环状芽孢杆菌BC木聚糖酶基因克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究克隆了环状芽孢杆菌木聚糖酶基因,采用表达载体pET-30a(+)Vector、pGEX-4T-3 Vector和宿主菌E.coli BL21对其进行了表达,并研究了表达产物的酶学特性。主要结果如下:
     本试验以具有木聚糖酶活性的环状芽孢杆菌BC(Bacillus circulans BC)为出发菌株,通过对GenBank上登录的其它来源β-1,4-木聚糖酶基因序列同源性分析,根据其保守区设计了5`端引物XP51和3`端引物XP31。采用TD-PCR技术克隆了环状芽孢杆菌木聚糖酶基因(己被GenBank收录,其收录号为AF490980),该基因序列与pGEM~(?)-T easy Vector连接,获得了重组克隆子pGEM~(?)-T easy BCX Vector。测序结果表明,其长度为702bp,具有一个629bp的开放阅读框(open reading frame,ORF),编码213个氨基酸的酶蛋白,其理论分子量为23.2KDa。
     经同源性比较发现,该环状芽孢杆菌木聚糖酶基因与GenBank上登录的其它芽孢杆菌木聚糖酶基因如AF490979(B.subtilis-2)、X07723(B.circulans)、M36648(B.subtilis)、X59058(Bacillus sp.)、Z34519(B.subtilis 168)、AF441773(Bacillus sp.NBL420)和U51675(Bacillus sp.)具很较高同源性,其核苷酸序列同源性分别为98%、96%、96%、97%、96%、92%和91%;氨基酸序列同源性分别为97%、97%、97%、97%、97%、94%和94%;经分析发现该木聚糖酶含有一个28个氨基酸的信号肽。
     根据表达载体多克隆位点(MCS)和已经克隆的木聚糖酶基因开放阅读框设计了一对表达引物,其中上游引物XP52 5`端含有BamHI限制性酶切位点,下游引物XP32 5`端含有XhoI限制性酶切位点。以pGEM(?)-T easy BCX Vector为模板,采用TD-PCR方法得到一条能编码木聚糖酶且两端带有限制性酶切位点的DNA片段。该片段与pGEM~(?)-T easy Vector连接得到亚克隆重组质粒pGEM~(?)-T easy BCXE Vector。用BamHI和XhoI双酶切亚克隆重组质粒,回收目的片段并分别与经双酶切的表达质粒pET-30a(+)Vector和pGEX-4T-3 Vector进行连接,将获得的重组表达质粒pET-BCXE和pGEX-BCXE分别导入E.coli
    
    BL21中,利用转化子在RBB一木聚糖平板上形成的透明圈,分别筛选到含有重
    组表达质粒pET一BCxE和重组表达质粒pGEX一BcXE的阳性表达子E.coli
    BCES和E.coli BCEI。菌株发酵活力为1 35.4lU/ml和123.5U/ml,分别为出发
    菌株的2.33倍和2.13倍。
     对两种表达系统表达的木聚糖酶生物学特性研究显示,它们的最适反应温
    度均为50一60℃,在40℃以下相对稳定;最适反应pH均为为5.0,在pH3,。~
    9.0之间相对稳定,并与出发菌株的酶学特性基本一致。用SePhadexG一25、
    sephadexG一1 00和Source 3oQ等对E.eoli BCES菌株的表达产物进行了分离纯
    化。SDS.PAGE凝胶电泳结果显示纯化的酶蛋白分子量为20.3kDa,与成熟酶
    蛋白的理论值相符,表明纯化的酶蛋白为成熟木聚糖酶,同时也表明来自环状
    芽抱杆菌BC的木聚糖酶中确实存在28个氨基酸的信号肤序列。
In this study the xylanase gene of B. circulans BC was cloned and expressed in the E. coli BL21 by using pET-30a(+) and pGEX-4T-3 as expression vectors, then the biochemical properties of expression products were analyzed. The main results are as follows:
    Bacilus circulans BC could produce xylanase, and its genome was used as template for xylanase gene cloning. The homology of nucleotide sequences of J3 -1,4-xylanase genes from different microbes in the GenBank were analyzed, and a pair of primers, XP51 for 5' end fragment and XP31 for 3' end fragment, were designed based on their conserved regions. The xylanase gene from Bacillus circulans BC was obtained by touchdown polymerase chain reaction (TD-PCR), then was cloned into pGEM?T easy Vector, generating pGEM?T easy BCX Vector. Sequencing results showed that the nucleotide sequence was 702bp, and it had an open reading frame(ORF) of 639bp encoding a polypeptide of 213 amino acids with a theoretical molecular weight of 23.2kDa. The accession number of the xylanase gene sequence is AF490980 in the GenBank.
    Strong homology of the nucleotide sequence and amino acid sequence of the xylanase was found between Bacillus circulans BC and other Bacillus sources. The nucleotide sequence and amino acid sequence identity were 98% and 97% for AF490979 (B. subtilis-2); 96% and 97% for X07723 (B. circulans); 96% and 97% for M36648(5. subtilis); 97% and 97% for X59058 (Bacillus sp.); 96% and 97% for Z34519 (B. subtilis 168); 92% and 94% for AF441773 (Bacillus sp. NBL420); 91% and 94% for U51675 (Bacillus sp.), respectively. Comparison of the
    
    
    
    sequences indicated that there is a putative 28-amino-acid signal peptide in front of the amino terminus of the mature enzyme.
    Based on the multiple cloning sites(MCS) of expression vectors, two expression primers, upstream primer XP52 containing a BamHI restriction site and downstream primer XP32 including a Xhol restriction site, were designed corresponding to open reading frame of the cloned xylanase gene. By using TD-PCR method a DNA fragment, which comprised of the xylanase encoding region flanked with restriction enzyme sites at both ends, was amplified using pGEM?T easy BCX Vector as template. The PCR fragment was ligated with pGEM?T easy Vector, generating subcloned vector of pGEM?T easy BCXE Vector. The subcloned vector was double digested with restriction endonucleases, and a target fragment was recovered. Then it was inserted into pET-30a(+) vector and pGEX-4T-3 vector at BamHI and Xhol restriction sites, respectively. The recombinant expression plasmids pET-BCXE and pGEX-BCXE were obtained, and then they were transformed into E. coli BL21. Two positive recombinants, E. colt BCE5 containing pET-BCXE vector and E. coli
    BCE1 harboring pGEX-BCXE vector, were obtained, which forming zones of clearing on RBB-xylan plates. The levels of xylanase activity expressed by E. coli BCE5 and E. coli BCE1 were up to 135.41U/ml (2.33 times as that of B. circulans BC ) and 123.5U/ml (2.13 times as that of B. circulans BC ), respectively.
    The biochemical properties of the xylanases produced by E.coli BCE5 and E.coli BCE1 showed that both of them had an optimum temperature of 50~60癈 and pH of 5.0, and they were stable at 40 癈 and pH3.0-9.0, these characterizations were similar to that of enzyme produced by B. circulans BC. The xylanase expressed by E. coli BCE5 was purified by ion exchange and gel permeation chromatography, it had an apparent molecular weight of 20.3kDa as determined by SDS-PAGE, which is consistent with that calculated mass from the amino acid analysis of the mature xylanase. It was suggested that the purified xylanase was mature xylanase and there was indeed a signal peptide of 28 amino acids in the xylanase from B. circulans BC.
引文
[1] Ahern, T.J., Casal, J.I., Petsko, G.A. and Klibanov, A.M., Control of oligomeric enzyme thermostability by protein engineering. Proc. Natl. Acad. Sci. USA. 1987, 84, 675-679.
    [2] Antoniou, T.,and R.R. Marquardt., Influence of rye pentosans on the growth of chicks. Poultry Sci. 1981,60:1898-1904.
    [3] Archana, A. and Satyanarayana, T., Xylanase production by thermophilic Bacillus licheniformis A 99 in solid state fermentation. Enzyme Microbiol. Technol. 1997,21, 12-17.
    [4] Arribas AR, Abalos JMF, Sanchez P, Santarnaria RL. Overproduction, purification and biochemical characterization of a xylanase from Streptomyces chalstedii JM8. Appl Environ Microbiol. 1995, 61, 2414~2419.
    [5] Arribas, A., Sanchez, P., Calvete, J.J., Raida, M., Abalos, J.M.F. and Santamaria, R.I., Analysis of xys A, a gene from Streptomyces halstedii JM8 that encodes a 45 kilodalton modular xylanase Xys 1. Appl. Environ. Microbiol. 1997, 63, 2983-2988.
    [6] Asbah F. Qureshy~a, K.A. Khan~b, S. Khanna~a. Expression of Gacillus circulans Trei-42 xylanase gene in Bacillus subitilis. Enzyme and Microbial Technology. 2000, 27, 227~233.
    [7] Bailey, B.A., Avni, A. and Anderson, J.D., The influence of ethylene and tissue age on the sensitivity of xanthi tobacco leaves to a Trichoderma viride xylanases. Plant Cell Physiol. 1995, 36, 1659-1676.
    [8] Balakrishnan, H., Dutta-Choudhary, N., Srinivasan, M.C. and Rele, M.V., Cellulase-free xylanase production from an alkalophilic Bacillus sp. NCL-87-6-10. World J. Microbiol. Biotechnol. 1992, 8, 627.
    [9] Bansod, S.M., Dutta-Choudhary, M., Srinivasan, M.C. and Rele, M.V., Xylanase active at pH from an alkalotolerant Cephalosporium sp. Biotechnol. Lett. 1993, 15,965-970.
    [10] Barry VC, Dillon T. Occurrence of xylans in marine algae. Nature. 1940, 146:620
    [11] Basaran P, Hang YD, Basaran N, and Worrobo RW. Cloning and heterologous expression of xylanase from Pichia stipitis in Escherichia coli. Journal of Applied Microbiology. 2001, 90, 248-255.
    [12] Bataillon M, Cardinali APN, Duchiron F. Production of xylanases from a newly isolated alkalophilic bacillus sp. Biotechnol Lett. 1998, 20, 1067~1071.
    [13] Beck, C.I. and Scoot, D., Enzymes in foods - for better or worse. Adv. Chem. Ser. 1974, 138, 1-17.
    [14] Bedford M. and Pack M., Thermostability of enzymes in feed processing: Re-thinking feed assays, Feed International, Jun. 1998, 18-21.
    [15] Bedford, M.R., H.L. Classen and G.L. Campbell, The effect of pelleting, salt, and pentosanase on the viscosity of intestinal contents and the performance of broilers fed rye. Poultry Sci. 1991, 70:1571-1577.
    [16] Beg QL, Bhushan B, Kapoor M, Hoondal GS. Production and characterization of thermostable
    
    xylanase and pectinase from a Streptomyces sp. QG-11-3. J Ind Microbiol Biotechnol. 2000a, 24, 396~402.
    [17] Belancic A, Scarpa J, Peirano A, Diaz R, Steiner J, Eyzayuirre J. Penicillium purogenum produces several xylanases: purification and properties of two of the enzymes. J Biotechnol. 1995, 41, 71~79.
    [18] Berenger, J., Frixon, C., Creuzet, N. and Bigliardi, J., Production, purification and properties of thermostable xylanase from Clostridium stercorarium. Can. J. Microbiol. 1985, 31,635-643.
    [19] Berens, S., Kaspari, H. and Klemme, J., Purification and characterization of two different xylanases from the thermophilic actinomycete Microtetraspora flexuosa SIIX. Antonie van Leeuwenhoek. 1996, 69, 235-241.
    [20] Bernier, R.Jr., Driguez, H. and Desrochers, M., Molecular cloning of a Bacillus subtilis xylanase gene in Escherichia coli. Gene. 1983, 26, 59-65.
    [21] Bhalerao, J., Patki, A.H., Bhave, M., Khurana, I. and Deobagkar, D.N., Molecular cloning and expression of a xylananase gene from Cellulomonas sp. into Escherichia coli. Appl. Microbiol. Biotechnol. 1990, 34, 71-76.
    [22] Biely, P., Microbial xylanolytic systems. Trends Biotechnol. 1985, 3; 288-290.
    [23] Biely, P., Vranska, M., Kremnicky, L., Tenkanen, M., et al., Catalytic properties of endo-β-1,4-xylanase of Trichoderma reesei. In: Suominen, P., Reinikainen, T. (Editors). Proceedings of the Second TRICEL Symposium on Trichoderma reesei and Other Hydrolases. Foundations for Biotechnical and Industrial Fermentation Research 8, Helsinki, 1993, pp. 125-135.
    [24] Black, G.W., Hazlewood, G.P., Millward-Sadler, J. and Lauirie, J.I., A modular xylanase containing a novel catalytic xylan-specicc binding domain. Biochem. J. 1995, 307, 191-195.
    [25] Blanco A, Vidal T, Colon JF, Pastor FIJ. Purification and properties of xylanase a from alkali-tolerant Bacillus sp. Strain BP-23. Appl Environ Microbiol. 1995, 61,4468~4470.
    [26] Boucher, E, Morosoli, R. and Durand, S. Complete nucleotide sequence of the xylanase gene from the yeast Cryptococcus albidus. Nucleic Acids Res. 1988, 16, 9874.
    [27] Bowen, D., Littlechild, J.A., Fotheigill, J.E., Watson, H.C. and Hall, L., Nucleotide sequence of the phosphoglycerate kinase G from the extreme thermophile Thermus thermophilus. Biochem. J. 1988, 254, 509-517.
    [28] Bray, M.R., Johnson, P.E., Gilkes, N.R., McIntosh, L.P., Kilbern, D.G. and Warren, R.A., Probing the role of tryptophan residues in a cellulose-binding domain by chemical modification. Protein Sci. 1996, 5, 2311-2318.
    [29] Brillouet, J.M. and Joseleau, J.P., Investigation of the structure of a heteroxylan from the outer pericarp (beeswing bran) of wheat kernel. Carbohydr. Res. 1987, 159, 109-126.
    [30] Campbell R.L., Rose D.R., Wakarchuck W.W., To R., Rung W., Yaguchi, M., A Comparison of the structures of the 20 kD xylanase from Trichoderma harzianum and Bacillus circulans. In: Suominen, P., Reinikainen, T. (Eds.) Proceedings of the Second TRICEL Symposium on Trichoderma reesei and other Hydrolases. Foundations for Biotechnical and Industrial Fermentation Research 8, Helsinki, 1993, pp. 63-72.
    [31] Chambliss, G.H., Carbon-source mediated catabolite repression. In: Bacillus subtilis and Other
    
    Gram-positive Bacteria (Sonenshein, A.L. and Hoch, J.A., Eds.), 1993, pp. 213-219. American Society for Microbiology, Washington, DC.
    [32] Chandra Raj, K. and Chandra, T.S., Purification and characterization of xylanase from alkali tolerant Aspergillus fischeri FXnl. Microbiol. Lett. 1996, 145,457-461.
    [33] Chaudary P, Deobagkar D. Purification and characterization of xylanase from Cellulomonas sp. N.C.I.M. 2353. Biotechnol Appl Biochem. 1997, 25, 127~133.
    [34] Chauthaiwale, V. and Deshpande, V.V. Molecular cloning and expression of the xylanase gene from Chainia in Escherichia coli. FEMS Microbiol. Lett. 1992, 99, 265-270.
    [35] Chauvt, J.M., Comtat, J. and Noe, P., Assistance in bleaching of never-dried pulps by the use of xylanases consequences on pulp properties. Proceedings of 4th International Congress on Wood and Pulping Industry, Paris, April 27-30, 1987, pp. 325-327.
    [36] Christakopoulos P, Nerickx W, Kekos D, Marcis B, Claeyssens M. Purification and characterization of two low molecular mass alkaline xylanases from Fusarium oxysporum F3. J Biotechnol. 1996, 51, 181~189.
    [37] Clark, T.A., McDonald, A.G., Senior, D.J. and Mayers, P.R., Mannanase and xylanase treatment of softwood chemical pulps: effects on pulp properties and bleachability. In: Biotechnology in Pulp and Paper Manufacture (Kirk, T.K. and Chang, H.M., Eds.), 1990, pp. 153-167. Butterworth-Heinenmann, Boston, MA.
    [38] Cornelis, P., Digeneffe, C., and Willemot, K. Cloning and expression of a Bacillus coagulans amylase gene in Escherichia coli. Mol Gen Genet. 1982, 186, 507~511.
    [39] Coughlan, M.P., Towards an understanding of the mechanism of action of main chain hydrolyzing xylanases. In: Xylans and Xylanases (Visser, J., Beldman, G., Someren, M.A.K. and Voragen, A.G.J., Eds.), 1992, pp. 111-141. Elsevier, Amsterdam.
    [40] Dekker, R. F. H., G. N. Richards, and T. shambe. Comparative properties and action patterns of the hemicellulases from the phytopathogens Ceratocystis paradoxa and Cephalosporium sacchari. Biochem.Soc. Trans. 1975, 3: 1081-1082.
    [41] Dekker, R.F.H. and Richards, G.N., Hemicellulases: Their occurrence, purification, properties and mode of action. Adv. Carbohydr. Chem. Biochem. 1976, 32, 277-352.
    [42] Dekker, R.F.H. and Richards, G.N., Purification, properties and mode of action of hemicellulase-produced by Ceratocystis paradoxa. Carbohydr. Res. 1975, 39, 97-114.
    [43] Dey, D., Hinge, J., Shendye, A. and Rao, M., Purification and properties of extracellular endoxylanases from an alkalophilic thermophilic Bacillus sp. Can. J. Microbiol. 1992, 38, 436-442.
    [44] Donald KAG, Carle A, Gibbs MD, Borgoual PL. Production of a bacterial thermophilic xylanase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1994, 42, 309~312.
    [45] du Manoir, J.R., Hamilton, J., Senior, D.J., Bernier, R.L., Grant, J.E. and Mooser, L.E., Biobleaching of kraft pulps with cellulase free xylanase. Proc. Int. Pulp Bleaching Conf., Stockholm, 1991, pp. 123-138.
    [46] Durrand, R., Rascle, C. and Fevre, M., Molecular characterization of Xyn 3, a member of the endoxylanase multigene family of the rumen anaerobic fungus Neocallimastix frontalis. Curr.
    
    Genet. 1996, 30, 531-540.
    [47] Elegir G, Szakacs G, Jeffries TW. Purification, characterization and substrate specificities of multiple xylanases from Streptomyces sp. strain B-12-2. Appl Eenviron Microbiol. 1994, 60, 2609~2615.
    [48] Espinar, EM.T., Valles, S., Pinoga, F., and et al., Construction of an Aspergillus nidulans multicopy transformant for the xln B gene and its use in purifying the minor X24 xylanase. Appl.. Microbiol. Biotechnol. 1996,45,338-341.
    [49] Esteban, R., Villanueva, J.R. and Villa, T.G., β-D-Xylanases of Bacillus circulans WL-12. Can. J. Microbiol. 1992, 28, 733-793.
    [50] Ferreira-Filho, E.X., The xylan degrading enzyme system. Brazilian J. Med. Biol. Res. 1994, 27, 1093-1109.
    [51] Filip Nuyens., Willem H.ven Zyl., Dirk Iserentant., Hubert verachtert., Chris Michiels. Heterologous expression of the Bacillus pumilus endo-β-xylanase (xynA) gene in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2001, 56, 431~434.
    [52] Flint, H.J., Martin, J., McPherson, C.A., Daniel, A.S. and Zhang, J.X., A bifunctional enzyme, with separate xylanase and β-(1,3-1,4) glucanase domains, encoded by the xylanase D gene of Ruminococcus flavefaciens. J. Bacteriol. 1993, 175, 2943-2951.
    [53] Fontes, C.M.G.A., Hazlewood, G.P., Morag, E., Hall, J., Hirst, B.A. and Gilbert, H.J., Evidence for a general role for non-catalytic thermostabilizing domains in xylanases from thermophilic bacteria. Biochem. J. 1995, 307, 151-158.
    [54] Frederick, M. M., C. -H. Kiang, L R. Frederick, and P. J. Reilly. Purification and characterization of endo-xylanases from Aspergillus niger. Ⅰ. Two isozymes active on xylan backbones near branch points. Biotechnol. Bioeng. 1985, 27: 525-532..
    [55] Frederick, M. M., J. R. Frederick, A. R. Fratzke, and P. J. Reilly. Purification and characterization of a xylobiose- and xylose-producing endo-xylanase from Aspergillus niger. Carbohydr.Res.1981, 97: 87-103.
    [56] Fournier A., R., M. M. Frederick, J. R. Frederick, and P. J. Reilly. Purification and characterization of endo-xylanases from Aspergillus niger. Ⅲ. An enzyme of pI 3.65. Biotechnol. Bioeng. 1985, 27:539-546
    [57] Funaguma, T., Naito, S., Morita, M., Okumara, M., Sugiura, M. and Hara, A., Purification and some properties of xylanase from Penicillium herquei Banier and Sartory. Agric. Biol. Chem. 1991, 55, 1163-1165.
    [58] Fushinobu, S., Ito, K., Konno, M., Wakagi, T., Matsuzawa, H., Crystallographic and mutational analyses of an extremely acidophilic and acid-stable xylanase: Biased distribution of acidic residues and importance of Asp 37 for catalysis at low pH. Prot. Eng. 1998, 11, 1121-1128.
    [59] Georis, J., Giannotta, F., Lamotte-Brasseur, J., Devreese, B., van Beeumen, J., Granier, B., Frere, J.M., Sequence, overproduction and purification of the family 11 endo beta- 1,4, xylanase encoded by the xyl1 gene of Streptomyces sp. S38. Gene. 1999,237, 123-133.
    [60] Gessesse A, Mamo G. Purification and characterization of an alkaline xylanase from alkaliphilic
    
    Micrococcus sp. AR-135. J Ind Microbiol Biotechnoi. 1998, 20, 210~214.
    [61] Gessesse A. Purification and properties of two thermostable lkaline xylanases from an alkalophilic Bacillus sp. Appl Environ Microbiol. 1998, 64, 3533~3535.
    [62] Ghangas, G.S., Hu, J. and Wilson, D.B., Cloning of a Thermonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J. Bacteriol. 1989, 171, 2963-2969.
    [63] Ghosh M, Nanda G. Purification and some properties of xylanase from Aspergillus sydowii MG 49. Appl Environ Microbiol. 1994, 60, 4620~4623.
    [64] Gilbert, H.J., Sullivan, D.A., Jenkin, G., Kellet, L.D., Minton, N.P. and Hall, J., Molecular cloning of multiple xylanase genes from Pseudomonas fluorescens subsp, cellulosa. J. Gen. Microbiol. 1988,134, 3239-3247.
    [65] Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W. Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginiosus using beechwood xylan. J Biotechnol. 1993, 30, 283~297.
    [66] Gosalves, M.J., Perez-Gonzalez, J.A., Gonzalez, R. and Navarro, A., Two β-glycanase genes are clustered in Bacillus polymyxa: Molecular cloning expression and sequence analysis of genes encoding a xylanase and an endo-β-(1,3)-(1,4)-glucanase. J. Bacteriol. 1991, 173, 7705-7710.
    [67] Graaff L.H.de, Broeck H.C. van den, Ooijen A.J.J. Van, and et al., Structure and regulation of Aspergillus xylanase gene. In:Visser J. Beldman G., Kustersvan Someren, et al. (eds). Xylans and Xylanase, Amsterdam: Elsevier, 1992,235-246.
    [68] Grapinet, O., Chebrou, M.C. and Beguin, P. Nucleotide sequence and deletion analysis of the xylanase gene (Xyl Z) of Clostridium thermocellum. J. Bacteriol. 1988, 170, 4582-4588.
    [69] Gruninger, H. and Fiechter, A., A novel, highly thermostable D-xylanase. Enzyme Microb. Technol. 1986, 8, 309-314.
    [70] Gupt N, Vohra RM, Hoondal GS. A thermostable extracellular xylanase from alkalophilic Bacillus sp. NG-27. Biotechnol Lett. 1992, 14, 1045~1046.
    [71] Gupta S, Bhushan B, honndal GS. Isolation, purification and characterization of xylanase from Straphylococcus sp. SG-13 and its application in biobleaching of draft pulp.J Appl Microbiol. 2000, 88, 325~334.
    [72] Harris, G.W., Pickersgill, R.W., Connerton, I., Debeire, P., Touzel, J.-P., Breton, C., Perez, S., Structural basis of the properties of an industrially relevant thermophilic xylanase. Proteins. 1997, 29, 77-86.
    [73] Havukainen, R., Torronen, A., Laitinen, T., Rouvinen, J., Covalent binding of three epoxyalkyl xylosides to the active site of endo-1,4-xylanase Ⅱ from Trichoderma reesei. Biochemistry, 1996,35,9617-9624.
    [74] Hayashi, H., Tagaki, K.I., Fukumura, M., Kimura, T., Karita, S., Sakka, K. and Ohmiya, K., Sequence of xyn C and properties of Xyn C, a major component of the Clostridium thermocellum cellulsome. J. Bacteriol. 1997, 179, 4246-4253.
    [75] Hazlewood, G.P. and Gilbert, H.J., Molecular biology of hemicellulases. In: Hemicellulose and Hemicallulases (Coughlan, M.P. and Hazlewood, G.P., Eds.), 1993, pp. 103-106. Portland Press, London.
    
    
    [76] Hinchliffe, E. Cloning and expression of a Bacillus subtilis endo-1,3-1,4- β-D-glucanase gene in Escherichia coli. J Gen Microbiol. 1984, 130, 1285~1291.
    [77] Honda, H., Kudo, T. and Horikoshi, K., Molecular cloning and expression of the xylanase gene from alkalophilic Bacillus strain C-125 in Escherichia coli. J. Bacteriol. 1985, 161,784-785.
    [78] Honda, H., T. Kudo, Y. Ikura, and K. Horikoshi. Two types of xylanases of alkalophilic Bacillus sp. no. C-125. Can. J. Microbiol. 1985, 31: 538-542.
    [79] Horikoshi, K., Alkaliphiles - from an industrial point of view. FEMS Microbiol. Rev. 1996, 18, 259-270.
    [80] Hu, Y.J., Smith, D.C., Cheng, K.J. and Forsberg, C.W., Cloning of a xylanase gene from Fibrobacter succinogenes 135 and its expression in Escherichia coli. Can. J. Microbiol. 1991, 37, 54-561.
    [81] Inagaki K, Nakahira K, Mukai K, Tamura T, Tanaka H. Gene cloning and characterization of an acidic xylanase from Acidobacterium capsulatum. Biosci Biotechnol Biochem. 1998, 62, 1061~1067.
    [82] Irwin, D., Jung, E.D. and Wilson, D.B., Characterization and sequence of Thermomonospora fusca xylanase. Appl. Environ. Microbiol. 1994, 60, 763-770.
    [83] Ito, K., Ogassawara, J., Sugimoto, T. and Ishikawa, T., Purification and properties of acid stable xylanases form Aspergillus kawachii. Biosci. Biotechnol. Biochem. 1992, 56, 547-550.
    [84] Jager, A., Sinner, M., Purkarthofer, H., Esterbauer, H. And Ditzelmuller, G., Biobleaching with xylanase from a thermophilic fungus. In: Biotechnology in the Pulp and Paper Industry (Kuwahara, M. and Shimada, M., Eds.), 1992, pp. 115-121. UNI, Tokyo.
    [85] Jeong KJ, Lee PC, Park IY, Kim MS, Kim SC. Molecular cloning and characterization of an endoxylanase gene of Bacillus sp. in Escherichia coli. Enzmye Micro Technol. 1998, 22, 599~650.
    [86] Joshi, M.D., Sidhu, G., Pot, I., Brayer, G.D., Withers, S.G., McIntosh, L.E, Hydrogen bonding and catalysis: a novel explanation for how a single amino acid substitution can change the pH optimum ofa glycosidase. J. Mol. Biol. 2000, 299, 255-279.
    [87] Kantelinen, A., Hortling, B., Sundquist, J., Linko, M. and Viikari, L., Proposed mechanism of the enzymatic bleaching of kraft pulp with xylanases. Holzforschung. 1993, 47,318-324.
    [88] Kellett, L.E., Poole, D.M., Ferreira, L.M.A., Durrant, A.J., Hazlewood, G.P. and Gilbert, H.J., Xylanase B and an arabinofuranosidase from Psuedomonas fluorescens subsp, cellulosa contain identical cellulose binding domains and are encoded by adjacent genes. Biochem. J. 1990, 272, 369-376.
    [89] Kelly CT, O'Mahony MR, Fogarty WM. Extracellular xylanolytic enzymes of Paecilomyces varioti. Biotechnol Lett. 1989, 11,885~890.
    [90] Kesker SS. High activity xylanase from thermotolerant Streptomyces T7, cultural conditions and enzyme properties. B iotechnol Lett. 1992, 14, 481~482.
    [91] Khanna S, Gauri P. Regulation, purification and properties of xylanase from Cellulomonas fimi. Enzyme Microb Technol. 1993, 15,990~995.
    [92] Khasin, A., Alchanti, I. and Shoham, Y., Purification and characterization of a thermostable
    
    xylanase from Bacillus stearothermophilus T-6. Appl. Environ. Microbiol. 1993, 59, 1725-1730.
    [93] Kimura I,Sasahar H, Tajima S. Purification and characterization of two xylanases and an arabinofuranosidase from Aspergillus sojae. J Ferment Bioeng. 1995, 80, 334~339.
    [94] Koo, B.J., Oh, H.G., Chu, K.H., Yung, C.K., Jung, K.H. and Ryu, D.Y., Purification and characterization of Clostridium thermocellum xylanase from recombinant Escherichia coli. J. Microbiol. Biotechnol. 1996, 6, 414-419.
    [95] Kreuzer P., Gartner D., Allmansberger R., and et al., Identification and sequence analysis of the Bacillus subtilis W23 xylR gene and xyl operator. Journal of Bacteriology, 1989,171(7):3840-3845.
    [96] Kudo, T., A. Ohkoshi, and K. Horikoshi. Molecular cloning and expression of a xylanase gene of alkalophilic Aeromonas sp. no. 212 in Escherichia coli J. Gen. Microbiol. 1985, 131: 2825-2830.
    [97] Kulkarni, N., Chauthaiwale, J. and Rao, M., Characterization of the recombinant xylanases in Escherichia coli from an alkaliphilic thermophilic Bacillus sp. NCIM 59. Enzyme Microbiol. Technol. 1995, 17, 972-976.
    [98] Lee, J.M.T., Hu, Y., Zhu, K.J.H., Cheng, K.J., Krell, P.J. and Forseberg, C.W., Cloning of a xylanase gene from the ruminal fungus Neocallimastix patriciarum 27 and its expression in Escherichia coli. Can. J. Microbiol. 1993, 39, 134-139.
    [99] Lee, S. F., and C. W. Forsberg, and J. B. Rattray. Purification and characterization of two endoxylanases from Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 1987, 53: 644-650.
    [100] Li XL, Zhang ZQ, Dean JFD, Eriksson KEL, Ljungdahl LG. Purification and characterization of a new xylanase (APX-Ⅱ) from the fungus Aureobasidium pullulans Y-2311-1. Appl Environ Microbiol. 1993, 59, 3213~3218.
    [101] Li, X., Ljungdahl, L.G. and Chen, H., Cloning and expression of Orpinomyces xylanase cDNA. 1996, PCT Int. Appl. WO96 36,701, 21 Nov. US Appl. 445,090, 19 May 1995.
    [102] Lin J, Ndlovu LM, Singh S, Pillay B. Purification and biochemical characterization of β-D-xylanase from a thermophilic fungu, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem. 1999, 30, 73~79.
    [103] Liu W, Zhu W, Lu Y, Kong Y, Ma G. Production, partial purification and characterization of xylanase from Trichosporon cutaneum SL409. Process Biochem. 1998, 33, 331~326.
    [104] Lopez C, Blanco A, Pastor FLJ. Xylanase production by a new alkali-tolerant isolate of Bacillus. Biotechnol Lett. 1998, 20, 243~246.
    [105] Lopez-Fernadez C, Rodriguez J, Ball AS, Lopa-Patino JL, Periz-Lebic MI, Arias ME. Application of the affinity binding of xylanases to oat-spelt xylan in the purification of endoxylanases CM-2 from Streptomyces chattanoogensis CECT 3336. Appl Microbiol Biotechnol. 1998, 50, 284~287.
    [106] Lumba FL, Penninckx MJ. Characterization of multiple forms of β-xylanase produced by a Streptomyces sp. growing on lignocellulose. Appl Microbiol Biotechnol. 1992, 36, 733~728.
    [107] Luthi, E., Bhana, J.M. and Bergquist, P.L., Xylanase from the extremely thermophilic bacterium Caldocellum saccharolyticum: over expression of the gene in Escherichia coli and
    
    characterization of the gene product. Appl. Environ. Micribiol. 1990, 56, 2677-2683.
    [108] Luthi, E., Love, D.R., Anulty, J.Mc., Wallace, C., Caughey, P.A., Saul, D. and Bergquist, P.L., Cloning, sequence analysis and expression of genes encoding xylan-degrading enzymes from the thermophile Caldocellum saccharolyticum. Appl. Environ. Microbiol. 1990, 36, 1017-1024.
    [109] MacKenzie, C.R., Yang, R.C.A., Patel, G.B.Bilous,D. and Narang, S.A., Identification of three distinct xylanase genes of Clostridium thermocellum by molecular cloning. Arch. Microbiol. 1989, 152, 377-381.
    [110] Magnuson TS, Crawford DL. Purification and characterization of an alkaline xylanase from Streptomyces viridosporus T7A. Enzyme Microb Technol. 1997, 21, 160~164.
    [111] Mannarelli, B.M., Evans, S. and Lee, D. Cloning sequencing and expression of a xylanase gene from the anaerobic ruminal bacterium Butyrivibrio fibrisolvens. J. Bacteriol. 1990, 172, 4247-4254.
    [112] Marquardt. R.R., P.Boros, and W.Guenter., The nutritive value of barley, rye, wheat and corn for young chicks as affected by use of a Trichoderma reesei enzyme preparation. Animal Feed Sci. Tech. 1994, 45:363-378.
    [113] Marui, M., K. Nakanishi, and T. Yasui., Immunological properties and constituent amino acids of three xylanases produced inductively from Streptomyces sp. Agric. Biol. Chem. 1985, 49: 3409-3413.
    [114] Mathrani, I.M. and Ahring, B.K., Isolation and characterizationof a strictly xylan-degrading Dictyoglomus from a man-made thermophilic anaerobic environment. Arch. Microbiol. 1991, 157, 13-17.
    [115] McCarthy, A.J., Peace, E. and Broda, P., Studies on the extracellular xylanase activity of some thermophilic actinomycetes. Appl. Microbiol. Biotechnol. 1985, 21,238-244.
    [116] McCleary, B.V., Enzymatic modification of plant polysaccharides. Int. J. Macromol. 1986, 8, 349-354.
    [117] Mendicuti, C., Laura, P., Trejo-Aguilar, B.A. and Aguilar, O.G., Thermostable xylanases produced at 37℃ and 45℃ by a thermotolerant Aspergillus strain. FEMS Microbiol. Lett. 1997, 146, 97-102.
    [118] Merivuori, H., Sands, J.A. and Montenecourt, B.S., Effects of tunicamycin on secretion and enzymatic activites of cellulase from Trichoderma reesei. Appl. Microbiol. Biotechnol. 1985, 23, 60-66.
    [119] Messner, K. and Serbotnik, E., Biopulping: An overview of developements in an environmentally safe paper making technolgy. FEMS Microbiol. Rev. 1994, 13,351-364.
    [120] Miao, S., Ziser, L., Aebersold, r., Witthers, S.G., Identification of glutamic acid 78 as the active site nucleophile in Bacillus subtilis xylanase using electospray tandem mass spectrometry. Biochemistry, 1994, 33,7027-7032.
    [121] Michael, G.P., Robert, B., Michel, D., Lubomir, J., and Makoto, Y. A. xylanase gene from Bacillus subtilis: nucleotide sequenc and comparison with B. pumilus gene. Arch Microbiol. 1986, 144, 201-206.
    [122] Millward-Sadler, S.J., Poole, D.M., Henrissat, B., Hazlewood, G.P., Clarke, J.H. and Gilbert, H.J.,
    
    Evidence for a general role for high affinity non-catalytic cellulose binding domains in microbial plant cell wall hydrolases. Mol. Microbiol. 1994, 11,375-382.
    [123] Minami K, Sakamoto T, Hasegawa T, Inamori Y. Purification, properties and partial anino acid sequence of thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Appl Environ Microbiol. 1992, 58, 371~375.
    [124] Mondou, F., Shareck, F., Morosoli, R. and Kluepfel, D., Cloning of the xylanase gene of Streptomyces lividans. Gene. 1986, 49, 323-329.
    [125] Morales P Madrarro A, Flors A, Sendra JM, Gonzalez JAP. Purification and characterization of a xylanase and arabinofuranosidase from Bacillus polymyxa. Enzyme Microb Technol. 1995, 17, 424~429.
    [126] Morosoli, R., Molecular expression of xylanase gene in Crytococcus albidus. Biochim. Biophys Acta. 1985, 826: 202-207.
    [127] Morosoli, R., C. Roy, and M., Yaguchi., Isolation and partial primary sequence of a xylanase from the yeast Crytococcus albidus. Biochim. Biophys. Acta. 1986, 870: 473-478.
    [128] Morosoli, R.J., Bertrand, J.L., Mondou, F., Shareck, F. and Klupfel, D., Purification and properties ofa xylanases from Streptomyces lividans. Biochem. J. 1986, 239, 587-592.
    [129] Mozhaev, V.V. and Martinek, K., Structure stability relationships in proteins: New approaches to stabilizing enzymes. Enzyme Microbiol. Biotechnol. 1984, 6, 50-59.
    [130] Mueller-Harvey, I., Hartley, R.D., Harris, P.J. and Curzon, E.H., Linkage of p-coumaroyl and feruloyl groups to cell wall polysaccharides of barley straw. Carbohydr. Res. 1986, 148, 71-85.
    [131] Nakamura, S., Nakai, R., Wajabatacgu, K., Ishiguro, Y., Aono, R. and Horikoshi, K. Thermophilic alkaline xylanase from newly isolated alkaliphilic and thermophilic Bacillus sp. strain TAR-1. Biosci. Biotechnol. Biochem. 1994, 58, 78-81.
    [132] Naveen G., Vang SR., Sankar M., Amit G. Cloning, expression, and sequence analysis of the gene encoding the alkali-stable, thermostable endoxylanase from alkalophilic, mesophilic Bacillus sp. Strain NG-27. Applied and Enviromental Microbiology. 2000, 66(6), 2631~2635.
    [133] Ogasawara H., Takahashi K., Litsuka K., and Ishikawa T., Contribution of hemicelluase in Shochu koji to the Resolution of Barley in the Shochu Mash. J. Brew. Soc. Japan, 1991, 86(4): 304-307.
    [134] Ohkoshi, A., Kudo, T., Mase, T. and Horikoshi, K. Purification of three types of xylanases from an alkalophilic Aeromonas sp. Agric. Biol. Chem. 1985, 49, 3037-3038.
    [135] Okazaki W, Akiba T, Horikoshi K, Akahoshi R. Purification and characterization of xylanases from alkalophilic thermonphilic bacillus spp. Agric Biochem. 1985, 49, 2033~2039.
    [136] Okazaki, W., Akiba, T., Horikoshi, K. and Akahoshi, E. Production and properties of two types of xylanases from alkalophilic thermophilic Bacillus sp. Appl. Microbiol. Biotechnol. 1984, 19, 335-340.
    [137] O'Neill, G., Goh, S.H., Warren, R.A.J., Kilburn, D.G. and Miller, Jr.R.C. Structure of the gene coding for exoglucanase of Cellulomonas fimi. Gene. 1988, 44, 325-330.
    [138] Paice, M.G., Bernier, R.Jr. and Jurasek, L., Viscosity enhancing bleaching of hardwood kraft pulp
    
    with xylanase from a cloned gene. Biotechnol. Bioeng. 1988, 32, 235-239.
    [139] Panbangred, W., Fukusaki, E., Epifanio, E.C., Shinmyo, A. and Okada, H., Expression of a xylanases gene of Bacillus subtilis. Appl. Microbiol. Biotechnol. 1985, 22, 259-264.
    [140] Panbangred, W.A., Shinmyo, S., Kinoshita, S. and Okada, H., Molecular cloning of a xylanase fom Bacillus pumilus in Escherichia coli. Mol. Gen. Genet. 1983, 192, 335-341.
    [141] Pecarovicova, A., Kozankova, J., Mikulasova, M., Jankovic, P. and Pekarovic, J., SEM study of xylanase pretreated pulps. In: Xylans and Xylanases (Visser, J., Beldman, G., Someren, M.A.K. and Voragen, A.G.J., Eds.), 1992, pp. 559-563. Elsevier, Amsterdam.
    [142] Perttula M, Ratto M, Kondradsdottir M, Kristjansson JK, Viikari L. Xylanases of thermophilic bacteria from icelandic hot springs. Appl. Microbiol Biotechnol. 1993, 38, 592~595.
    [143] Puls J, Schuseil J. Chemistry of hemicelluloses: relationship between hemicellulose structure and enzyme requiredfor hydrolysis. In: Coughlan MP, Hazlewood GP (eds) Hemicellulose and hemicellulases. Portland Press. London, 1993, 1~28.
    [144] Radionova NA, Dubovaya NV, Wneiskaya EV, Matrinovich LI, Gracheva IM, Bezborodov AM. Purification and characterization of endo-(1,4)- β-xylanase from Geotrichum candidum 3C. Appl Biochem Microviol. 2000, 36, 460~465.
    [145] Raj KC, Chandra TS. Purification and characterization of xylanase from alkalitolerant Aspergillus fischeri Fxn 1. FEMS Microbiol Lett. 1996, 145, 457~461.
    [146] Rajaram S, Varma A. Production and characteriztion of xylanase from Bacillud thermoalkalophilus grown on agricultural wastes. Appl Microbiol. Biotechnol.1990, 34, 141~144.
    [147] Ratannakanokchai K, Kyu KL, Tantichareon M. Purification and properties of a xylan-binding endoxylanase from alkaliphilic Bacillus sp. strain K-1. Appl Enciron Microbiol. 1999, 65, 694-697.
    [148] Ritschkoff AC, Bucher j Viikari L. Purification and characterization of a thermophilic xylanase from the brown-rot fungus Geophyllum trabeuni. J Biotechnol. 1994, 32, 67~74.
    [149] Rixon, J.E., Clarke, J.H., Hazlewood, G.P., Hoyland, R.W., McCarthy, A.J. and Gilbert, H.J., Do the non-catalytic polysaccharide binding domains and linker regions enhance the biobleaching properties of modular xylanases? Appl. Microbiol. Biotechnol. 1996, 46, 514-520.
    [150] Robert, C.A., Yang, C., Roger, M.K., Doris, B., and Saran, A.N. Hyperexpression of a Bacillus circulans xylanase gene in Eschericia coli and characterization of the gene product. Appl Enviro Microbiol. 1989, 55, 1192~1195.
    [151] Romanec, M.P.M., Davidson, K., White, B.A. and Hazlewood, G.P., Cloning of Ruminocouccus albus endo-β-1,4 glucanase and xylanase genes. Lett. Appl. Microbiol. 1989, 9, 101-104.
    [152] Sakka K. Maeda Y, Hakamada Y, Takahashi N, Shimada K. Purification and some properties of xylanase from Clostridium stercorarium strain HX-1. Agric. Biol. Chem. 1991, 55, 247~248.
    [153] Sakka, K., Kojima, Y., Yoshikawa, K. and Shimada, K., Cloning and expression in Escherichia coli of Clostridium stercorarium strain F-9 genes. Agric. Biol. Chem. 1990, 54, 337-342.
    [154] Sandhu, J.F. and Kennedy, J.S., Molecular cloning of Bacillus polymyxa (1-4) 13-D-xylanase gene in Escherichia coli. Enzyme Microbiol. Technol. 1984, 6, 271-274.
    
    
    [155] Sapag A. Johan Wouters, Christophe Lambert, Pablo de Ioannes ,Jaime Eyzaguirre, Eric Depiereux, The endoxylanases from family 11: computer analysis of protein sequences reveals important structural and phylogenetic relationships. Journal of Biotechnology, 2002, 95, 109-131.
    [156] Shao W, DeBlois S, Wiegel J. A high-molecular-weight, cell-associated xylanase isolated from exponentially growing Thermoanaerobacterium sp. strain JW/SL-YS485. Appl Environ Microbiol. 1995, 61,973~940.
    [157] Shendye, A. and Rao, M. Cloning and extracellular expression in Escherichia coli of xylanases from an alkalophilic thermophilic Bacillus sp. NCIM 59. FEMS Microbiol. Lett. 1993, 108, 297-302.
    [158] Shendye, A. and Rao, M., Chromosomal gene integration and enhanced xylanase production in alkalophilic thermophilic Bacillus sp. (NCIM 59). Biochem. Biophys. Res. Commun. 1993, 195, 776-784.
    [159] Shendye, A. and Rao, M., Molecular cloning and expression of xylanases from an alkalophilic thermophilic Bacillus (NCIM 59) in Bacillus subtilis A8. Enzyme Microb. Technol. 1993, 15, 343-347.
    [160] Simpson, H.D., Haufer, U.R. and Daniel, R.M., An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem. J. 1991,277, 413-417.
    [161] Sinnot, M.L. 1990Catalytic mechanisms of enzymic glucosyl transfer. Chem. Rev. 1990, 90, 1171~1202.
    [162] Stutzenberger, F.J. and Bodine, A.B., Xylanase production by Thermomonospora curvata. J. Appl. Bacteriol. 1992, 72, 504-511.
    [163] Sung, W.L., Luk, C.K. and Zahab, D.M., Overexpression and purification of the Bacillus subtilis and Bacillus circulans xylanases in Escherichia coli. Protein Express. Purif. 1993, 4, 200-206.
    [164] Sunna, A. and Antranikian, G., Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 1997, 17, 39-67.
    [165] Suren S, Poovendhree R, Jacques H, Peter Biely, Bernard Janse, Balakrishna Pillay, Dorsamy Pillay, Bernard Alexander Prior. (2000) Relatedness of Thermomyces lanuginosus strains producing a thermostable xylanase. Journal of Biotechnology. 81, 119~128.
    [166] Tan, L.U.L., K.K.Y. Wong, E.K.C. Yu, and J.N. Saddler. Purification and characterization of two D-xylanases from Trichoderma harzianum. Enzyme Microb. Technol. 1985, 7: 425-430.
    [167] Tenkanen, M., Puls, J., Poutanen, K., Two major xylanases from Trichoderma reesei. Enzyme Microb. Technol., 1992, 14,566-574.
    [168] Thoma, J.A., Spradlin, J.E. and Dygert, S., Plant and animal amylases. In: The Enzymes (Bopyer, P.D., Lardy, H. and Myrback, K., Eds.), 1971, Vol. 5, pp. 115-189.
    [169] Timell, T.E., Wood hemicelluloses: Part Ⅱ. Carbohydr. Chem. 1965, 20, 409-483.
    [170] Tomme, P., Gilkes, N.R., Robert, C.M.Jr., Warren, A.J. and Kilburn, D.G., An internal cellulose-binding domain mediates adsorption of an engineered bifunctional xylanase/cellulase. Protein Eng. 1994, 7, 117-123.
    
    
    [171] Torronen, A., Harkki, A,, Rouvinen, J., Three-dimensional structure of endo-l,4-β-xylanase Ⅱfrom Trichoderma reesei: two conformational states in the active site. EMBO J. 1994, 13, 2493-2501.
    [172] Torronen, A., Mach, R.L., Messner, R., Gonzalez, R., Kalkkianen, N., Harkki, A. and Kubicek, C.P., The two major xylanases from Trichoderma reesei : Characterization of both enzymes and genes. Bio/Technology. 1992, 10, 1461-1465.
    [173] Torronen, A., Rouvinen, J., Structural comparison of two major endo-l,4-xylanases from Trichoderma reesei. Biochemistry. 1995, 34, 847-856.
    [174] Tsujibo H, Miyamoto K, Kuda T, Minami K, Sakamoto T, Hasegawa T, Inamori Y. Purification, properties and partial amino acid swquences of thermostable xylanases from Streptomyces thermoviolaceus OPC-520. Appl. Environ. Microbiol. 1992, 58, 371~375.
    [175] Tuohy MG, Coughlan MP. Production of thermostable xylan degrading enzymes by Talaromyces emersonii. Biore Technol. 1992, 39, 131~137.
    [176] Valentino S.J. Te'o, Angela E. Cziferszky, Peter L. Bergquist, K.M. Helena Nevalainen. Codon optimization of xylanase gene xynB from the thermophilic bacterium Dictyoglomus thermophilum for expression in the filamentous fungus Trichoderma reesei. 2000, 190, 13~19.
    [177] Viikari, L., Kantellinen, A., Sundquist, J. and Linko, M., Xylanases in bleaching: From an idea to the industry. FEMS Micribiol. Rev. 1994, 13,335-350.
    [178] Viikari, I., Ranua, M., Kantelinen, A., Sundquist, J. and Linko, M., Bleaching with enzymes. Proc. 3rd Int. Conf. Biotechnology Pulp and Paper Industry, Stockholm, 1986, June 16-19, pp. 67-69.
    [179] Wakarchuck, W.W., Campbell, R.L., Sung, W.L., Davodi, J., Yaguchi, M., Mutational and crystallographic analysis of the active site residues of the Bacillus circulans xylanase. Protein Sci., 1994a, 3, 467-475.
    [180] Whitehead, T.R. and Hespell, R.B., Cloning and expression in Escherichia coli of a xylanase gene from Bacteroides ruminicola 23. Appl. Environ. Microbiol. 1989, 55, 893-896.
    [181] Winterhalter C, Kiebl W. Two extremely thermostable xylanase of the hyperthermophilic bacterium Thermotoga maritime MSB8. Appl Environ Microbiol. 1995, 61, 1810~1815.
    [182] Wong, K.K.Y. and Saddler, J.N., Applications of hemicellulases in the food, feed, and pulp and paper industries,. In: Hemicellulose and Hemicellulases (Coughlen, P.P. and Hazlewood, G.P., Eds.), 1992, pp. 127-143. Portland Press, London.
    [183] Wong, K.K.Y. and Saddler, J.N., Trichoderma xylanases: Their properties and application. In: Xylans and Xylanases (Visser, J., Beldman, G., Someren, M.A.K. and Voragen, A.G.J., Eds.), 1992, pp. 171-186, Elsevier, Amsterdam.
    [184] Wong, K.K.Y., Tan, L.U.L. and Saddler, J.N., Multiplicity of β-1,4-xylanase in microorganism: Functions and applications. Microbiol. Rev. 1988, 52, 305-317.
    [185] Ximenes FA, Sousa MV, Puls J, SilvaJr FG, Filho EXF. Purification and characterization of a low-molecular weight xylanase produced by Acrophialophora nainiana. Curr Microbiol. 1999, 38, 18~21.
    [186] Xue, G., Johnson, J.S., Bransgrove, K.L., Gregg, K., Beard, C.E., Dalrymple, B.P., Gobius, K.S.
    
    and Aylward, J.H., Improvement of expression and secretion of a fungal xylanase in the rumen bacterium Butyrivibrio fibrisolvens OB 156 by manipulation of promoter and signal sequences. J. Biotechnol. 1997, 54, 139-148.
    [187] Xue, G.P., Denman, S.E., Glassop, D., Johnson, J.S., Dierens, L.M., Gobius, K.S. and Aylward, J.H., Modification of a xylanase cDNA isolated from an anearobic fungus Neocallimastix patriciarum for high level expression in Escherichia coli. J. Biotechnol. 1995, 38, 269-277.
    [188] Xue, G.P., Johnson, J.S., Smyth, D.J., Dierens, L.M., Wang, X., Simpson, G.D., Gobius, K.S. and Aylword, J.H., Temperature-regulated expression of the tac/lac Ⅰ system for overproduction of a fungal xylanase in Escherichia coli. Appl. Microbiol. Biotechnol. 1996, 45, 120-126.
    [189] Yang, R.C.A., MacKenzie, C.R., Billows, D. and Nearing, S.A., Identification of two distinct Bacillus circulars xylanases by molecular cloning of the genes and expression in Escherichia coli. Appl. Environ. Microbiol. 1989, 55, 568-574.
    [190] Yang, R.C.A., MacKenzie, C.R., Bilous, D., Seligy, V.L. and Narang, S.A., Molecular. cloning and expression of a xylanase gene from Bacillus polymyxa in Escherichia coli. Appl. Environ. Microbiol. 1988, 54, 1023-1029.
    [191] Yoshioka H, nagato N, Chavanich S, Nilubol N, Hayashida. Purification and properties of thermostable xylanases from Talaromyces byssochlamydoides YH-50. Agric Biol Chem. 1981, 45, 2425~2432.
    [192] Yu, E.K.C., Tan, L.U.L., Chan, M.H.K., Deschatelets, L. and Saddler, J.N., Production of thermostable xylanase by a thermophilic fungus, Thermoascus aurantiacus. Enzyme Microb. Technol. 1987, 9, 16-25. .
    [193] Zappe, H., Jhones, D.T. and Woods, D.R., Cloning and expression of a xylanase gene from Clostridium acetobutylicum P262 in Escherichia coli. Appl. Microbiol. Biotechnol. 1987, 27, 57-63.
    [194] Zhang, J.X., Martin, J. and Flint, H.J., Identification of non-catalytic conserved regions in xylanases encoded by the Xyn B4 Xyn D genes of the cellulolytic rumen anaerobe Ruminococcus flavefaciens. Mol. Gen. Genet. 1994, 245,260-264.
    [195] Zhu, H., Paradis, F.W., Krell, P.J., Phillips, J.P., Forsberg, C.W., Enzymatic specificities and modes of action of the two catalytic domains of the XynC xylanase from Fibrobacter succinogenes S85. J. Bacteriol. 1994, 176, 3885-3894.
    [196] 居乃琥,酶工程研究和酶工程产业的新进展(Ⅱ),国内外酶制剂工业的现状、发展趋势和对策建议,食品与发酵工业,2000,26(4):38-43.
    [197] 刘超纲、勇强,里氏木霉诱导合成木聚糖酶的调控,南京林业大学学报,1999,23(3):29-32.
    [198] 刘瑞田、曲音波,木聚糖酶分子的结构区域,生物工程进展,1998,16(6):26-28.
    [199] 刘巍、范树田,地衣芽孢杆菌H-1的鉴定及其产木聚糖酶性质的研究,工业微生物,1996,26(4).11-15.
    [200] 陆健,曹钰,陈坚,顾国贤.木聚糖酶的产生、性质和应用.酿酒,2001,28(6):30~34.
    [201] 钱利纯.高麸皮饲粮中添加GXC对肉鸡生长、消化和 胴体组成的影响及其作用机理探讨.1998,硕士毕业论文.
    [202] 孙建义、李卫芬、许梓荣、顾赛红,里氏木霉GXC木聚糖酶的研究,菌物系统,
    
    2001,20(2):184-190.
    [203] 孙建义、许梓荣、李卫芬,木聚糖酶研究与应用进展,朱睦元、李亚南主编,生命科学进展(上册),杭州大学出版社出版,1998,218-221.
    [204] 孙迅、王宜磊,木聚糖酶高产菌株Bacillus pumilus H-101的筛选及产酶条件的研究,微生物学杂志,1997,17(2):17-22.
    [205] 汪儆、韩卫涛等,不同酶促反应条件及热处理对木聚糖酶活的影响,饲料研究,2000,3,1-4.
    [206] 汪儆等.木聚糖酶制剂对生长肥育猪次粉日粮饲养效果的影响.中国饲料.1997,3:17-19.
    [207] 王振来.高次粉饲粮中添加GXC对仔猪生长、消化和胴体组成的影响及其作用机理探讨.1997,硕士毕业论文.
    [208] 许梓荣、孙建义、李卫芬等,应用酶工程提高大麦和糠麸饲用价值及产业化研究,浙江省高校重大科技攻关项目鉴定材料,1999,浙江大学。
    [209] 曾宇成、张树政,海枣曲霉木聚糖酶的提取和性质,微生物学报,1987,27(24):343-349。
    《分子克隆试验指南》,第二版,科学出版社
    《PCR实验技术指南》,科学出版社
    《精编分子生物学实验指南》,科学出版社
    《基因工程操作技术》,上海科学技术出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700