高准直高辐照强度的太阳模拟技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳模拟器是一种在室内环境中模拟不同大气质量条件下太阳光辐照特性如辐照强度、辐照均匀性、辐照稳定性等的试验或定标设备。太阳模拟技术的产生和发展与空间科学技术的发展息息相关,随着航天器姿态控制器的精度越来越高,对太阳模拟器的要求也越来越高,同时随着CPV太阳电池的发展,都需要一种能够真实反应太阳32′张角的太阳模拟器即高准直太阳模拟器。
     为研制一种高准直高辐照度的太阳模拟器,本文对太阳模拟器技术进行了较为详细的研究。首先,本文研究了太阳模拟器的光学系统,针对光学系统中的椭球面聚光镜本文研究了其光学参数确定的依据,其聚光特性,并在此基础上创新性的提出了一种变形椭球面聚光镜、针对光学系统中的光学积分器本文研究了元素透镜数量及元素透镜形状对辐照面均匀性的影响、针对光学系统中的准直物镜本文研究了其结构形式,并提出将摄远物镜应用于太阳模拟器准直系统,这种物镜具有短的后截距,非常适用于要求结构紧凑的太阳模拟器光学系统,在光学系统研究的基础上,本文对某一高准直的太阳模拟光学系统进行了设计,创新性的提出了将小放大倍率的椭球面聚光镜应用于高准直太阳模拟光学系统中,不再以实现大包容角来收评价能量利用率,而是以充分利用轴上发光点附近能量为标准,经仿真比较验证了应用这种小放大倍率的椭球面聚光镜可以大幅提高高准直太阳模拟器的辐照强度;其次本文结合我所太阳模拟器的研制经历研究了太阳模拟器的机械结构形式和系统组成;再次,本文对椭球面聚光镜的加工和检测方法进行了研究,最后,本文对太阳模拟器的技术指标检测方法进行了研究。
     本文进行分析时采用的方法包括基于MATLAB的数值分析、基于ZEMAX的光学系统优化和基于LIGHTTOOLS的蒙特卡洛光线追迹仿真分析。
     本文的创新之处如下:
     1提出一种可提高太阳模拟器均匀性的变形椭球面聚光镜,该变形椭球面聚光镜由标准椭球面方程变形而来,可以通过三个变形系数可控制其面形,选择合适的变形系数可以提高太阳模拟器辐照面的均匀性。
     2提出将摄远型物镜应用于太阳模拟器准直系统,改变以往采用倒置望远物镜而形成的“长脖子”,采用摄远型物镜可以大大缩短系统长度,非常适用于要求结构紧凑的太阳模拟器。
     3提出将小放大倍率的椭球面聚光镜应用到高准直太阳模拟光学系统中的思想,不再以大包容角为评价能量收集效率指标,而是将充分利用轴上发光点附近的能量为指标,该思想通过在LIGHTTOOLS中建立的仿真比较模型得到了验证。
     高准直的太阳模拟器是太阳敏感器地面精度测量和CPV电池标定的必备仪器,但是由于这种太阳模拟器的准直角极小,因此通过光学系统的能量被极小的准直光阑限制,所以要达到高的辐照强度是极具难度的,本文研究的高准直高辐照强度的太阳模拟技术是具有重要意义的研究领域。
Solar Simulator is an important test or calibration equipment used to simulate thecharacteristics of the solar radiation under various conditions of air mass in the room.The development of solar simulation technology is closely related to the developmentof space science and technology in our country, as the precision of spacecraft attitudecontroller is increasingly high, requirements for solar simulators are becoming moresophisticated, and with the development of CPV solar cells, a solar simulation devicecalled highly collimated solar simulator, which can reflect the true sun32' inclination,is demanded.
     In order to develop a highly collimated solar simulator with high intensity, thesolar simulation technology is studied in detail in this paper. Firstly, the solarsimulation optical system is studied, for the ellipsoidal condenser in this opticalsystem, its parameters and its concentrating characteristics are researched, and adeformed ellipsoid condenser is innovatively presented based on the theory above, forthe optical integrator in the optical system, the impact of the numbers and shapes ofthe elements to the surface irradiance uniformity is also studied, for the collimatinglens in the optical system, its structures are studied, and telephoto lens which can beused as solar simulator collimating lens are proposed in the paper, this lens have ashort back focal, and it is very suitable for the applications requiring a compact solarsimulation optical System. On the basis of the solar simulation optical system research,a highly collimated solar simulation optical system is designed, and the theory using small magnification ellipsoid condenser to the highly collimated solar simulationoptical system is innovatively proposed, the efficiency evaluation by achieving aninclusive angle to collect energy is no longer appropriate, instead the evaluation bytaking advantages of near-axis point energy is useful, and the theory that smallmagnification ellipsoidal condenser can significantly improve the radiation intensityof the highly collimated solar simulator is verified after comparing two simulationmodels. Secondly the solar simulator mechanical structure and system components arestudied combined with our solar simulator development; Again, the processing anddetection methods of ellipsoidal condenser are studied in this paper, finally, the solarsimulator technical indicator detection methods are studied as well.
     In this paper, the analysis methods including numerical analysis using MATLAB,optimization based on ZEMAX, and Monte Carlo ray tracing simulation analysisbased LIGHTTOOLS are used.
     The innovations in this paper are as follows:
     1. A deformed is proposed, it can improve the uniformity of the solar simulator,the deformed condenser is derived from the standard ellipsoid condenser, its surfaceshape can be controlled by three deformation coefficients, and it can increase thesurface irradiation uniformity of the solar simulator if the appropriate deformationcoefficients are selected.
     2. The telephoto lens used in solar simulators as collimation system is proposed,it can change the "long neck" of the solar simulator by using the inverted dualseparated lens, the length of the solar simulator is greatly becoming short by using atelephoto type lens, which is very suitable for the applications requiring for a compactsolar simulation device.
     3. The small magnification applied to the highly collimated solar simulationoptical system is proposed, the ellipsoid condenser with large collection angle is nolonger energy efficiency evaluation, while the evaluation by taking full advantages ofnear-axis luminous point is instead, the theory is verified by two comparingsimulation models created in LIGHTTOOLS software.
     The highly collimated solar simulator is an essential equipment applied to theprecision measurement of the sun sensor and the calibration of CPV cells, howeverbecause of the tiny collimation angles of the highly collimated solar simulator, theenergy emitting from the collimator aperture is very small, so it is very difficult toachieve high intensity for highly collimated solar simulators, the technology ofhighly collimated solar simulator with high intensity is of great significance.
引文
[1] Yasmín Detrés Cardona.Effects of Ultraviolet Radiation on the Tropical MarineMacrophyte Thalassia Testudinum [D].USA: University of Puerto Rico MayaguezCampus,2001
    [2] Denis Gaёtan Dufour.Laboratory Intercomparison of Ozone and NitrogenDioxide Spectral Intensities in the Visible and Infrared Using SCISAT-1[D].Canada:University of Toronto,2006
    [3] Frank Fischer, Beate Volkmer, Stefan Puschmann, Etal.Risk Estimation of SkinDamage due to ultrashort Pulsed, Focused Near-infrared Laser Irradiation at800nm[J].Journal of Biomedical Optics.2008,13(4): p041320(1)-041320(8)
    [4] C. Domínguez, I. Antón, G. Sala.Solar simulator for indoor characterization oflarge area high-concentration PV Modules [A].Photovoltaic Specialists Conference,2008. PVSC '08.33rd IEEE[C],2008, p1-5
    [5] Dominguez Cesar, Anton Ignacio, Sala Gabriel.Solar simulator for concentratorphotovoltaic system[J].Optics Express,2008,16(19):p14894-14901
    [6] Petrash Jorg, Coray Patrick, Meier Anton, etal.A novel50kW11000sunshigh-flux solar simulator based on an array of xenon arc lamps[J].Journal of SolarEnergy Engineering:Transactions of the ASME,2007,129(4):p405-411.
    [7]万松.太阳模拟器的光学设计与应用研究[D]:[硕士学位论文].上海:上海交通大学,2012
    [8]杜景龙.蝶式斯特林太阳热发电系统太阳模拟器的设计与实验研究[D]:[博士学位论文].北京:中国科学院工程热物理研究所,2011
    [9]钟民.一种太阳模拟器的光学系统设计及辐照特性研究[D]:[硕士学位论文].长春:长春理工大学,2010
    [10]黄本诚.空间模拟器设计[M].北京:宇航出版社,1994:p169-189
    [11]刘石,张国玉,孙高飞等.具有一个太阳常量的高准直太阳模拟器光学系统设计[J].光子学报,
    [12]陈家奇,陈兰峰,王丽等.高准直太阳模拟器的设计与仿真[J].光机电信息,2011,28(11):p69-74
    [13]Steve Askins, Sean Taylor, Cesar Dominguez, etal. Realization of a solar simulator for production testing of HCPV modules[C]. Proc. EUPVSEC,23rd European Photovoltaic Solar Energy Conference,2008,
    [14]Cesar Domi nguez, Ignacio Anton, Gabriel Sala. Solar simulator for concentrator photovoltaic systems[J]. OPTICS EXPRESS,2008,16(19):p14894-14901
    [15]A. Damiano, I. Marongiu, C. Musio, etal. Concentrator Photovoltaic standards: Experimental Analyses of Technical Requirements[C]. Industrial Electronics Society, IECON2013-39th Annual Conference of the IEEE,2013:p8074-8079
    [16]Juan C. M. Anton, Jose A. Gomez-Pedrero, Daniel Vazquez, etal. System for variable spectra solar light source[J]. Optical Modeling and Measurements for Solar Energy Systems Ⅲ, Proc. Of SPIE,2009,7410(741009):p1-8
    [17]杨林华,李竑松.国外大型太阳模拟器研制技术概述[J].航天器环境工程,2009,26(2):p162-167.
    [18]安桂芳.气象探空仪试验用太阳模拟器研究[D]:[硕士学位论文].长春:长春理工大学,2009
    [19]张容,李竑松,向艳红等.KFTA太阳模拟器研制[J].航天器环境工程,2009,26(6):p548-553
    [20]任建岳,苏克强,王兵等.真空应用太阳模拟灯及其灯阵的研制[J].光学精密工程,2010,18(8):p1699-1706
    [21]Hiroshi Amoh. Design for Multi-Solar Simulator[C]. Optical Science and Technology, the SPIE49th Annual Meeting. International Society for Optics and Photonics,2004:p192-199.
    [22]H. B. Serreze, H. M. Sobhie, S. J. Hogan. Solar Simulators-Beyond Class A[C]. Photovoltaic Specialists Conference (PVSC),200934th IEEE,2009: p000100-000105
    [23]Stephen J. Polly, Zachary S. Bittner, Mitch F. Bennett, etal. Development of a Multi-source Solar simulator for spatial uniformity and close spectral matching to AMO an AM1.5[C]. Photovoltaic Specialists Conference (PVSC),201137th IEEE,2011:p001739-001743.
    [24]Jawad Sarwar, Grigoris Georgakis, Robert LaChance, etal. Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications[J]. Solar Energy,100(2014):p179-194
    [25]H. B. Serreze, J. E. Burns, M. Stein, et al. Anew generation of compact solar simulators[C]. Photovoltaic Specialists Conference (PVSC),201238th IEEE,2012: p000459-000463.
    [26]Arkady Feldman. High throughput illumination systems for solar simulators and photoresist exposure[J]. Nonimaging Optics:Efficient Design for Illumination and Solar Concentration Ⅶ, Proc. Of SPIE,2010:p77850H1-77850H8
    [27]Bart Van Giel, Youri Meuret, Hugo Thienpont. Using a fly's eye integrator in efficient illumination engines with multiple light-emitting diode light sources[J]. Optical Engineering,2007,46(4):p043001-043006
    [28]David B Snyder, David A. Wolford. A newton-raphson method approach to adjusting Multi-source Solar simulators[C]. Photovoltaic Specialists Conference (PVSC),201238th IEEE,2012:p001318-001320
    [29]H. Rehn, U. hartwig. A solar simulator design for concentrating Photovoltaics[C]. Nonimaging Optics:Efficient Design for Illumination and Solar Concentration Ⅶ, Proc. Of SPIE,2010:p77850F1-77850F7
    [30]Mauro Pravettoni, Matthew Norton, Tuomas Aitasalo, etal. Electrical characterization of concentrator PV cells:A comparison between outdoor testing under direct solar radiation and indoor measurements on a high intensity solar simulator[J]. Photovoltaic Specialists Conference (PVSC),201035th IEEE,2010: p002729-002734.
    [31]Mauro Pravettoni, Roberto Galleano, Tuomas Aitasalo, etal. From an existing large area pulsed solar simulator to a high intensity pulsed solar simulator: characterization standard classification and first results at ESTI[C]. Photovoltaic Specialists Conference (PVSC),201035th IEEE,2010:p002724-002728
    [32]Anon Namin, Chaya Jivacate, Dhirayut Chenvidhya, etal. Determination of solar cell electrical parameters and resistances using color and white LED-based solar simulators with high amplitude pulse input voltages[J]. Renewable Energy,54(2013): p131-137
    [33]Shogo Kohraku, Kosuke Kurokawa. New methods for solar cells measurement by LED solar simulator[C].3rd world conference on Photovoltaic Energy Conversion, Osaka, May11-182003:p1977-1980
    [34]M. Bliss, T. R. Betts, R. Gottschalg. Advantages in using leds as the main light source in solar simulators for measuring PV device characteristics[C]. Raliability of Photovoltaic Cells, Modules, Components, and Systems, Proc. Of SPIE,2008: p7048071-70480711.
    [35]Ali M. Bazzi, Zach Klein, Micah Sweeney, etal. Solid-State Solar Simulator[J]. IEEE transactions on industry applications,2012,48(4):p1195-1202
    [36]Yuki Tsuno, Koichi Kamisako, Kosuke Kurokawa. New generation of PV module rating by led solar simulator-A novel approach and its capabilities[J].2008IEEE Photovaltaic Specialists Conference,2008:p1-5
    [37]周卫华,周汉昌.LED太阳模拟器的研究[J].红外,2009,30(3):p46-48
    [38]苏拾,张国玉,付芸等.太阳模拟器的新发展[J].激光与光电子学发展,2012,07:p21-28
    [39]B. L. Sopori, C. Marshall. Design of a fiber optic based solar simulator[C]. Photovoltaic Specialists Conference,1991, Conference Record of the Twenty Second IEEE,1991:p783-788
    [40]黄本诚.KM6载人航天器空间环境试验设备[J].中国空间科学技术,2002,(3):p1-5+26
    [41]庞贺伟,黄本诚,臧友竹等.KM6太阳模拟器设计概述[J].航天器环境工程,2006,23(3):p125-133
    [42]李竑松.KFTA太阳模拟器辐照均匀性计算[J].航天器环境工程,2004,21(3):p29-32
    [43]阎勇夹,砖柿,姜尝党.KFTA太阳模拟器辐照均匀性仿真[J].航天器环境工程,2006,23(5):p288-292
    [44]曹建明.大面积稳态太阳模拟器的光学设计[D]:[硕士学位论文].上海:上海交通大学,2011
    [45]徐亮.月亮模拟器光学系统设计与辐照度均匀性分析[D]:[硕士学位论文].长春:长春理工大学,2008
    [46]王文生.应用光学[M].武汉:华中科技大学出版社,2010
    [47]王浚,黄本诚,万才大等.环境模拟技术[M].北京:国防工业出版社,1996
    [48]仲跻功.太阳模拟器光学系统的几个问题[J].太阳能学报,1983,4(2):p187-193
    [49]赵吉林,仲跻功,陈兴.TM-3000A1太阳模拟器的研究[J].太阳能学报,1981,2(4):p417-424
    [50]刘洪波.太阳模拟技术[J].光学精密工程,2001,9(2):p177-181
    [51]Henning Rehn. Collection efficiency of conical reflectors[C]. Nonimaging Optics and Efficient Illumination Systems, Proc. Of SPIE, Bellingham,2004,5529: p157-165
    [52]Mingjiao Sun, Guoyu Zhang, Bing Yang, etal. Optical system design of solar simulator for testing meteorological radiation instrument[C].2012international conference on Optoelectronics and Microelectronics,2012:p600-603
    [53]仲跻功.非球面聚光镜辐照度分布的汁算方法[J].太阳能学报,1985,6(1):p41-47
    [54]杨海波,王柏林,杜智明.氙灯抛物面反射器的优化设计[J].光电技术应用,2009,24(1):p43-45
    [55]仲跻功.提高光学积分器均匀化效果的有关问题[J].光学精密工程,1983,5:p28-32
    [56]高雁,刘洪波,王丽.太阳模拟技术[J].中国光学与应用光学,2010,3(2):p104-111
    [57]王瑜,沈永财,李湘宁等,一种适用于CPV的太阳模拟器的光学结构和分析[J].光学仪器,2013,35(3):p40-45
    [58]杨林华,闫达远,史瑞良.积分球太阳辐照模拟源的研制[J].航天器环境工程,2005,22(2):p116-119
    [59]Afshin M. Andreas, Daryl R. Myers. Pulse analysis spectroradiometer system for measuring the spectral distribution of flash solar simulators[C]. Optical Modeling and Measurements for Solar Energy Systems Ⅱ, Proc. Of SPIE,2008: p7046011-70460111
    [60]杨林华,史瑞良,范宁.高辐照度太阳紫外辐照源研制技术[J].航天器环境工程,2004,21(4):p29-34
    [61]Tasshi Dennis, John B. Schlager, Hao-Chih Yuan, etal. A Novel solar simulator based on a super-continuum laser[C]. Photovoltaic Specialists Conference (PVSC),201238th IEEE,2012:p001845-001848.
    [62]刘超博,张国玉.太阳模拟器光学系统设计[J].长春理工大学学报(自然科学版),2010,33(1):p14-17
    [63]王志明,龚振邦,魏光谱等.用于太阳电池测试的太阳模拟技术[J].光学精密工程,2009,17(7):p1542-1547
    [64]杜景龙,唐大伟,黄湘.太阳模拟器的研究概况及发展趋势[J].太阳能学报,2012,33(增刊):p70-76
    [65]Yasuyuki Ota, Kensuke Nishioka. Total simulator for concentrator photovoltaic modules using ray-trace and circuit simulators[C]. Photovoltaic Specialists Conference (PVSC),200934th IEEE. IEEE,2009:p002416-002418.
    [66]Sergey Kudaev, Peter Schreiber. Parametric design of Non-imaging Collimators[C]. International Optical Design Conference2006, SPIE-OSA,2006: P6342121-6342128
    [67]刘旭,李海峰.现代投影显示技术[M].杭州:浙江大学出版社,2009
    [68]邵若燕,林文正,刘建军等.连续氙灯在太阳模拟器中的应用研究[J].光源与照明,2008,(4):p18-20
    [69]张岩.超高亮短弧放电灯的反射光利用效率[J].现代应用光学,2008,(3):p24-27
    [70]http://www.hb-optical.com.cn/products/reflectors/conrf.htm [0L]
    [71]胡志威,彭润玲,秦汉等.Lighttools软件在均匀光分布的照明系统设计中的应用[J].光学仪器,2012,34(4):p49-53
    [72]匡丽娟,翟金会,阮玉等.复眼透镜阵列应用于均匀照明系统的特性研究[J].光学与光电技术,2005,3(6):p29-31
    [73]安桂芳,张国玉,苏拾等.利用光学积分器提高太阳模拟器辐照均匀性的分析[J].长春理工大学学报(自然科学版),2010,33(1):p1-3
    [74]张国玉,吕文华,贺晓雷等.太阳模拟器辐照均匀性分析[J].中国光学与应用光学,2009,2(1):p41-45
    [75]付东辉.太阳模拟器中长方形光学积分器的应用于研究[J].光机电信息,2011,28(12):p70-72
    [76]刘钧,高明.光学设计[M].北京:国防工业出版社,2012
    [77]中国航空材料手册编辑委员会.中国航空材料手册:第7卷:塑料透明材料绝缘材料[S].北京:中国标准出版社
    [78]Paul R. Yoder, Jr..光机系统设计(原书第三版)[M].北京:机械工业出版社,2010
    [79]李胜怡.大中型光学非球面镜制造与测量新技术[M].北京:国防工业出版社,2011
    [80]潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社,2004
    [81]宋淑梅,陈亚,吕学峰等.大口径轻质非球面反射镜制造技术研究[J].光学技术,2005,31(2):p246-251
    [82]刘洪波,高雁,王丽等.高倍聚光太阳模拟器的设计[J].中国光学,2011,4(6):p594-599
    [83]张权,张璞扬,郝沛明等.大型非球面镜的加工和检测[J].光学技术,2001,27(3):p204-208
    [84]全国太阳光伏能源系统标准化委员会.GB/T12637-1990太阳模拟器通用规范[S].北京:中国标准出版社,1990
    [85]FANG W, YU B, WANG Y, etal. Solar irradiance absolute radiometers and solar irradiance measurement on spacecraft[J]. Chinese Journal of Optics and Applied Optics,2009,1:p003.
    [86]谷立山.大辐照面AM0太阳模拟器检测[J].分析仪器,2013,(4):p83-87
    [87]ANSI E927-2010《光伏器件测试:太阳模拟器标准规范》[S].
    [88]杨照金.空间光学仪器设备及其校准检测技术[M].北京:中国计量出版社,2009
    [89]J. Thongpron, S. Lohapetch, K. Kirtikara. Static parameters of solar cells determined from solar simulators using quarts tungsten halogen lamps and super bright light emitting diodes[C]. Photovoltaic Energy Conversion, Conference Record of the2006IEEE4th World Conference on. IEEE,2006,2:p2235-2237
    [90]M. Bennett, R. Podlesny. Two source simulator for improved solar simulation[C]. Photovoltaic Specialists Conference,1990, Conference Record of the Twenty First IEEE. IEEE,1990:p1438-1442
    [91]Louis C. Kilmer. The design of a more accurate, higher fidelity dual source air mass zero solar simulator[C]. Photovoltaic Energy Conversion,1994, Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference-1994,1994IEEE First World Conference on. IEEE,1994,2:p2165-2168
    [92]Ralf Adelhelm, Detlev Berger. Requirement for a large area solar simulator regarding the measurement of MJ solar cells[C]. Photovoltaic Energy Conversion2003, Proceedings of3rd World Conference on IEEE,2003,1:p821-824
    [93]王素平,凌健博,刘立伟等.一种应用于太阳仿真器的照明系统设计[J].光电工程,2006,09:p32-34+41
    [94]单秋莎,张国玉,刘石等.太阳模拟器的拉赫不变量传递[J].中国光学,2012,5(6):p639-645.
    [95]高越.太阳模拟器装调方法与测试技术研究[D]:[硕士学位论文].长春:长春理工大学,2012
    [96]罗青青.宽光谱太阳模拟器的理论分析与整体设计[D]:[硕士学位论文].天津:天津大学,2009
    [97]李倩.高辐照度太阳模拟器光源的初步研究[D]:[硕士学位论文].合肥:中国科学技术大学,2011
    [98]潘永强,白涛,杭凌侠.太阳模拟器AM0型滤光片及其稳定性研究[J].红外与激光工程,2013,05:p1306-1310
    [99]张林华.多环境参数人工模拟技术研究[D]:[博士学位论文].西安:西安建筑科技大学,2005
    [100]吴大军.太阳模拟器辐照度控制技术研究[D]:[硕士学位论文].北京:国防科学技术大学,2006
    [101]尹德金,石雷兵,周碧红.太阳模拟器辐照不稳定性测试方法[J].上海计量测试,2012,05:p5-7+16
    [102]高玲.发散光输出全光谱太阳模拟器的研究[D]:[硕士学位论文].长春:长春理工大学,2012
    [103]曹建明,徐林,肖娇,万松.空间太阳电池帆板测试的大面积稳态模拟器光学设计[J].太阳能学报,2012,06:p980-985
    [104]袁亚飞,张亚,杨亦强等.太阳模拟器光照不均匀性的研究[J].宇航计测技术,2011,06:p73-77
    [105]高越,张国玉,郑茹等.光学积分器对太阳模拟器辐照均匀性的影响[J].光学学报,2012,06:p193-198
    [106]熊利民,孙皓.太阳能电池及太阳模拟器光源的计量技术研究[J].中国计量,2010,07:p70-72
    [107]王志明.在线太阳电池测试系统关键技术研究[D]:[硕士学位论文].上海:上海大学,2009
    [108]陈文志,蒋绿林,姜黎等.太阳模拟器的光谱设计实验研究[J].光学学报,2011,02:p226-231
    [109]孟庆龙,王元.全光谱日光模拟器的辐照特性仿真研究与优化[J].太阳能学报,2012,01:p73-80
    [110]张海燕.基于平面镜反射的聚光光伏系统研究[D]:[硕士学位论文].合肥:合肥工业大学,2012
    [111]刘石,张国玉,孙高飞等.太阳模拟器用光学积分器设计[J].光子学报,2013,04:p467-470
    [112]I. Anton, R. Solar, G. Sala, etal. IV testing of concentration modules and cells with Non-uniform light pattens[C]. Proceedings of the17th European Photovoltaic Solar Energy Conference and Exhibition,2001:p611-614
    [113]F. Nagamine, R. Shimokawa, M. Suzuki, etal. New solar simulator for Multi-Junction solar cell measurements[C]. Photovoltaic Specialists Conference,1993., Conference Record of the Twenty Third IEEE. IEEE,1993:p686-690
    [114]Yuqin Zong, Steven W. Brown, B. Carol Johnson, etal. Simple spectral stray light correction method for arrary spectroradiometers[J]. Applied Optics,45(6): p1111-1119
    [115]John C. Nocerino, Simon H. Liu. Solar simulator air mass zero calibration method[]. Photovoltaic Specialists Conference (PVSC),201035th IEEE. IEEE,2010: p002590-002593
    [116]Howard W. Yoon, Brian P. Dougherty, Vladimir B. Khromchenko. Spectroradiometric characterization of the NIST plused solar simulator[C]. SPIE Solar Energy+Technology. International Society for Optics and Photonics,2009:p741008-741008-12
    [117]F. Nagamine, R. Shimokawa, T. Abe, etal. Wide-view-angle absolute cavity radiometer for solar simulator use[C]. Photovoltaic Energy Conversion,1994, Conference Record of the Twenty Fourth. IEEE Photovoltaic Specialists Conference1994,1994IEEE First World Conference on. IEEE,1994,1:p867-870
    [118]Doug Jungwirth, Lynne C. Eigler, Steve Espiritu. Advancements in solar simulators for terrestrial solar cells at high concentration (500to5000Suns) levels[C], Photovoltaic Specialists Conference,2008. PVSC'08.33rd IEEE. IEEE,2008:p1-6
    [119]Jeffrey F. Wheeldon. Calibrated high-efficiency testing and modelling methodologies for concentrated multi-junction solar cells[C]. VLSI Test Symposium (VTS),2011IEEE29th. IEEE,2011:p209-209.
    [120]Kyle H. Montgomery, David M. Wilt, Alex Howard, etal. Characterization of a TS-space quad-source solar simulator[C]. Photovoltaic Specialists Conference (PVSC),201238th IEEE. IEEE,2012:p001517-001522
    [121]Mauro Pravettoni, Monica Cadruvi, Diego Pavanello, etal. Characterization of CPV cells on a high intensity solar simulator:a detailed uncertainty analysis[C]. Photovoltaic Specialists Conference (PVSC),201137th IEEE. IEEE,2011:p001762-001767
    [122]Azen Y. Liu, S. T. Shao, S. B. Chang. Using various pulse durations and reference cells on Long-pulse solar simulator for CIGS Thin-Film PV module performance measurements[C]. Engineering and Technology (S-CET),2012Spring Congress on. IEEE,2012:p1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700