锂离子动力电池的制作与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在综合评述了锂离子动力电池的研究现状的基础上,系统地研究了锰酸锂和磷酸铁锂电池动力电池的制作与性能,通过对锂离子电池正极、负极和电解液等关键材料进行表征和分析,研究和改进锰酸锂电池的电化学性能、储存性能和安全性能及机理,研究了磷酸铁锂电池的制作和性能及作用机理。
     系统地比较研究了几种不同LiMn_2O_4、负极和电解液样品的结构与性能。最后选取了合适的LiMn_2O_4,石墨以及电解液作为锰酸锂电池的关键材料。
     电极容量比分别为1.33、1.19和1.08的锰酸锂电池中LiMn_2O_4放电比容量分别为101,105和107mAh/g。170次循环容量保持率分别为87.3,85.4和84.1%。在电池正极组分中添加2%的Li_2CO_3,MgO和LiF,LiMn_2O_4的放电比容量分别为106.1,107.2和107.5mAh/g。100次循环容量保持率分别为90.8、91.8和93%。LiF的含量为2%时效果最佳。当正极极片面密度为2.5 g/dm~2,导电剂含量为3%时,20C放电容量为1C放电容量的94.1%。1C充5C放100次循环容量保持率为92%。配置EC:EMC:E=2:7:1,lmol/L LiPF_6的低温功能电解液,研究发现在-40℃下,以0.2和1C放电,分别放出常温容量的81.1和63.4%。
     锰酸锂电池半荷电储存一个月后容量恢复率为96.3%,100次循环容量保持率达到94.1%。通过XRD、SEM、TEM和XPS研究表明,储存后MnO_2、R-CO_3Li、Li_2CO_3、LiF和Li_xPF_y等共同组成正极表面钝化膜,LiMn_2O_4晶格发生氧缺陷现象。储存前后LiMn_2O_4电极峰电流分别为0.55和0.36mA,电极和电解液界面的吸附双电层阻抗分别为20.28和53.3 1Ω。LiMn_2O_4的交换电流密度为0.69和1.01mA/cm~2。负极SEI膜增厚并变致密,阻抗由183.1增大到310Ω。储存后电解液中LiPF_6发生了一定程度的分解,溶剂被氧化生成小分子物质。
     电极表面极化、正极材料中Mn溶解以及氧缺陷、SEI膜增厚所消耗的活性锂、电解液的分解和氧化是导致储存后锰酸锂电池储存后容量衰减的主要原因。
     高温储存研究发现锰酸锂电池在第一天内容量损失最大,此后每天损失的容量逐步减少。锰酸锂电池的循环稳定性的改善程度随着储存时间的延长而增加。随着储存时间的增加,正极表面钝化膜不断增厚,LiMn_2O_4晶格不断发生收缩并变稳定,颗粒/电解液界面积减小,电极氧化性减弱,从而导致容量衰减变慢。
     放电态和满电态下储存锰酸锂电池容量恢复率分别为99.2%和93.5%。满电态下储存的锰酸锂电池循环稳定性改善最大。荷电态对储存后容量衰减的影响主要是由Mn溶解量的不同以及储存后正极表面极化不同而引起的。随着荷电态的增加,Mn~(4+)可能先被还原成Mn~(3+),进而发生歧化反应生成Mn~(2+),从而导致容量衰减增大。正极表面钝化膜将LiMn_2O_4材料与电解液分隔开;LiMn_2O_4的晶格收缩,稳定性增强;负极SEI不断地增厚和变致密可能是储存后锰酸锂电池的循环稳定性改善的原因。
     在锰酸锂正极中添加LiF,半荷电储存后电池的容量恢复率从96.3%提高到98%。研究表明LiF能够有效地抑制Mn的溶解并且降低储存后正极表面的阻抗。
     锰酸锂电池(347080-16Ah)在热冲击、穿刺、短路安全测试下未爆炸。3C/10V过充测试电池发生爆炸,电池表面最高温度达到290℃。爆炸后粉末的主要成分为C、MnO和Li_2CO_3。当电压达到5.0V,正极材料表面出现了大量的裂缝。裂缝的出现导致过充后期电压和温度急剧上升直至爆炸。采用Al_2O_3包覆的LiMn_2O_4制作锰酸锂电池,经过3C/10V过充后不爆炸、不起火。
     研究比较了3种不同LiFePO_4的结构与性能。研究了碳纳米管(CNT)对磷酸铁锂电池性能的影响。添加CNT后,1C/0.1C的放电比容量比值由原来的92.1提高到96.3%,0.1C的放电容量都为124mAh/g;磷酸铁锂电极的电荷反应阻抗由173.1Ω减小为36.88Ω,极化减小,电池200次循环容量保持率由原来的93.7提高到96.6%。采用PVDF和LA133为粘结剂的LiFePO_4的1/3C放电比容量分别为124和120mAh/g。200次循环容量保持率分别为96.3%和93.2%。采用两种LiFePO_4复配体系,制作347080磷酸铁锂动力电池。10C/1C的放电容量比值为95.9%,3C充电10C放40次循环容量保持率为96.9%。磷酸铁锂电池在热冲击、过充、穿刺、短路等滥用条件下均未发生爆炸起火现象。
The development of Li-ion power batteries are reviewed in detail. The fabrication and properties of LiMn_2O_4 and LiFePO_4 batteries are studied in this paper.The electrochemical,storage and safety performance and mechanism are studied and improved through cathode,anode and electrolyte studying.The fabrication,performance and mechanism of LiFePO4 battery are studied.
     Several LiMn_2O_4 cathode,anode and electrolyte samples are compared for battery fabrication.Conformable LiMn_2O_4,artifical graphite and electrolyte sample are chosen for power batteries fabrication.
     The cell balances are designed as 1.33,1.19 and 1.08, respectively.The capacities of LiMn_2O_4 are 101,105 and 107mAh/g,and the capacity retention ratios are 87.3,85.4 and 84.1%after 170 cycles, respectively.2wt%Li_2CO_3,MgO and LiF is added in the cathode, respectively.The capacities of LiMn_2O_4 batteries are 106.1,107.2 and 107.5mAh/g,and the capacity retention ratio after 100 cycles are 90.8, 91.8 and 93%,respectively.The electrochemical performance is best when content of additive LiF is 2 wt%.It is found that the discharge capacity at 20C rate is equivalent with 94.1%at 1C rate when the area density is 2.5g/dm~2 and conductive is 3wt%.The capacity retention ratio is 92%with 1C charged and 5C discharged after 100 cycles.The content of electrolyte salt is EC:EMC:E=2:7:1,1.0mol/L LiPF_6.The results show that the discharge capacity at 0.2C and 1C at -40℃are and 81.1%and 63.4%of that at room temperature,respectively.
     The ratio of capacity recovery of LiMn_2O_4 battery after storage at room temperature for a month is 96.3%.The capacity retention ratio is 94.1%after 100 cycles.The XRD,SEM,TEM and XPS results show that the film covered on the cathode is composed by MnO_2,R-CO_3Li,Li_2CO_3, Li_xPF_y and LiF after storage.And oxygen deficiency in the LiMn_2O_4 electrode is detected.The migration resistance of LiMn_2O_4/electrolyte is increased from 20.28 to 53.31Ωafter storage.And the exchange current is increased from 0.69 to 1.01mA/cm~2 after storage.AC impedance for anode result shows that the SEI film is incrassated and compacted,and the impedance is increased from 183.1 to 310Ω.FTIR results show that LiPF_6 decomposes at a certain degree after storage.And the solvent in the electrolyte is oxided to small molecular weight substance.
     The polarization of electrode,Mn dissolution and Oxygen deficiency in the LiMn_2O_4,decomposition and oxygenation of electrolyte,Li~+ consuming during the incrassated and compacted SEI film is the reason of capacity fading during storage.
     The capacity lost in the first day is maximal during the high temperature storage.The capacity lost in every day is decreased with the time extending.The improvement of cycling performance of battery after storage is increased with time extending.The capacity loss is slow because of thickness of film covered on the cathode increasing,shrinked and strengthened of LiMn_2O_4 structure,decreasing area of particle/electrolyte,weakened oxygen of electrode.
     The ratio of capacity recovery of LiMn_2O_4 battery at discharge state is highest,99.2%;and that is 93.5%at charged state.The improvement of cycling performance after charged storage is best.The difference of capacity fading of LiMn_2O_4 battery with different charge state is because of different Mn dissolution and polarization of electrode.Mn~(4+) may be deoxidized to Mn~(3+) first,and then reacts with H~+ to create Mn~(2+) with charged increased.The cycling performance is improved because of the the film covered on the cathode,strengthened spinel structure and the improved SEI on the anode.
     The capacity recovery of LiMn_2O_4 battery with half charged is increased from 96.3 to 98%after storage with LiF added in the cathode. The results show that the LiF restrain the dissolution of Mn and the polarization of cathode after storage.
     The LiMn_2O_4 battery(347080-16Ah) is tested by heat concussion, puncture,short circuit and overcharge.The LiMn_2O_4 battery shows good safety performance and doesn't explode.But the battery blast after 3C/10V overcharge.The maximal temperature of battery surface arrives at 290℃after blast.The carbon,MnO,and Li_2CO_3 are observed in the exploded powders.Cracks in the cathode electrode particles are detected with the voltage increased to 5.0V.Cracks may be the reason of voltage and temperature increasing rapidly and blast.The battery is fabricated with Al_2O_3 coated LiMn_2O_4 and doesn't explode after 3C/10V overcharge.
     Three LiFePO_4 samples are compared for battery fabrication.Effect of carbon nanotube on the electrochemical performance of C-LiFePO_4/graphite battery is studied.The capacity ratio of 0.1C/1C is increased from 92.1 to 96.3%with CNT added,but the capacities discharge at 0.1C are 124mAh/g.Cyclic voltammograms and AC impedance results show that charge transfer resistance is decreased from 173.1 to 36.88Ωwith CNT added,and the polarization of electrode is decreased.And the capacity retention ratio is increased from 93.7 to 96.6%after 200 cycles.The first discharge capacity of LiFePO_4 battery with LA133 and PVDF-binder is 120 and 124 mAh/g discharged at 1/3C, respectively.The capacity retention ratios are 96.3 and 93.2%.347080 size LiFePO_4 power battery is fabricated with two LiFePO_4 sample mixed according to their characteristic.The capacity ratio of 1C/10C is 95.9%, and the capacity retention ratio is 96.9%after 40 cycles with 3C charged and 10 discharged.The battery doesn't explode under heat concussion, puncture,short circuit and overcharge.
引文
[1]能源基础数据汇编[M].国家计委能源所,北京,1999.
    [2]Nagaura T,Tazawa K,Lithium Ion Rechargeable Battery,Ping.Batts.Sol.Cells,JEC Press,Cleaveland,Ohio,1990,9:209-217.
    [3]林美云.日本新阳光计划中的锂二次电池开发概况[J].工业材料,1999,146:162-169.
    [4]陈立泉.锂离子电池正极材料的研究进展[J].电池,2002,32(S1):6-8.
    [5]马晓春,杨清河,金忠,等.锂及锂离子蓄电池聚合物电解质研究进展[J].电源技术,2002,26(1):47-55.
    [6]胡传跃,李新海,孙铭良.聚合物锂离子电池的研究进展[J].电池工业,2001,6(2):77-81.
    [7]Xiao L F,Zhao Y Q,Yang Y Y,et al.Enhanced electrochemical stability of Al-doped LiMn_2O_4 synthesized by a polymer-pyrolysis method[J].J.Electrochimica Acta,2008,54(2):545-550.
    [8]Li X F,Xu Y L,Wang C L.Suppression of Jahn-Teller distortion of spinel LiMn_2O_4 cathode[J].J.Alloys and Compounds.2009,in press.
    [9]Markevich E,Salitra G,Aurbach D.Influence of the PVDF binder on the stability of LiCoO_2 electrodes[J].Electrochemistry Communications,2005,7(12):1298-1304.
    [10]吕东生,李伟善,刘煦,等.LiMn_2O_4的容量衰减机理和结构稳定方法[J].电池工业,2004,9(5):244-246.
    [11]李运娇,常建卫,李洪桂,等.富锂型掺钴尖晶石锂锰氧化物的结构与电化学性能[J].中南大学学报(自然科学版),2004,35(3):381-385.
    [12]陈立宝,贺跃辉,汤义武.采用固相配位法制备超细LiMn_2O_4正极材料[J].中南大学学报(自然科学版),2005,36(3):390-395.
    [13]Luo J Y,Li X L,Xia Y Y.Synthesis of highly crystalline spinel LiMn_2O_4 by a soft chemical route and its electrochemical performance[J].Electrochimica Acta,2007,52(25):4525-4531.
    [14]Tarascon J M,Mckinnon W R,Goowar F,et al.Synthesis conditions and oxygen stoichiometry effecton insertion into the spinel LiMn_2O_4[J].J.Electrochem Soc,1994,141(6):1421-1431.
    [15]Blyr A,Sigala A,Amatucci G,et al.Self-discharge of LiMn_2O_4/C Li-ion cell in their discharged state[J]. J.Electrochem Soc, 1998,145(1): 194-209.
    [16] Shao H Y, Ein E Y, Rabertson A D, et al. Morphology modification and delithiation mechanisms of LiMn_2O_4 and Li_2MnO_3 by acid digestion[J]. J.Electrochem Soc, 1998,145(1):16-23.
    [17] Uchiyama T, Nichizawa M, Itoh T, et al. Electrochemical Quartz crystal microbalance inverstigation of LiMn_2O_4[J]. J.Electrochem Soc, 2000, 147(6):2057-2060.
    [18] Gummow R J, Kock A, Thackery M M. Improved capacity retention in rechargeable 4V lithium/lithium manganese oxide (spinel) cell[J]. Solid State Ionics, 1994, 69(1):59-67.
    [19] Jang D H, Young J S, Oh S M. Dissolution of Spinel Oxides and Capacity Losses in 4 V Li/Li_xMn_2O_4 Cells[J]. J. Electrochem. Soc. 1996, 143 (10): 2204-2211.
    [20] Arira P, White R E. Capacity fading mechanisms and side reaction in lithium-ion batteries[J]. J.Electrochem Soc, 1998,145(10):3647-1667.
    [21] Aurbach D. Reiew of selected electrode-solution interaction which determine the performance of Li and Li ion batteries[J]. J.Power Sources, 2000, 89(1):208-216.
    [22] Li Y, Takahashi M, Wang B F. A study on capacity fading of lithium-ion battery withmanganese spinel positive electrode during cycling[J]. Electrochem Acta. 2006,51(16):3228-3234.
    [23] Liu Y J, Li X H, Guo H J, et al. Electrochemical performance and capacity fading reason of LiMn_2O_4/graphitebatteries stored at room temperature [J]. J.Power Sources, 2008, in press.
    [24] Lu W, Belharouak I, Park S H, et al. Isothermal calorimetry investigation of Li_(1+x)Mn_(2-y)Al_2O_4 spinel[J]. Electrochim. Acta 2007, 52 (17): 5837-5842.
    [25] Komaba S, Oikawa K, Myung S T, et al. Neutron powder diffraction studies of LiMn_(2-y)Al_yO_4 synthesized by the emulsion drying method[J]. Solid State Ionics, 2002,149 (1):47-52.
    [26] Amine K, Tukamoto H, Yasuda H, et al. Preparation and electrochemical investigation of LiMn_(2-x)Me_xO_4 (Me: Ni, Fe, and x = 0.5,1) cathode materials for secondary lithium batteries[J]. J. Power Sources, 1997, 68(2):604-608.
    [27] Hong Y S, Han C H, Kim K, et al. Structural and electrochemical properties of the spinel Li(Mn_(2-x)Li_(x/4)Co_(3x/4))O_4[J]. Solid State Ionics, 2001,139 (1):75-80.
    [28] Kumar G, Schlorb H, Rahner D. Synthesis and electrochemical characterization of 4 V LiR_xMn_(2-x)O_4 spinels for rechargeable lithium batteries[J]. Mater. Chem. Phys.2001,70(2):117-123.
    [29]Alcantara R,Jaraba M,Lavela P,et al.New LiNi_yCo_(1-2y)Mn_(1+y)O_4 Spinel Oxide Solid Solutions as 5 V Electrode Material for Li-Ion Batteries[J].J.Electrochem.Soc.2004,151(1):A53-58.
    [30]Yoon C S,Kim C K,Sun Y K.Cycling behavior of selenium-doped LiMn_2O_4spinel cathode material at 3 V for lithium secondary batteries[J].J.Power Sources,2002,109(1):234-238.
    [31]Julien C,Ziolkiewicz S,Lemal M,et al.J.Mater.Chem.11(2001) 1837-1843.
    [32]Capsoni D,M.Bini,Chiodelli G,et al.Jahn-Teller transition in Al~(3+) doped LiMn_2O_4 spinel[J].Solid State Commun.2003,126(4):169-174.
    [33]Shin Y,Manthiram A.Electrochem.Solid State Lett.5(2002):A55-57.
    [34]Amatucci G G,Pereira,Zheng T,et al.Failure mechanism and improvementof the elevated temperature cycling of LiMn_2O_4 compound through the use of the LiAl_xMn_(2-x)O_(4-x)F_x solid solution[J].J.Electrochem Soc,2001,148(2):A 171-182.
    [35]Shu D,Goup K,Kim K B.Surfacemodification of LiMn_2O_4 thin films at elevated temperature[J].Solid State Iionics,2003,160(3-4):227-233.
    [36]Gnanaraj J S,Pol V G,Gedanken A.Improving the high-temperature performance of LiMn_2O_4 spinel electrodes by coating the active mass with MgOviaa sonochemical method[J].Electrochemistry Communications,2003,5(11):940-945.
    [37]Eftekhari A..Aluminum oxide as a multi-function agent for improving battery performance of LiMn_2O_4 cathode[J].Solid State Ionics,2004,167(3-4) 237-242.
    [38]李敏,李荣华,王文继.Li_3PO_4包覆LiMn_2O_4正极材料的结构表征和电化学性能[J].化学研究,2007,18(4):98-101.
    [39]Eftekhari A.LiMn_2O_4 electrode prepared by gold-titani-um codeposition with improved cyclability[J].J Power Sources,2004,130(1-2):260-265.
    [40]吴宁宁,雷向利,徐华,等.锰酸锂动力电池体系研究[J]。北京大学学报(自然科学版),2006,42,增刊:67-71.
    [41]刘云建,李新海,郭华军,等.锰酸锂电池循环性能的改进研究,中南大学学报,2008,39(5):897-901.
    [42]Daiwon C,Prashant N K.Surfactant based sol-gel approach to nanostructured LiFePO_4 for high rate Li-ion batteries[J].J.Power Sources,2007,163(2):1064-1069.
    [43]Xia Y G,Masaki Y,Hideyuki N.Improved electrochemical performance of LiFePO_4 by increasing its specific surface area[J].Electrochimica Acta,2006,52(1):240-245.
    [44]Jae.K K,Gouri C,Jae W C,et al.Effect of mechanical activation process parameters on the properties of LiFePO_4 cathode material[J].J.Power Sources,2007,166(1):211-218.
    [45]Guerfi A,Kaneko M,Petitclerc M,et al.LiFePO_4 water-soluble binder electrode for Li-ion batteries[J].J.Power Sources,2007,163(2):1047-1052.
    [46]Song M S,Kang Y M,Kim J H,et al.Simple and fast synthesis of LiFePO_4-C composite for lithium rechargeable batteries by ball-milling and microwave heating[J].J.Power Sources,2007,166(1):260-265.
    [47]Padhi A K,Nanjundoswamy K S,Goodenough J.B..Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J.Electrochem.Soc.,1997,144(5):1188-1194.
    [48]Arnold G,Garche J,Hemmer R.,et al.Fine-Particle lithium iron Phosphate LiFePO_4 synthesized by a new low-cost apueous precipitation technique[J].J.Power Sources,2003,119-121(1):247-251.
    [49]Chun S Y,Bloking J.T,Chiang Y.M.Nat.Mater,2002,1:123-127.
    [50]Prosini P P,Lisi M,Zane D,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO_4[J].Solid State Ionics,2002,148(1-2):45-51.
    [51]Franger S,Cras F L,Bourbon C,et al.LiFePO_4 Synthesis Routes for Enhanced Electrochemical Performance[J].Electrochemical and Solid-State Lett.2002,5(10):A231-233.
    [52]Ravet N,Chouimard Y,Magnan J.F.,et al.Electroactivity of natural and synthtic triphylite[J].J.Power Sources,2001,97-98(2):503-507.
    [53]Yang S,Song Y,Zavalij P Y,et al.Reactivity,stability and electro-chemical behavior of lithium iron phosphates[J].Electrochemistry Communications,2002,4(3):239-244.
    [54]Prosini P P,Lisi M,Zane D,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO_4[J].Solid State Ionics,2002,148(1-2):45-51.
    [55]Prosini P P,Zane D,Pasouali M.Improved electrochemical performance of a LiFePO_4-based composite cathode[J].Electrochim-ica Acta,2001,46:3517-3523.
    [56]Yamada A.Optimized LiFePO_4 for lithium battery cath-odes[J].J Electrochem Soc,2001,148(3):A224-228.
    [57]Franger S.Comparison between different LiFePO_4 synthesis routes and their influence on its physico-chemical properties[J].J.Power Sources,2003,119-121(1):252-256.
    [58]Wang G X,Bewlay S,Yao J.Characterization of LiMn_xFe_(1-x)PO_4(M=Mg,Zr,Ti)cathode materials prepared by the sol-gel methode[J].Electrochem.Solid State Lett.,2004.7(12):A503-A506.
    [59]Prosini P P,Lisi M,Zane D,et al.Determination of the chemical diffusion coefficient of lithium in LiFePO_4[J].Solid State Ionics,2002,148(1-2):45-51.
    [60]Shin H C,Park S B,Jang H,et al.Rate performance and structural of Cr-doped LiFePO_4/C during cycling[J].Electrochimica Acta,2008,53(27):7946-7951.
    [61]黄学杰.锂离子电池正极材料磷酸铁锂研究进展[J].电池工业,2004,9(4):176-180.
    [62]Xu Y N,Chung S Y,Blocking J T,et al.Electronic structure and electrical conducity of undoped LiFePO_4[J].Electrochem and Solid State Lett,2004,7(6):A131-134.
    [63]Croce F.A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode[J].Electrochem Solid -State Letter,2002,5(3):A47-A50.
    [64]Prosini P P,Carewska M,Scaccia S,et al.A new synthetic route for preparing LiFePO_4 with enhanced electrochemical performance[J].J.Electrochem.Soc.,2002,149(7:)A886-890.
    [65]Sides C R,Croce F,Young V.A high-rate,nanocomposite LiFePO_4/Carbon cathode[J].Electrochem.Solid State Lett,2005,8(9):A484-A487.
    [66]Prosinip P P,Carewska M,Scaccia S,et al.A new syn-thetic route to prepare LiFePO_4 with enhanced electrochemical performence[A].2001 International Joint ESC Meeting[C].Hawaii,2001,Abstract:204.
    [67]Gao F,Tan Z Y,Xue J J.Preparation and characterization of nano-particle LiFePO_4 and LiFePO_4/C by spray-drying and post-annealing method[J].Electrochemica Acta,2007,53(4):1939-1944.
    [68]董桑林,刘人敏.锂离子电池碳阳极材料的研究进展[J].电源技术,1996,2:84-89.
    [69]Courtney I A,Dahn J R.Electrochemical and in situ X-ray diffraction studies of the reation of lithium with tin oxide composites[J].J.Electrochem Soc.,1997,144:2045-2052.
    [70]Lin C,Martin C R,Scrosatib,et al.Nanom aterial-based Li-ion battery electrodes [J].J.Power Sources,2001,97-98:240-244.
    [71]Subramanian V,Gnanasekar K.I,Rambabu B.Nanocrystalline SnO_2 and Indoped SnO_2 as anode materials for lithium batteries[J].Solid State Ionics.,2004,175:181-184.
    [72]Li H,Shi L H,Lu W,et al.Studies on capacity loss and capacity fading of nano -sized SnSb alloy anode for Li-ion batteries[J].J.Electrochem Soc.,2001,148(8):A915-A922.
    [73]Marten G B,Alexander J B,Peter P E,et al.Novel layered lithium nitridon nickelates:effect of Li vacancy concentration on N co-ordination geometry and Ni oxidation state[J].Chem Commum,1999,1187-1188.
    [74]Niew A R,Disalvo F J.Recent developments in nitrides chemisty[J].Chem Mater,1999,10:2733-2752.
    [75]Pralong V,Souzad C S,Leung K T,et al.Reversibe lithium uptake by C_oP_3 at low potentials:role of the anion[J].Electrochemisty Communication,2002,4:516-520.
    [76]Aurbach D,Ein-eli Y.The correlation between the surface chemistry and the performance of Li-carbon intercalation anodes for rechargeable "rocking-chair"type batteries[J].J Electrochem Soc.,1995,142(5):1746-1755.
    [77]Verbrugge M W,Koch B J.Lithium intercalation of carbon-fiber microelectrodes [J].J Electrochem Soc.,1996,143(1):2410-2420.
    [78]Tossici R,Berrettoni R,Roseden M.Electrochemistry of KC_8 in lithium containing electrolytes and its use in lithium-ion cells[J].J Electrochem Soc.,1997,144(1):1861-1864.
    [79]马树华,国汉举,李季,等.锂离子电池负极碳材料的表面改性与修饰[J].电化学,1996,2:413-419.
    [80]郭华军,李向群,王志兴,等.锂掺杂对石墨电化学性能的影响[J].中国有色金属学报,2003,13(5):1112-1115.
    [81]Guo H J,LI X H,Wang Z X,et al.Mild oxidation treatment of graphite anode for Li-ion batteries[J].J Cent South Univ Technol,2005,12(1):50-54.
    [82]范壮军,李建刚,翟更太,等.球磨时间对硼掺杂石墨材料抗氧化行为的影响[J].新型炭材料,2003,18(1):60-64.
    [83]Kodama M,Fujiura T,Elkawa,et al.Characterization of mesocarbon microbeads prepared by emulsion method[J].Carbon,1991,29(1):43-49.
    [84]杨杭生,张孝彬.机械球磨对石墨结构的影响[J].物理学报,2000,29(3): 522-526.
    [85]Salver D F,Du P A,Tarascon J M,et al.Physical characterization of carbonaceous materials prepared by mechanical grinding[J].J Power Sources,1999,81-82:291-295.
    [86]徐仲愉,郑洪河.铿离子蓄电池碳负极/电解液相容性研究进展Ⅰ碳电极界面化学与碳负极/电解液的相容性[J].电源技术,2000,24(3):171-173.
    [87]Dahn J R,R Fong,vonsacken U.Studies of lithium interclation into carbons using non-aqueous electrochemical cells[J].J.Electrochem.Soc.1990,137:2009-2015.
    [88]Aurbach D,Zinigrad E,Cohen Y,et al.A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions[J].Solid State Ionics,2002,148:405-408.
    [89]Wu H C,Guo Z Z,Wen H P,et al.H.Study the fading mechanism of LiMn_2O_4battery with spherical and flake type graphite as anode materials[J].J.Power Sources,2005,146(2):736-740.
    [90]Kong F,Kostrcki R,Song X,et al.In situ studies of SEI formation[J].J.Power Sources,2001,97-98:58-66.
    [91]Edstr m K,Andersson A M,Bishop A,et al.Carbon electrode morphology and thermal stability of the passivation layer[J].J.Power Sources,2001,97-98:87-91.
    [92]Bar Tow D,Peled E,Burstein L.A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries[J].J.Electrochem.Soc.,1999,146(3):824-832.
    [93]Laik B,Chausse A,Meessina,et al.Analysis of the surface layer on a petroleum coke electrode in tetraglyme solutions of lithium salts[J].Electrochimica Acta,2000,46(5):691-700.
    [94]Kim J S,Park YT.Characteristics of surface films formed at a mesocarbon microbead electrode in a Li-ion battery[J].J.Power Sources,2000,91(2):172-176.
    [95]吴宇平,万春荣,姜长印,等.锂离子二次电池,北京:化学工业出版社,2002:2-5.
    [96]Abraham K M.Direction in lithium battery research and development[J].Electrochimi Acta.1993,38(9):1233-1248.
    [97]George E B.Electrolytes for advanced batteries[J].J Power Sources,1999,81-82:112-118.
    [98]黄峰,周运鸿.锂离子电池电解质现状与发展[J].电池,2001,21(6):290-293.
    [99]Hayashi K,Nemoto Y,Tobishima S,et al.Mixed solvents electrolyte for high lithium metal secondary cells[J],Electrochimica Acta,1999,44(14):2337-2344.
    [100]郭炳煜,李新海,杨松青.化学电源-电池原理及制造技术[M].长沙:中南大学出社,2000.334-343.
    [101]Laik B,Gessier F,Mercier F,et al.Influence of lithium salts on the behavior of a petroleum coke in organic carbonate solutions Electrochimica Acta,1999,44(10):1667-1676.
    [102]Chausse A,Berhil M,Messssina R.A study of the Li/Li~+ couple in DMC and PC solvents(Part 2:Electrochemical studies of the Li/Li~+ couple in LiAsF_6/DMC and LiAsF_6/PC solutions)[J].Electrochimica Acta,1999,4:2365-2370.
    [103]Gores H J,Barthel J M G.Non-aqueous electrolyte solutions:New materials for devices and process based on recent applied researched[J].Pure Appl Chem,1995,67(6):919-924.
    [104]Tarascon J M,Guyoard D.New electrolyte compositions stable over the 0 to 5V voltage range and compatible with the Li_(1+x)Mn_2O_4/carbon Li-ion cellsSolid State Ionics,1994,69(3-4):293-305.
    [105]Hayashi K,Nemoto Y,Tobishima S,et al.Mixed solvents electrolyte for high lithium metal secondary cells[J],Electrochimica Acta,1999,44(14):2337-2344.
    [106]Aurbach D,Ein-Eli Y,Markovosky B,et al.The study of electrolyte solution based on ethylene and dimethyl carbonates for rechargeable Li batteries[J].J Electrochem Soc.,1995,142(9):2873-2882.
    [107]Ein-Eli Y,Thimas S R,Koch V R.The role of SO_2 as an additive to organic Li-ion batteries[J].J.Electrochem Soc,1997,144(4):1159-1165.
    [108]Aurbach D,Gamolsky K,Markovsky B,et al.On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries[J].Electrochimica Acta,2002,47(9):1423-1439.
    [109]Herlern G,Fash B.n-butylamine as solvent for lithium salt electrolytes,structure and properties of concentrated solutions[J].Electroehimica Acta,1996,4(17) 1:2753-2759.
    [110]Horiuchi H,Tsutsumi M,Wstanabe I.Nonaqueous electrolyte for lithium secondary battery[P].JP:10064584A,1998-03-06.
    [111]Wang X,Yaskawa E,Kasuya S.Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries(Ⅰ.Fundamental properties)[J],J Electrochem Soc.,2001,148(10):A1058-A1065.
    [112]Wang X,Yaskawa E,Kasuya S.Nonflammable trimethyl phosphate solvent-containing electrolytes for lithium-ion batteries(Ⅱ.The use of an amorphous carbon anode)[J],J.Electrochem Soc.,2001,148(10):A1066-A1071.
    [113]Hyung Y E,Vissers D R,Amine K.Flame-retardant additives for lithium-ion batteries[J].J Power Sources,2003,119-121:383-387.
    [114]Yamaki J,Yamaki 1,Egashira M,et al.Thermal studies of fluorinated ester as a novel candidate of electrolyte solvent of lithium metal anode rechargeable cells [J].J Power Sources,2001,102(1-2):288-293.
    [115]Zhang S S,Xu K,Jow T R.Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries[J].J.Power Sources,2003,113(1):166-172.
    [116]朱亚薇,董全峰,郑明森,等.锂离子电池耐过充添加剂的研究[J].电池,2006,36(6):168-169.
    [117]Aurbach D,Weissman I,Zaban A,et al.On the role of water contamination in rechargeable Li batteries[J].Electrochimica Acta,2000,45(7):1135-1140.
    [118]Stux A M,Barker J.Additives for inhibiting decomposition oflithium salts and electrolytes containing said additives[P].US:5707760,1998-01-13.
    [119]卢世刚.电动汽车用动力电池的主要发展方向[J].新材料产业,2005,12(4):49-51.
    [120]Sung B P,Sang M L,Ho C S,et al.An alternative method to improve the electrochemical performance of a lithium secondary battery with LiMn_2O_4[J].J.Power Sources,2007,166(1):219-223.
    [121]Sung B P,Sang M L,Ho C S,et al.Improvement of capacity fading resistance of LiMn_2O_4 by amphoteric oxides[J].J.Power Sources,2008,180(2):597-601.
    [122]Shieh D T,Hsieh P.H.,Yang M.H..Effect of mixed LiBOB and LiPF_6 salts on electrochemical and thermal properties in LiMn_2O_4 batteries[J].J.Power Sources,2007,174(2):663-667.
    [123]Guo Y X,Yin Z G,Tao Z Y,et al.An advanced electrolyte for improving surface characteristics of LiMn_2O_4 electrode[J].J.Power Sources,2008,184(2):513-516.
    [124]Li X F,Xu Y L.Novel method to enhance the cycling performance of spinel LiMn_2O_4[J].Electrochemistry Communications 2007,9(8):2023-2026.
    [125]Wang X,Yagi Y,Lee Y S,et al.Storage and cycling perforamcne of stoichiometric spinel at elevated temperature[J].J.Power Sources,2001,97-98,(1):427-429.
    [126]Du Pasquier A,Blyr A,Courjal P,et al.Mechanism for limited 55℃ storage performance of Li_(1.05)Mn_(1.95)O_4 electrodes[J].J.Electrochem Soc.,1999,146(2):428-436.
    [127]Yamane H,Saitoh M,Sano M,et al.,Cycle performance in each state-of-charge in LiMn_2O_4[J]J.Electrochem.Soc.2002,149(12):1514-1520.
    [128]Takahashi K,Saitoh M,Asakura N,et al.Electrochemical properties of lithium manganese oxides with different surface areas for lithium ion batteries[J].J.Power Sources,2004,136(1) 115-121.
    [129]Saitoh M,Sano M,Fujita M,et al.Studies of capacity losses in cycles and storages for a Li_(1.1)Mn_(1.9)O_4 positive electrode[J].J.Electrochem.Soc.,2004,151(1):A17-A22.
    [130]Gunho K,Park J H,Lee J,et al.Effects of anode active materials to the storage-capacity fading on commercial lithium-ion batteries[J].J.Power Sources,2007,174(1):484-492.
    [131]吕东升,李伟善.LiMn_2O_4/LiPF_6-(EC+DEC)溶液界面电化学研究[J].无机材料学报,2004,19(4):801-808.
    [132]Edstrom K,Gustafsson T,Thomas J O,The cathode-electrolyte interface in the Li-ion battery[J].Electrochimica Acta,2004,50(4) 397-403.
    [133]吴川,动力电池及其关键材料的研究:[博士学位论文].北京:北京理工大学,2005.
    [134]Takahashi M,Yoshida T,Ichikawa A,et al.Effect of oxygen deficiency reduction in Mg-doped Mn-spinel on its cell storage performance at high temperature[J].Electrochimica Acta,2006,51(25):5508-5514
    [135]童庆松,杨勇,连锦明.掺钛电解二氧化锰制掺杂LiMn_2O_4的电化学性能[J].无机化学学报,2005,21(12):1784-1790.
    [136]童庆松,刘汉三,林素英,等.掺钛尖晶石锂锰氧化物的合成、结构及电化学性能研究[J].高等学校化学学报,2005,26(2):138-141.
    [137]Li W T,Lucht B L.Inhibition of solid electrolyte interface formation on cathode particles for lithium-ion batteries[J].J.Power Sources,2007,168(1):258-264
    [138]Liu Y,Mi C H,Yuan C Z,et al.Improvement of electrochemical and thermal stability of LiFePO_4 cathode modified by CeO_2[J].J.Electroanalytical Chemistry,2009,628:73-80.
    [139]Guerfi A,Kaneko M,Petitclerc M,et al.LiFePO_4 water-soluble binder electrode for Li-ion batteries[J].J.Power Sources,2007,163(2):1047-1052.
    [140]Zaghib K,Striebel K,Guerfi A,et al.LiFePO_4/polymer/natural graphite:low cost Li-ion batteries[J].Electrochimica Acta 2004,50(2):263-270.
    [141]Zaghib K,Charest P,Guerfi A,et al.Striebel,LiFePO_4 safe Li-ion polymer batteries for clean environment[J].J.Power Sources,2005,146(2):380-385.
    [142]Gu Y J,Zeng C S,Wu H K,et al.Enhanced cycling performance and high energy density of LiFePO_4 based lithium ion batteries[J].Material letters,2007,61(25):4700-4702.
    [143]Indrajeet V T,Vipul M,John N H,et al.Performance of carbon-fiber-containing LiFePO_4 cathodes for high-power applications[J].J.Power Sources,2006,162(2):673-678.
    [144]Guerfi A,Kaneko M,Petitclerc M,et al.LiFePO_4 water-soluble binder electrode for Li-ion batteries[J].J.Power Sources,2007,163(2):1047-1052.
    [145]Indrajeet V T,Vipul M,John N H,et al.Performance of carbon-fiber-containing LiFePO_4 cathodes for high-power applications[J].J.Power Sources,2006,162(2):673-678
    [146]Masaru Y,Kazuki O,Tsutomu I,et al.LiFePO_4-based electrode using micro-porous current collector for high power lithium ion battery[J].J.Power Sources,2007,173(2):545-549.
    [147]Aurbach D,Markovsky B,Salitra Gr,et al.Review on electrode-electrolyte solution interactions,related to cathode materials for Li-ion batteries[J].J.Power Sources,2007,165(2):491-499.
    [148]Amine K,Liu J,Belharouak I.High-temperature storage and cycling of C-LiFePO_4/graphite Li-ion cells[J],Electrochemistry Communications,2005,7(5):669-673.
    [149]Chang H H,Wu H C,Wu N L.Enhanced high-temperature cycle performance of LiFePO_4/carbon batteries by an ion-sieving metal coating on negative electrode[J].Electrochemistry Communications,2008,10(11):1823-1826.
    [150]Tobishima S I,Yamaki J I.A consideration of lithium cell safety[J].J.Power Sources,1999,81-82:882-886.
    [151]陈红玉,唐致远,贺艳兵,等.锂离子电池爆炸机理分析[J].电化学,2006, 12(3):266-279.
    [152]陈红玉,唐致远,卢星河,等.锂离子电池爆炸机理研究[J].化学进展,2006,18(6):823-831.
    [153]Kawamura T,Kimura A,EgashiraM,et a.l Thermal stability of alkyl carbonatemixed-solvent electrolytes for lithium ion cells[J].J.Power Sources,2002,104:260-264.
    [154]MacNeil D D,Lu Z H,Chen Z H,et al.A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J].J.Power Sources,2002,108:8-14.
    [155]Richard M N,Dahn J R.Accelerating rate calorimetry study on thermal stability of lithium intercalated graphite in electrolyte.Ⅰ.experimental[J].J.Electrochem.Sot.,1999,146(6):2068-2077.
    [156]Roth E P,Nagasubramanian G.,Tallant D.R.,et al.SANDIA,Report SAND99-1164,1999.
    [157]Pasquier A D,Disma F,Bowmer T,et al.Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries[J].J.Electrochem.Soc.,1998,145(2):472-477.
    [158]Biensan P,Simon B,Peres J P,et al.On safety of lithium-ion cells J.Power Sources,1999,81-82:906-912.
    [159]Kawamura T,Kimura A,Egashira M,et al.Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells[J].J.Power Sources,2002,104(2):260-264.
    [160]Macneil D D,Dahn J R.The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes Ⅱ[J].J.Electrochem.Soc.2001,148(11)1211-1215.
    [161]Macneil D D,Dahn J R.The Reaction of Charged Cathodes with Nonaqueous Solvents and Electrolytes Ⅰ[J].J.Electrochem.Soc.2001,148(11)1206-1210.
    [162]Takahisa O,Takashi K,Takashi K,et al.Overcharge reaction of lithium-ion batteries[J].J.Power Sources,2005,146(1) 97-100.
    [163]Spontnitza R,Franklin J.Abuse behavior of high-power,lithium-ion cells[J].J.Power Sources.2003,113(1) 81-100.
    [164]Deng B H,Nakamura H,Yoshio M.Comparison and improvement of the high rate performance of different types of LiMn_2O_4 spinels[J].J.Power Sources,2005,141(1):116-121.
    [165]李智敏,罗发,苏晓磊,等.LiMn_2O_4正极材料的合成及点化学性能[J].稀有金属材料与工程,2007,36(8):1382-1385.
    [166]Liu D Q,He Z Z,Liu X Q.Increased cycling stability of AlPO_4-coated LiMn_2O_4 for lithium ion batteries[J]Materials Letters,2007,61(10):4703-4706.
    [167]Liu D Q,Liu X Q,He Z Z.Surface modification by ZnO coating for improving the elevated temperature performance of LiMn_2O_4[J]Journal of Alloys and Compounds,2007,436(1):387-391.
    [168]Kang Y J,Kim JH,Sun Y K.Structural and electrochemical study of Li-Al-Mn-O-F spinel material for lithium secondary batteries[J].J.Power Sources,2005,146(1):237-240.
    [169]Lu W,Belharouak I,Park S H,et al.Isothermal calorimetry investigation of Li_(1+x)Mn_(2-y)AlzO_4 spinel[J].Electrochimica Acta,2007,52(12):5837-5842.
    [170]郝德利,其鲁,王印萍,等.电动自行车用铝塑膜锂离子二次电池的研究[J].北京大学学报(自然科学版),2006,42,增刊:62-66.
    [171]Tarascon J M,Mckinnon W R,Coowar F,et al.Synthesis conditions and oxygen stoichiometry effects on Li insertion into the spinel LiMn_2O_4[J].J Electrochem Soc,1994,141(6):1421-1431.
    [172]Zhu H L,Chen Z Y,Ji S,et al.Influence of different morphologies on electrochemical performance of spinel LiMn_2O_4[J].Solid State Ionics,2008,179(27-32):1788-1793.
    [173]Jaephil C.Correlation of capacity fading of LiMn_2O_4 cathode material on 55℃cycling with their surface area measured by a methylene blue adsorption[J].Solid State Ionics,2001,138(3-4):267-271.
    [174]Cho J,Thackeray M M.Structural Changes of LiMn_2O_4 Spinel Electrodes during Electrochemical Cycling[J].J.Electrochem.Soc.,1999,146(10):3577-3581
    [175]蔡振平,陈晓红,卢世刚,等.改性LiMn_2O_4的高温电化学性能[J].电化学,2004.10(4):446-451.
    [176]Kaoru D,Matsuhiko N,Mohamed Met al.Electrochemical Studies of Li-Ion Extraction and Insertion of LiMn_2O_4 Single Crystal[J].Electrochemical and Solid-State Letters,2001,4(9):151-153.
    [177]Thackeray M M,Kock A D,Rossouw M H,et al.Spinel Electrodes from the Li-Mn-O System for Rechargeable Lithium Battery Applications[J].J.Electrochem.Soc.,1992,139(2):363-366.
    [178]Ohzuku T,Kitagawa M,Hirai T.Electrochemistry of Manganese Dioxide in Lithium Nonaqueous Cell J.Electrochem.Soc.,1990,137(3):769-775.
    [179]Yang C R,Wang Y Y,Wan C C,et al.Composition analysis of the passive film on the carbon electrode of a lithium-ion battery with an EC-based electrolyte [J].J.Power Sources,1998,72:66-70.
    [180]Park Y S,Lee S M,Effects of particle size on the thermal stability of lithiated graphite anode[J].Electrochemica Acta,2009,54(12):3339-3343.
    [181]Chung K Y,Kim K B.Investigations into capacity fading as a result of a Jahn-Teller distortion in 4V LiMn_2O_4 thin film electrodes[J].Electrochemica Acta,2004,49(20):3327-3337.
    [182]Song M Y,Ahn D S,Park H R.Capacity fading of spinel phase LiMn_2O_4 with cycling[J].J.Power Sources,1999,83(1):57-60.
    [183]唐致远,王雷,胡冉.尖晶石型LiMn_2O_4容量衰减因素及改性研究进展[J].材料工程,2006,增刊(1):453-457.
    [184]王志兴,邢志军,李新海,等.非均匀成核法表面包覆氧化铝的尖晶石LiMn_2O_4研究[J].物理化学学报,2004,20(8):790-794.
    [185]王志兴,陈健,李新海,等.Al掺杂对锰酸锂结构与性能的影响[J].电池,2005,35(2):119-120.
    [186]Edstrom K,Gustafsson T,Thomas J O.The cathode-electrolyte interface in the Li-ion battery[J].Electrochimica Acta,2004,50(2):397-403.
    [187]Tetsuya O,Toshiyuki M,Yasuhiro M,et al.Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO_2addition[J].J Electrochem Soc,1997,144(5):1609-1613.
    [188]Wang C,Appleby A,Little F E.Low-temperature characterization of lithium-ion carbon anodes via microperturbation measurement[J].J.Electrochem.Soc.,2002,149(2):A754-759.
    [189]Zhang S S,Xu K,Jow T R.The low temperature performance of li-ion bateries [J].J.Power Sources,2003,115(1):137-145.
    [190]Huang C K,Sakamoto J S,Wolfenstine J,et al.The limits of low temperature performance of Li-ion Cells[J].Electrochem.Soc.,2000,147(8):289-294.
    [191]Smart M C,Ramakumar BV,Surampudi S,et al.Use of organic esters as cosolvents in electrolytes for lithium-ion batteries with improved low temperature performance[J].J.Electrochem.Soc.,2002,149(2):A361-367.
    [192]Smart M C,Ratnakumar B.V,Whitcanack L D,et al.Improved low temperature performance of Lithium-ion cells with quatenrary carbonate-basede lectrolytes[J].J.Power Sources,2003,119-121:349-352.
    [193]Zhang S S,Xu K,Allen J L,et al.Effect of propylene carbonate on the low temperature performance of Li-ion cells[J].J.Power Sources,2002,110(1):137-141.
    [194]Xiao L F,Cao Y L,Ai X P,et al.Optimization of EC-based multi-solvent electrolytes for low temperature applications of lithium-ion batteries[J].Electrochimica Acta,2004,49(27):4857-4863.
    [195]Zhang S S,Xu K.,Jow T.R..Enhanced performance of Li-ion cell with LiBF_4-PC based electrolyte by addition of small amount of LiBOB[J].J.Power Sources,2006,156(2):629-633.
    [196]肖利芬,艾新平,杨汉西,等.锂离子电池用低温电解质溶液研究[J].电池,2004,34(1):10-12.
    [197]Aurbach D,Daroux M.L,Faguy P.W,et al.Identification of Surface Films Formed on Lithium in Dimethoxyethane and Tetrahydrofuran Solutions[J].J.Electrochem.Soc.,1988,135(8):1863-1871.
    [198]Aurbach D,Daroux M.L,Faguy P.W,et al.Identification of Surface Films Formed on Lithium in Propylene Carbonate Solutions[J].J.Electrochem.Soc.,1987,134(5):1611
    [199]田昭武.电化学研究方法.北京:科学出版社,1984.
    [200]查全性等.电极过程动力学导论(第三版).北京:科学出版社,2002.
    [201]曹楚南.张鉴清,电化学阻抗谱导论,北京:科学出版社,2002,24-36.
    [202]Levi M D,Gamolsky K,Aurbach D,et al.Evidence for Slow Droplet Formation during Cubic-to-Tetragonal Phase Transition in Li_xMn_2O_4 Spinel[J].J.Electrochem.Soc.2000,147(1):25-33.
    [203]Gao Y,Dahn J R.Correlation between the growth of the 3.3V discharge plateau and capacity fading in Li_(1+x)Mn_(2-x)O_4 materials[J].Solid State Ionics,1996,84(1):33-40.
    [204]Wang X,Yagi Y,Lee Y.S.,et al.Storage and cycling performance of stoichiometric spinel at elevated temperatures[J].J.Power Sources,2001,97-98(2):427-429.
    [205]Gao Y,Dahn J R.Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications[J].J.Electrochem Soc,1996,143(1):100-114.
    [206]Xia Y Y,Tetsuo S,Takuya F,et al.Correlating Capacity Fading and Structural Changes in Li_(1+y)Mn_(2-y)O_(4-δ) Spinel Cathode Materials[J].J.Electrochem Soc,2001,148(7):A723-729.
    [207]戴忠旭,詹晖,周运鸿,等.尖晶石锂锰氧化物中氧缺陷对材料电化学性能的影响[J].武汉大学学报(理学版),2003,49(3):345-349.
    [208]Lee K,Kim K B.Electrochemical and structure characterization of LiNi_(1-x)Co_xO_2 positive electrode during initial cycling[J].J.Electrochem.Soc.,2000,147(5):1709-1717.
    [209]胡传跃.锂离子电池非水电解液的行为研究:[博士学位论文].长沙:中南大学,2005.
    [210]Iijima S.Helicalmicrotubes of graphitic carbon[J].Nature,1991,354(7):56-58.
    [211]Ajayan P W,Stephan O,Colliex C,et al.Aligned carbon nano-tube arrays formed by cutting a polymer resin nanotube composite[J].Science,1994,265(26):1212-1215.
    [212]魏飞,张强,骞伟中,等.碳纳米管阵列研究进展[J].新型炭材料,2007,22(3):271-281.
    [213]Wang Y Q,Wang J L,Yang J,et al.High-rate LiFePO_4 electrode material synthesized by a novel route from FePO_4·4H_2O[J].Advanced Functional Material,2006,16(3):2135-2140.
    [214]Wang D Y,Li H,Shi S Q,et al.Improving the rate performance of LiFePO_4 by Fe-site doping[J].Electrochimica Acta,2005,50(14):2955-2958.
    [215]刘伯文,耿海龙,王新东,等.粘结剂对锂离子蓄电池性能的影响[J].电源技术,2005,29(5):297-300.
    [216]MacNeil D D,Lu Z H,Chen Z H,et al.A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes[J].J.Power Sources,2002,108(1):8-14.
    [217]Young G L,Jaephil Cho.3-Chloroanisole for overcharge protection of a Li-ion cell[J].Electrochimica Acta,2007,52(25):7404-7408.
    [218]Takahisa.O,Takashi.K,Takami.N,et al.Overcharge reaction of lithium-ion batteries[J].J.Power Sources,2005,146(1) 97-100.
    [219]曾毓群.聚合物锂离子电池安全性能研究及高温性能探讨:[博士学位论文].北京:中国科学院物理研究所,2006.
    [220]胡传跃,李新海,王志兴,等.锂离子电池电解液过充添加剂的行为[J].中国有色金属学报,2004,14(12):2125-2130.
    [221]唐致远,刘强,陈红玉,等.环己基苯过充添加剂在锂离子电池中的应用[J].化工学报,2007,58(2):476-480.
    [222]矿灯用锂离子蓄电池安全性能检验规范,矿安标字(2007)3号.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700