DNA损伤修复基因多态性与慢性苯中毒遗传易感性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯广泛应用于医药、化工、喷漆和制鞋等行业,其慢性毒性主要表现为骨髓造血功能的抑制,出现白细胞减少、再生障碍性贫血甚至白血病。在毒物代谢酶的作用下,进入体内的苯代谢活化形成与苯毒性密切相关的环氧化物、酚类和醌类化合物。通过对DNA的直接氧化作用,并与之形成加合物,它们可造成DNA的损伤。DNA损伤后,细胞主要通过碱基切除修复、核酸切除修复、重组修复和错配修复等途径来修复DNA损伤,这一过程涉及到参与修复DNA氧化损伤的基因(hOGG1、hMYH、hMTH1)、切除苯代谢物与体内大分子形成的加合物的基因(APE1、XPD)、修复DNA单链断裂损伤的基因(APE1、XRCC1、ADPRT)和修复DNA双链断裂损伤的基因(XRCC2、XRCC3)等。在这些基因内部存在有大量的单核苷酸多态位点,这些多态可以引起编码产物空间构象或者酶活性的改变,也可以引起编码产物表达量的改变,从而影响到机体修复DNA损伤的能力,与个体慢性苯中毒的发病风险密切相关。
     为探讨DNA损伤修复基因多态性、苯接触水平和生活方式与慢性苯中毒遗传易感性的关系,我们设计了本次病例一对照研究。病例组为来自上海、广州、杭州和马鞍山的152名苯中毒工人,152名调查时正在从事接苯作业而没有慢性苯中毒表现的工人为对照组。采用Dosmeci等的评估方法,我们对研究对象的累积接触水平进行了估测,并调查了他们吸烟、饮酒等情况。职业流行病学调查结果表明,病例组和对照组的一般特征如性别、民族、年龄、工龄和累积接触评分在两组人群中的分布无统计学差异,表明病例组和对照组均衡可比。
     为了对不能与前后序列构成酶切位点的单核苷酸多态性(SNP)进行有效检测,我们研究了创造酶切位点的限制性片断长度多态检测技术(CRS-RFLP)检测单核苷酸多态性的方法及其应用价值。结果表明CRS-RFLP是检测基因SNP的一种简便易行的有效方法,拓宽了RFLP的应用范围并很好地保持了该方法的一些优点。
     应用聚合酶链反应-限制性片断长度多态检测技术(PCR-RFLP)和CRS-RFLP技术,我们研究了上述可能与慢性苯中毒发生关系密切的DNA损伤修复基因的常见多态与个体慢性苯中毒遗传易感性的关系,同时探讨了苯接触强度、生活方式等对个体慢性苯中毒发病风险的影响。结果表明:
     (1) 未检出XRCC2 Arg188His、XPD Met199Ile和XPD Tyr201His多态的突变基因型,XRCC3 Thr241Met、XPD Asp312Asn、hMTH1 Va183Met、hOGG1 Ser326Cys等多态的突变基因型的频率与国外研究结果存在差异,可能是不同种
Benzene is commonly used to synthesize organic chemicals and used as an important component of many organic solvents. The major industries using benzene are those involving in the production of rubber, paint, shoes, lubricants, dyes, detergents, drugs, and pesticides. Long term exposure to benzene could result in chronic benzene poisoning (CBP) characterized by hematotoxicities, mainly pancytopenia, aplastic anemia, myelodysplastic syndrome, and acute myeloid leukemia. Catalyzed by toxicant-metabolizing enzymes, inhaled and absorbed benzene is converted to benzene oxide, which is ultimately metabolized to phenol, catechol, hydroquinone and benzoquinone. Previous studies have demonstrated that benzene toxicity mainly resulted from its intermediate reactive metabolites which lead to DNA damage by directly oxidative damage and covalently binding to DNA. Then the repair systems will complete repair of damaged DNA by means of base excision repair (BER), nucleotide excision repair (NER), double strands break (DSB) repair and mismatched repair (MMR). During period of DNA repair, a great many of DNA repair genes related to repair oxidative damage, adduct damage, single-strand break damage and double-strand break of DNA are involved in. A number of single nucleotide polymorphisms (SNPs) have been identified in these genes, some of which are relatively common and can result in change of enzyme activity or the configuration, the quantity of expressed mRNA as well, which will affect their capability of repairing damaged DNA and the risk of CBP.In order to elucidate their roles in human susceptibility to CBP and effects of benzene exposure duration and life styles, a case-control study was designed and conducted. 152 CBP patients come from Shanghai, Guangzhou, Hangzhou and Maanshan and 152 workers without poisoning manifestations but occupationally exposed to benzene were investigated. The cumulative exposure level was estimated with method described by Dosmeci, and the lifestyles such as cigarette smoking and alcohol consumption were also explored. The results of occupational epidemiology showed
    that there was no statistic difference for distribution of sex, race, age, workage and cumulative exposure level in case and control groups, which indicated that it was comprehensive equilibrium for the case and control groups.To determine these SNPs that could not compose sites recognized by restriction enzymes with adjacent sequences effectively, we investigated technique of introducing mismatched bases to create restriction site combined with restriction fragment length polymorphism (CRS-RFLP)and its application. The results suggested that this method is good for identifying found single nucleotide polymorphisms extensively existing in sequence of genes.With method of polymerase chain reaction-restriction fragments length polymorphism (PCR-RFLP) and CRS-RFLP, SNPs in XRCC1, XRCC2, XRCC3, ADPRT, APE1, XPD, hMTH1, hOGG1 and hMYH were genotyped. And the associations of these genetic polymorphisms with risk of developing CBP and the modifying effects of intensity of benzene exposure and life styles were also investigated in this case-control study. The results indicated that:(1) No variant allele was detected for polymorphisms of XRCC2 Arg188His、 XPD Met199Ile and XPD Tyr201His. The frequencies of the variant allele for polymorphisms of XRCC3 Thr241Met, XPD Asp312Asn, hMTHl Val83Met and hOGGl Ser326Cys were different from these reported in studies with foreign population, and the frequencies of the variant allele for polymorphisms of XPD Asp312Asn, hOGGl Ser326Cys and ADPRT Val762Ala were not consisted with these reported in other domestic researches.(2) The proportion of XRCC1c. 194Arg/Trp+Trp/Trp genotypes in the case group was lower than that of the control group (50.69% vs 62.22%), and there was a 0.60-fold reduced risk of CBP for individuals carrying XRCC1c.194Arg/Trp+Trp/Trp genotypes (ORadj=0.60, 95%CI: 0.37-0.98, P=0.04) compared with the subjects carrying Arg/Arg allele. The proportion of XPDc. 312Asp/Asn+Asn/Asn genotypes in the case group was also lower than that of the control group (26.90% vs 36.50%). Compared with the subjects carrying XPDc.312Asp/Asp allele, the risk of CBP for the individuals carrying XP Dc.312Asp/Asn+Asn/Asn also decreased (ORad=0.59, 95%CI: 0.35-0.99, P<0.05).(3)The proportion of XRCC1c.280Arg/His+His/His, hMTH1c.83Val/Met+Met/Met and hOGG1c.326 Cys/Cys genotypes in the case group was higher than that of the
    control group (52.08% vs 36.03%, 16.78% vs 7.30% and 62.68% vs 44.91%, respectively). There was a 1.91-fold increased risk of CBP for the individuals carrying XRCC1c.280 Arg/His+His/His genotypes compared with the subjects carrying Arg/Arg allele (ORadj=1.91,95%C7: 1.17-3.10, p=0.01). Compared with the subjects carrying hMTH1c.83Val/Val allele, there was a 2.51-fold increased risk of CBP for individuals carrying hMTHlc.83Val/Met+Met/Met genotypes (ORadj=2.51, 95%C7: 1.14-5.49, P=0.02). Compared with the subjects carrying hOGG1c.326 Ser/Cys+ Ser/Ser genotypes, there was a 2.49-fold increased risk of CBP for the individual carrying hOGG1c. 326 Cys/Cys allele (ORadj=2.49, 95%CI: 1.52-4.07, P<0.01).(4) Potential interactions were found among smoking and polymorphism of hMYH His335Gln (xh2=4.59, p=0.03), alcohol consumption and polymorphism of APE1 Aspl48Glu (xh2=6.93, P=0.01), intensity of benzene exposure and polymorphism of XPD Asp312Asn (xh2=8.45, p=0.02). Compared with individuals with hMYHc.335 His/His genotype together with habit of smoking, there was a 0.20-fold decreased risk of CBP for the subjects carrying genotypes of hMYHc.335His/Gln+Gln/Gln and smoking at the same time (OR=0.20, 95%CI: 0.05-0.77, p=0.02). There was a 4.13-fold increased risk of CBP for the drinker with genotype of APE1c. 148Asp/Asp compared with these with genotype of APE1c.148AsplAsp without habit of alcohol consumption(OR=4.13, 95%CI: 107-15.85, p=0.03). However, due to the relative few smokers and alcohol users in the subjects, further study needed to elucidate interactions among lifestyles and different polymorphisms. In the low intensity of benzene exposure group, compared with these with XPD c.3\2Asp/Asp, the risk of CBP for these carrying XPDc.312Asp/Asn+Asn/Asn genotypes further decrease (OR=0.19, 95%CI: 0.07-0.53, p<0.01).(5) Stratified analysis of different genetic polymorphisms suggested that there are potential interactions among different genetic polymorphisms (XRCCl Arg280His and XPD Asp312Asn, XRCCl Arg399Gln and hMYH His335Gln, ADPRT Val762Ala and hMYH His335Gln, XPD Asp312Asn and hOGG1 Ser326Cys, hOGG1 Ser326Cys and hMYH His335Gln, respectively). The risk of CBP may decrease for the individuals carrying genotypes of XRCC1c.399Arg/Arg and hMYHc.335His/Gln+Gln/Gln (OR=0.36, 95%CI:0.16-0.83, p=0.02), XRCC1c.399Arg/Gln+Gln/Gln and hMYHc.335 His/His (OR=0.39, 95%CI: 0.16-0.91, p=0.03), hOGG1c.326Ser/Ser+ Ser/Cys and hMYHc.335His/Gln+Gln/Gln (OR = 0.38,95%C/.0.18-0.79, P<0.01) at the same time, respectively. Alternatively, the risk of CBP may further increase for the subjects with
引文
[1] 纯苯产需持续稳步增长,预计今年国货供应总量偏低于需求总量[EB/OL].http://www.china-finechem.com.cn/bin/news/news_detail.asp?ID=6092.
    [2] 卫生部紧急通知,专项整治苯中毒[EB/OL].http://health.sohu.com/89/38/harticle16233889.html.
    [3] 何凤生,主编.中华职业医学[M].北京:人民卫生出版社,1999:460.
    [4] Kolachana P, Subrahmanyam VV, Meyer KB, et al. Benzene and its phenolic metabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo[J]. Cancer Res, 1993, 53(5): 1023-1026.
    [5] Irons RD, Stillman WS. Impact of benzene metabolites on differentiation of bone marrow progenitor cells[J]. Environ Health Perspect, 1996, 104(suppl: 6): 1247-1250.
    [6] 续薇,王军荣,郑玉梅.76例苯中毒患者末梢血像及骨髓像观察[J].吉林医学,1995,16(2):97.
    [7] Sul D, Lee D, Im H, et al. Single strand DNA breaks in T- and B-lymphocytes and granulocytes in workers exposed to benzene[J]. Toxicol Lett, 2002, 134(1-3): 87-95.
    [8] Tuo J, Loft S, Thomsen MS, et al. Benzene-induced genotoxicity in mice in vivo detected by the alkaline comet assay: reduction by CYP2E1 inhibition[J]. Mutat Res, 1996, 368 (3-4): 213-219.
    [9] Hiraku Y, Kawanishi S. Oxidative DNA damage and apoptosis induced by benzene metabolites[J]. Cancer Res, 1996, 56(22): 5172-5178.
    [10] Li Y, Kuppusamy P, Zweier JL, et al. ESR evidence for the generation of reactive oxygen species from the copper-mediated oxidation of the benzene metabolite, hydroquinone: role in DNA damage[J]. Chem Biol Interact, 1995, 94(2): 101-120.
    [11] Hricko A. Rings of controversy around benzene[J]. Environ Health Perspect, 1994, 102(3): 276-281.
    [12] Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans, trans-muconaldehyde, hydroquinone and their mixtures[J]. Int J Yoxicol, 2001, 20(2): 69-80.
    [13] Taylor C, Hughes DC, Zappone E, et al. A screen for RAS mutations in individuals at risk of secondary leukaemia due to occupational exposure to petrochemicals[J]. Leuk Res, 1995, 19(5): 299-301.
    [14] Wood RD, Mitchell M, Sgouros J, et al. Human DNA repair genes[J]. Science, 2001, 291(5507): 1284-1289.
    [15] Tomescu D, Kavanagh G, Ha T, et al. Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma[J]. Carcinogenesis, 2001, 22(3): 403-408.
    [16] Shen H, Sturgis EM, Dahlstrom KR, et al. A variant of the DNA repair gene XRCC3 and risk of squamous cell carcinoma of the head and neck: a case-control analysis[J]. Int J Cancer, 2002, 99(6): 869-872.
    [17] Stern MC, Umbach DM, Lunn RM, et al. DNA repair gene XRCC3 codon 241 polymorphism, its interaction with smoking and XRCC1 polymorphisms, and bladder cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2002, 11(9): 939-943.
    [18] Smith TR, Miller MS, Lohman K, et al. Polymorphisms of XRCC1 and XRCC3 genes and susceptibility to breast cancer[J]. Cancer Lett, 2003, 190(2): 183-190.
    [19] Shen MR, Jones IM, Mohrenweiser H. Nonconservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans[J]. Cancer Res, 1998, 58(4): 604-608.
    [20] Goode EL, Ulrich CM, Potter JD. Polymorphisms in DNA repair genes and associations with cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2002, 11(12): 1513-1530.
    [21] Wan J, Shi J, Hui L, et al. Association of Genetic Polymorphisms in CYP2E1, MPO, NQO1, GSTM1, and GSTT1 Genes with Benzene Poisoning[J]. Environ Health Perspect, 2002, 110(12): 1213-1218.
    [22] 许建宁,吴春玲,陈艳,等.髓过氧化物酶基因多态性与苯中毒危险性的关系[J].中华劳动卫生职业病杂志,2003,21(2):86-89.
    [23] Ross D, Kepa JK, Winski Sl, et al. NAD(P)H: quinone oxidoereductase 1(NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms[J]. Chem Biol Interact, 2000, 129: 77-97.
    [24] Cronkite EP, Drew RT, Inoue T, et al. Hematotoxicity and carcinogenicity of inhaled benzene[J]. Environ Health Perspect, 1989, 82: 97-108.
    [25] Rothman N, Smith MT, Hayes RB, et al. Benzene poisoning, a risk factor for hematological malignancy, is associated with the NQO1609 C→T mutation and rapid fractional of chlorzoxazone[J]. Cancer Res, 1997, 157: 2839-2842.
    [26] Goldstein B. Is exposure to benzene a cause of human multiple myeloma[J]? Ann. NYAcad Sci, 1990, 609: 225-234
    [27] 杨晓凤,贺丹,宁辉.苯中毒致骨髓增生一场综合征三例[J].中华血液学杂志.1995,16(8):440.
    [28] 李桂兰,戴弹蓉,张西川,等.苯作业工人癌症队列研究Ⅱ[J].中华劳动卫生与职业病杂志.1997,15(6):349-353.
    [29] Aksoy M, Erdem S. Follow-up study on the mortality and the development of leukemia in 44 pancytopenic patients with chronic benzene exposure[J]. Blood, 1978, 52: 285-282.
    [30] Yin SN, Hayes RB, Linet MS, et al. The benzene study group. An Expanded cohort study of cancer among benzene-exposed workers in China[J]. Environ Health Perspect, 1996, 104(suppl: 6): 1339-1341.
    [31] Goldstein BD, Snyder CA, Laskin S, et al. Myelogenous leukemia in rodents inhaling benzene[J]. Toxicol Lett, 1982, 13: 169-173.
    [32] Cronkite E, Bullis J, Inoe T, et al. Benzene inhalation produces leukemia in mice[J]. Toxicol Appl Pharmacol, 1984, 75: 358-361.
    [33] Snyder CA, Goldstein BD, Sellkumar AR, et al. The inhalation toxicology of benzene, incidence of hematopoietic neoplasms and hematotoxicity in ADR/J and C57BI/6J mice[J]. Toxicol Appl Pharmacol, 1980, 54: 232-331.
    [34] Yin SN, Hayes RB, Linet MS, et al. A cohort study of cancer among among benzene-exposed workers in China: overall results[J]. Am J Ind Med, 1996, 29: 227-235
    [35] 尹松年,李桂兰.苯中毒[EB/OL].http://www.gxcdc.com/www_old/jbfz/zyb.htm.
    [36] 卫生部:急性苯中毒死亡率高达21.7%[EB/OL].http://www.people.com.cn/GB/shehui/47/20020402/700372.html.
    [37] Dosemeci M, Yin SN, Linet M, et al. Indirect validation of benzene exposure assessment by association with benzene poisoning[J]. Environ Health Perspect, 1996, 104(suppl.6): 1343-1347.
    [38] Stewart P. Challenges to retrospective exposure assessment[J]. Scand J Work Environ Health, 1999, 25: 505-510.
    [39] Liljielind IE, Rappaport SM, Levin JO, et al. Comparsion of self-assessment and expert assessment of occupational exposure to chemicals[J], Stand J Work Environ Health, 2001, 27(5): 311-317.
    [40] 董宣,高俊娜,陈三凤,等.苯中毒工人苯接触工人记忆力改变的调查[J].职业医学.1996,23(2):17-19.
    [41] “猛鞋”胶水致17家鞋厂67名工人苯中毒[EB/OL].http://book.peopledaily.com.cn/gb/paper85/49/class008500002/hwz32503.html.
    [42] 浙江温岭查封36家含苯粘胶剂的生产和使用企业[EB/OL].http://news.xinhuanet.com/newscenter/2002-01/22/content_249070.htm.
    [43] 全国有毒有害化学品专项整治工作全面推进[EB/OL].http://www.cntcm.com.cn/1871-b.htm.
    [44] 张忠彬,夏昭林.基因多态性与化学物致病风险[J].卫生研究,2003,32(4):402-405.
    [45] 杨卫华,李稻.扩增基础上的已知点突变的检测[J].国外医学分子生物学分册,2002,24(2):121-125.
    [46] 赵春江,李宁,邓雪梅.应用创造酶切位点法检测单碱基突变[J].遗传,2003,25(3):327-329.
    [47] Liu W, Smith DI, Rechtzigel KJ, et al. Denaturing high performance liquid chromatography (DHPLC) used in the detection of germline and somatic mutations[J]. Nucleic Acids Res, 1998, 26(6): 1396-1400.
    [48] Howell WM, Jobs M, Gyllensten U, et al. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms[J]. Nat Biotechnol, 1999, 17(1): 87-88.
    [49] Livak KJ. Allelic discrimination using fluorogenic probes and the 5' nuclease assay[J]. Genet Anal, 1999, 14(5-6): 143-149.
    [50] Nassal M, Rieger A. PCR-based site-directed mutagenesis using primers with mismatched 3'-ends[J]. Nucleic Acids Res, 1990, 18(10): 3077-3078.
    [51] Kwok S, Kellogg DE, McKinney N, et al. Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies[J]. Nucleic Acids Res, 1990, 18(4): 999-1005.
    [52] Lien S, Alestrom P, Klungland H, et al. Detection of multiple beta-casein (CASB) alleles by amplification created restriction sites (ACRS) [J]. Anim Genet, 1992, 23(4): 333-338.
    [53] Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects[J]. Carcinogenesis, 2001, 22(9): 1437-1445.
    [54] Haliassos A, Chomel JC, Tesson L, et al. Modification of enzymatically amplified DNA for the detection of point mutations[J]. Nucleic Acids Res, 1989, 17(9): 3606.
    [55] Stoyanovsky DA, Goldman R, Claycamp HG, et al. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity[J]. Arch Biochem Biophys, 1995, 317(2): 315-323.
    [56] Liu L, Zhang Q, Feng J, et al. The study of DNA oxidative damage in benzene-exposed workers [J]. Mutat Res, 1996, 370(3-4): 145-150.
    [57] Poulsen HE, Prieme H, Loft S. Role of oxidative DNA damage in cancer initiation and promotion[J]. Eur J Cancer Prev, 1998, 7(1): 9-16.
    [58] Cheng KC, Cahill DS, Kasai H, et al. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G—Y and A—C substitutions[J]. J Biol Chem, 1992, 267(1): 166-172.
    [59] 戴宇飞,邢彩虹,李桂兰,等.苯-DNA加合物类型与化学特性[J].国外医学卫生学分册,1999,26(1):5-8.
    [60] 《慢性职业性苯中毒诊断标准》修订协作组.苯的造血毒性研究[J].中华劳动卫生职业病杂志,1997,15(6):345-348.
    [61] 李桂兰,李凌凛,郭卫红,等.接苯工人外周血染色体损伤研究[J].卫生研究,2002,31(6):410-414.
    [62] Siena S, Sammarelli G, Grimoldi MG, et al. New reciprocal translocation t (5,10) (q33,q22) associated with atypical chronic myeloid leukemia[J]. Haematologica, 1999, 84(4): 369-72.
    [63] Amin RP, Witz G. DNA-protein crosslink and DNA strand break formation in HL-60 cells treated with trans, trans-muconaldehyde, hydroquinone and their mixtures[J]. Int J Toxicol, 2001, 20(2): 69-80.
    [64] Wormhoudt LW, Commandeur JN, Vermeulen NP. Genetic polymorphisms of human N-acetyltransferase, cytochrome P450, glutathione-S-transferase, and epoxide hydrolase enzymes: relevance to xenobiotic metabolism and toxicity[J]. Crit Rev Toxicol, 1999, 29(1): 59-124.
    [65] Miller MC, Mohrenweiser HW, Bell DA. Genetic variability in susceptibility and response to toxicants[J]. Toxicol Lett, 2001, 120(1-3): 269-280.
    [66] Sakumi K, Furuichi M, Tsuzuki T, et al. Cloning and expression of cDNA for a human enzyme that hydrolyzes 8-oxo-dGTP, a mutagenic substrate for DNA synthesis[J]. J Biol Chem, 1993, 268(31): 23524-23530.
    [67] Wu C, Nagasaki H, Maruyama K, et al. Polymorphisms and probable lack of mutation in a human mutT homolog, hMTH1, in hereditary nonpoliposis colorectal cancer[J]. Biochem Biophys Res Commun, 1995, 214(3): 1239-1245.
    [68] Takama F, Kanuma T, Wang D, et al. Mutation analysis of the hMTH1 gene in sporadic human ovarian cancer[J]. Int J Oncol, 2000, 17(3): 467-471.
    [69] Sugimura H, Kohno T, Wakai K, et al. hOGG1 Ser326Cys polymorphism and lung cancer susceptibility[J]. Cancer Epidemiol Biomarkers Prey, 1999, 8(8): 669-674.
    [70] 邢德印,谭文,宋南,等.DNA修复基因hOOG1多态与食管癌遗传易感性[J].中华医学遗传学杂志,2000,17(6):377-380.
    [71] Gu Y, Parker A, Wilson TM, et al. Human MutY homolog, a DNA glycosylase involved in base excision repair, physically and functionally interacts with mismatch repair proteins human MutS homolog 2/human MutS homolog 6[J]. J Biol Chem, 2002, 277(13): 11135-11142.
    [72] Parker A, Gu Y, Mahoney W, Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair[J]. J Biol Chem, 2001, 276(8): 5547-5555.
    [73] Boiteux S, Radicella JP. The human OGG1 gene: structure, functions, and its implication in the process of carcinogenesis. [J] Arch Biochem Biophys, 2000, 377(1): 1-8.
    [74] Singer B, Hang B. Mammalian enzymatic repair of etheno and para-benzoquinone exocyclic adducts derived from the carcinogens vinyl chloride and benzene[J]. IARC Sci Publ, 1999, (150): 233-247.
    [75] Hang B, Chenna A, Sagi J, Singer B. Differential cleavage of oligonucleotides containing the benzene-derived adduct, 1,N6-benzetheno-dA, by the major human AP endonuclease HAP1 and Escherichia coli exonuclease Ⅲ and endonuclease Ⅳ[J]. Carcinogenesis, 1998, 19(8): 1339-1343.
    [76] Hang B, Rothwell DG, Sagi J, et al. Evidence for a common active site for cleavage of an AP site and the benzene-derived exocyclic adduct, 3,N4-benzetheno-dC, in the major human AP endonuclease[J]. Biochemistry, 1997, 36(49): 15411-15418.
    [77] Xanthoudakis S, Smeyne RJ, Wallace JD, et al. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice[J]. Proc Natl Acad Sci U S A, 1996, 93(17): 8919-8923.
    [78] Hadi MZ, Coleman MA, Fidelis K, et al. Functional characterization of Apel variants identified in the human population[J]. Nucleic Acids Res, 2000, 28(20): 3871-3879.
    [79] Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity[J]. Carcinogenesis, 2001, 22(6): 917-922.
    [80] Kubota Y, Nash RA, Klungland A, et al. Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein[J]. EMBO J, 1996, 15(23): 6662-6670.
    [81] D'Silva I, Pelletier JD, Lagueux J, et al. Relative affinities of poly(ADP-ribose) polymerase and DNA-dependent protein kinase for DNA strand interruptions[J]. Biochim Biophys Acta, 1999, 1430(1): 119-126.
    [82] Masutani M, Nozaki T, Nishiyama E, et al. Function of poly(ADP-ribose) polymerase in response to DNA damage: gene-disruption study in mice[J]. Mol Cell Biochem, 1999, 193(1-2): 149-152.
    [83] Cui X, Brenneman M, Meyne J, et al. The XRCC2 and XRCC3 repair genes are required for chromosome stability in mammalian cells[J]. Mutat Res, 1999, 434(2): 75-88.
    [84] Liu N, Lamerdin JE, Tebbs RS, et al. XRCC2 and XRCC3, new human Rad51-family members, promote chromosome stability and protect against DNA cross-links and other damages[J]. Mol Cell, 1998, 1 (6): 783-793.
    [85] Johnson RD, Liu N, Jasin M. Mammalian XRCC2 promotes the repair of DNA double-strand breaks by homologous recombination[J]. Nature, 1999, 401(6751): 397-399.
    [86] Pierce AJ, Johnson RD, Thompson LH, et al. XRCC3 promotes homologydirected repair of DNA damage in mammalian cells[J]. Genes Dev, 1999, 13(20): 2633-2638.
    [87] Rafii S, O'Regan P, Xinarianos G, et al. A potential role for the XRCC2 R188H polymorphic site in DNA-damage repair and breast cancer. Hum Mol Genet, 2002, 11 (12): 1433-1438.
    [88] Matullo G, Palli D, Peluso M, et al. XRCC1, XRCC3, XPD gene polymorphisms, smoking and (32)P-DNA adducts in a sample of healthy subjects[J]. Carcinogenesis, 2001, 22(9): 1437-1445.
    [89] Squire JA, Whitmore GF, Phillips RA. Genetic Basis of Cancer[J]. The Basic Science of Oncology, 1998, 48-78.
    [90] Friedberg EC. How nucleotide excision repair protects against cancer[J]. Nat Rev Cancer. 2001, 1(1): 22-33.
    [91] Yeh CC, Sung FC, Tang R, et al. Polymorphisms of the XRCC1, XRCC3, & XPD genes, and colorectal cancer risk: a case-control study in Taiwan[J]. BMC Cancer. 2005, 5(1): 12.
    [92] Benhamou S, Sarasin A. ERCC2/XPD gene polymorphisms and lung cancer: a huge review[J]. Am J Epidemiol, 2005, 161 (1): 1-14.
    [93] 邢德印,齐军,谭文,等.北京地区汉族人群DNA修复基因XPD单核苷酸多态性与肺癌及食管癌风险的研究[J].中华医学遗传学杂志,2003,20(1):35-38.
    [94] Lan Q, Zhang L, Li G, et al. Hematotoxicity in workers exposed to low levels of benzene[J]. Science, 2004, 306(5702): 1774-1776.
    [95] 潘宝忠,相奎,黄唐嘉.53例苯中毒病因分析[J].工业卫生与职业病,2000,26(3):175-176.
    [96] Andreoli C, Leopardi P, Crebelli R. Detection of DNA damage in human lymphocyte by alkaline single cell gel electrophoresis after exposure to benzene or benzene metabolites[J]. Mutat Res, 1997, 377(1): 95-104.
    [97] 邢彩虹,李桂兰,李玉英,等.单细胞凝胶电泳法检测苯作业工人淋巴细胞DNA损伤[J].中华劳动卫生职业病杂志,2000,18(50):257-259.
    [98] 宋春英,谭文,林东昕.中国人DNA修复基因XRCC1单核苷酸多态及其与食管癌风险的关系[J].癌症,2001,20(1):28-31.
    [99] Lunn RM, Langlois RG, Hsieh LL. XRCC1 polymorphisms: effects on aflatoxin B1-DNA adducts and glycophorin A variant frequency[J]. Cancer Res, 1999, 59: 2557-2561.
    [100] 宋雅辉,尹立红,浦跃朴,等.南京市人群DNA修复基因xrccl多态性与肺癌易感性的关系[J].环境与职业医学,2004,21(1):18-21.
    [101] Zhang X, Miao X, Liang G, et al. Polymorphisms in DNA base excision repair genes ADPRT and XRCC1 and risk of lung cancer[J]. Cancer Res, 2005, 65(3): 722-726.
    [102] Shen H, Wang X, Hu Z, et al. Polymorphisms of DNA repair gene XRCC3 Thr241Met and risk of gastric cancer in a Chinese population[J]. Cancer Lett, 2004, 206: 51-58.
    [103] 高长明,Sugimura Haruhiko,Takezaki Toshiro,等.8-羟基鸟嘌呤糖苷酶基因型、生活习惯与食管癌和胃癌[J].中国肿瘤,2001;10(9):500-502.
    [104] Mohrenweiser HW, Xi T, Vazquez-Matias J, et al. Identification of 127 amino acid substitution variants in screening 37 DNA repair genes in humans[J]. Cancer Epidemiol Biomarkers Prev, 2002, 11(10 Pt 1): 1054-1064.
    [105] Stern MC, Umbach DM, van Gils CH, et al. DNA Repair Gene XRCC1 Polymorphisms, Smoking, and Bladder Cancer Risk[J]. Cancer Epidemiol Biomarkers Prev, 2001, 10(1): 125-131.
    [106] Hu JJ, Smith TR, Miller MS, et al. Amino acid substitution variants of APE1 and XRCC1 genes associated with ionizing radiation sensitivity[J]. Carcinogenesis, 2001, 22(6) 917-922.
    [107] Shinmura K, Yamaguchi S, Saitoh T, et al. Somatic mutations and single nucleotide polymorphisms of base excision repair genes involved in the repair of 8-hydroxyguanine in damaged DNA[J]. Cancer Lett, 2001, 166(1): 65-69.
    [108] Cottet F, Blanche H, Verasdonck P, et al. New polymorphisms in the human poly(ADP-ribose) polymerase-1 coding sequence: lack of association with longevity or with increased cellular poly(ADP-ribosyl)ation capacity[J]. J Mol Med, 2000, 78(8): 431-440.
    [109] Lockett KL, Hall MC, Xu J, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function[J]. Cancer Res, 2004, 64(17): 6344-6348.
    [110] Kuschel B, Auranen A, McBride S, et al. Variants in DNA double-strand break repair genes and breast cancer susceptibility[J]. Hum Molec Genet, 2002, 11(12): 1399-1407.
    [111] Nakabeppu Y. Molecular genetics and structural biology of human MutT homolog, MTH1[J]. Mutation Res, 2001, 477: 59-70.
    [112] 张忠彬,陆华,夏昭林.常用单核苷酸多态性数据库简介[J].职业卫生与应急救援,2004,22(2):106-108.
    [113] Cabelof DC, Raffoul JJ, Yanamadala S, et al. Induction of DNA polymerase beta- dependent base excision repair in response to oxidative stress in vivo[J]. Carcinogenesis, 2002, 23 (9): 1419-1425.
    [114] Ide H, Kotera M. Human DNA glycosylases involved in the repair of oxidatively damaged DNA[J]. Biol Pharm Bull, 2004, 27(4): 480-485.
    [115] Norppa H. Genetic polymorphisms and chromosome damage[J]. Int J Hyg Environ Health, 2001, 204(1): 31-38.
    [116] Kohno T, Shinmura K, Tosaka M, et al. Genetic polymorphisms and alternative splicing of the hOGG1 gene, that is involved in the repair of 8-hydroxyguanine in damaged DNA. Oncogene[J], 1998, 16: 3219-3225.
    [117] Tuimala J, Szekely G, Gundy S, et al. Genetic polymorphisms of DNA repair and xenobiotic-metabolizing enzymes: role in mutagen sensitivity[J]. Carcinogenesis, 2002, 23(6): 1003-1008.
    [118] Sturgis EM, Castillo EJ, Li L, et al. Polymorphisms of DNA repair gene XRCC1 in squamous cell carcinoma of the head and neck[J]. Carcinogenesis, 1999, 20(11): 2125-2129.
    [119] Abdel-Rahman SZ, Soliman AS, Bondy ML, et al. Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt[J]. Cancer Lett, 2000, 159(1): 79-86.
    [120] Xanthoudakis S, Smeyne RJ, Wallace JD, et al. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice[J]. Proc Natl Acad Sci U S A, 1996, 93(17): 8919-8923.
    [121] Lockett KL, Hall MC, Xu J, et al. The ADPRT V762A genetic variant contributes to prostate cancer susceptibility and deficient enzyme function[J]. Cancer Res, 2004, 64(17): 6344-6348.
    [122] Thompson LH, West MG. XRCC1 keeps DNA from getting stranded[J]. Mutat Res, 2000, 459: 1-18.
    [123] Mechanic LE, Marrogi AJ, Welsh JA, et al. Polymorphisms in XPD and TP53 and mutation in human lung cancer[J]. Carcinogenesis, 2005, 26(3): 597-604.
    [124] Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer[J]. Nature, 2001, 411(6835): 366-374.
    [125] Qiao Y, Spitz MR, Shen H, et al. Modulation of repair of ultraviolet damage in the host-cell reactivation assay by polymorphic XPC and XPD/ERCC2 genotypes[J]. Carcinogenesis, 2002, 23(2): 295-299.
    [126] Terry MB, Gammon MD, Zhang FF, et al. Polymorphism in the DNA repair gene XPD, polycyclic aromatic hydrocarbon-DNA adducts, cigarette smoking, and breast cancer risk[J]. Cancer Epidemiol Biomarkers Prev, 2004,

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700