in a sandy loam soil[J]. Soil Biology & Biochemistry 1993,25(11):1527-1536
    [108]Weier KL, Doran JW, Power JF, et al. Denitrification and the dinitrogen nitrous-oxide ratio as affected by soil-water, available carbon, and nitrate[J]. Soil Science Society of America Journal,1993,57(1):66-72
    [109]杨劲峰,韩晓日,战秀梅,等.不同施肥处理对棕壤N2O排放量的影响[J].生态环境,2007,16(2):560-563
    [110]张振贤,华珞,尹逊霄,等.垃圾堆肥及其复合肥对农田土壤N2O排放的影响[J].农业环境科学学报,2006,25(5):1371-1374
    [111]王少彬,宋文质,苏维瀚曾张王.冬小麦田氧化亚氮的排放[J].农业环境保护,1994,13(5):210-212
    [112]黄晶,刘宏斌,王伯仁.长期施肥下红壤旱地CO2、N2O排放特征[J].中国农学通报,2009,25(24):428-433
    [113]徐华,邢光喜,蔡祖聪,等.土壤水分状况和质地对稻田N2O排放的影响[J].土壤学报,2000,37(4):499-505
    [114]Mosier AR, Parton WJ, Phongpan S. Long-term large N and immediate small N addition effects on trace gas fluxes in the Colorado shortgrass steppe[J]. Biology and Fertility of Soils,1999,28(1):44-50
    [115]Smith KA, Thomson PE, Clayton H, et al. Effects of temperature, water content and nitrogen fertilisation on emissions of nitrous oxide by soils[J]. Atmos Environ, 1998,32(19):3301-3309
    [116]马宏瑞,吴守仁,黄森.温度和水分对土娄土反硝化的影响[J].西北农业大学学报,1997,25(2):16-20
    [117]朱兆良,文启孝编.中国土壤氮素[M].南京:江苏科学技术出版社.1992:303
    [118]郑循华王王沈张龚.温度对农田N2O产生与排放的影响[J].环境科学,1997,(5):1-6
    [119]王改玲,陈德立,李勇.土壤温度、水分和NH4+-N浓度对土壤硝化反应速度及N20排放的影响[J].中国生态农业学报,2010,18(1):1-6
    [120]徐文彬,刘维屏,刘广深.温度对旱田土壤N2O排放的影响研究[J].土壤学报,2002,39(1):1-8
    [121]雒新萍,白红英,路莉,等.黄绵土N2O排放的温度效应及其动力学特征[J].生态学报,2009,29(3):1226-1233
    [122]谢军飞,李玉娥.土壤温度对北京旱地农田N2O排放的影响[J].中国农业气象,2005,(1):7-10
    [123]杜睿.温度和水分对草甸草原土壤氧化亚氮产生速率的调控[J].应用生态学报,2006,17(11):2169-2174
    [124]白红英,张一平,孙华,等.耕层土壤N2O排放与温度及土壤深度依变性[J].西北农林科技大学学报(自然科学版),2009,37(11):201-206
    [125]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):46-52
    [126]黄树辉,蒋文伟,吕军,等.氮肥和磷肥对稻田N2O排放的影响[J].中国环境科学,2005,25(5):540-543
    [127]韩建刚,白红英,曲东.地膜覆盖对土壤中N2O排放通量的影响[J].中国环境科学,2002,22(3):286-288
    [128]黄国宏,陈冠雄,吴杰,黄斌,于克伟.东北典型旱作农田N2O和CH4排放通量研究[J].应用生态学报,1995,6(4):383-386
    [129]刘芳,刘丛强,王仕禄,等.黔中地区不同植被类型土壤氧化亚氮的释放特征及影响因素[J].应用生态学报,2008,19(8):1829-1834
    [130]Wigley TML, Raper SCB. Interpretation of high projections for global-mean warming[J]. Science,2001,293(5529):451-454
    [131]蔡艳,丁维新,蔡祖聪.土壤-玉米系统中土壤呼吸强度及各组分贡献[J].生态学报,2006,(12):4273-4280
    [132]杜宝华,杨平,仝乘风.农田土壤二氧化碳释放问题的研究[J].水土保持研究,1996,(3):100-103
    [133]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,(5):19-26
    [134]毕建杰,劳秀荣,周波,等.施肥与品种演替对麦田CO2排放量的影响[J].水土 保持学报,2007,(6):165-169
    [135]董玉红,欧阳竹,李鹏,等.长期定位施肥对农田土壤温室气体排放的影响[J].土壤通报,2007,(1):97-100
    [136]董玉红,欧阳竹,李运生,等.不同施肥方式对农田土壤CO2和N2O排放的影响[J].中国土壤与肥料,2007,(4):34-39
    [137]高会议,郭胜利,刘文兆,等.黄土旱塬区冬小麦不同施肥处理的土壤呼吸及土壤碳动态[J].生态学报,2009,(5):2551-2559
    [138]韩广轩,周广胜,许振柱.中国农田生态系统土壤呼吸作用研究与展望[J].植物生态学报,2008,(3):719-733
    [139]陈全胜,李凌浩,韩兴国,等.土壤呼吸对温度升高的适应[J].生态学报,2004,(11):2649-2655
    [140]贾丙瑞,周广胜,王风玉,等.土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报,2005,(8):1547-1552
    [141]陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理[J].生态学报,2003,(5):972-978
    [142]王旭,周广胜,蒋延玲,等.长白山红松针阔混交林与开垦农田土壤呼吸作用比较[J].植物生态学报,2006,30(6):887-893
    [143]胡立峰,王宝芝,李洪文.土壤呼吸、农田C02排放及NEE的比较研究[J].生态环境学报,2009,(2):578-581
    [144]李凌浩王白周邢.锡林河流域羊草草原群落土壤呼吸及其影响因子的研究[J].植物生态学报,2000,24(6):680-686
    [145]焦彩强,王益权,刘军,等.旱塬地区不同耕作模式小麦田土壤C02释放通量的变异特征[J].西北农林科技大学学报(自然科学版),2009,(5):178-184
    [146]乔云发,苗淑杰,王树起,等.不同施肥处理对黑土土壤呼吸的影响[J].土壤学报,2007,(6):1028-1035
    [147]刘允芬.西藏高原农田土壤CO2排放研究初报[J].自然资源学报,1998,(2):85-90
    [148]孙小花,张仁陟,蔡立群,等.不同耕作措施对黄土高原旱地土壤呼吸的影响[J].应用生态学报,2009,(9):2173-2180
    [149]张宇,张海林,陈继康,等.耕作方式对冬小麦田土壤呼吸及各组分贡献的影响[J].中国农业科学,2009,(9):3354-3360
    [150]陈磊.黄土高原旱地农田生态系统N素循环及其环境效应研究[D].杨凌:西北 农林科技大学,2007:13
    [151]张智猛戴张王韩.施磷对土壤有效磷含量、吸磷特性及小麦产量的影响[J].河北职业技术师范学院学报,1999,13(1):11-15
    [152]李玉山.旱作高产田产量波动性和土壤干燥化[J].土壤学报,2001,38(3):353-356
    [153]刘晓宏,田梅霞,郝明德.黄土旱塬长期轮作施肥土壤剖面硝态氮的分布与积累[J].土壤肥料,2001,(1):9-12
    [154]孟磊,蔡祖聪,丁维新.长期施肥对土壤碳储量和作物固定碳的影响[J].土壤学报,2005,42(5):769-776
    [155]诸葛玉平,张旭东,刘启.长期施肥对黑土呼吸过程的影响[J].土壤通报,2005,(03):391-394
    [156]梁银丽.土壤水分和氮磷营养对冬小麦根系生长及水分利用的调节[J].生态学报,1996,16(3):258-264
    [157]李絮花杨于余.有机肥对小麦根系生长及根系衰老进程的影响[J].植物营养与肥料学报,2005,11(4):467-472
    [158]梁银丽,陈培元.土壤水分和氮磷营养对小麦根系生理特性的调节作用[J].植物生态学报,1996,20(3):255-262
    [169]Schenk M, Heins B, Steingrobe B. The significance of root development of spinach and kohlrabi for N fertilization[J]. Plant and Soil,1991,135:197-203
    [160]Costa JM, Bollero GA, Coale FJ. Early season nitrogen accumulation in winter wheat[J]. Journal of Plant Nutrition,2000,23(6):773-783
    [161]Robinson D, Linehan DJ, Gordon DC. Capture of nitrate from soil by wheat in relation to root length, nitrogen inflow and availability[J]. New Phytologist, 1994,128(2):297-305
    [162]vanVuuren MMI, Robinson D, Griffiths BS. Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil[J]. Plant and Soil,1996,178(2):185-192

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700