基于聚焦离子束技术的微刀具制造方法及关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着制造业向微型化发展的趋势,微小型系统、精密装备仪器装置、微小型结构件等的需求日益迫切,对相应的加工技术提出了更高的要求。微细切削是一种适应多种材料微小型零件或结构精密加工需求的微细加工技术,而微细切削刀具作为发展微细切削加工技术的重要基础技术,其制备方法一直是制约微细切削技术发展的关键技术之一,特别是具有微米级特征尺寸,纳米级锋锐刃口及复杂形状微刀具的制备更是其中的难点。本文针对相应的微细切削加工需求和存在的问题,研究了基于聚焦离子束(FIB)铣削技术制备微细切削刀具的方法,并对加工工艺、刃口测量、实际应用等关键技术开展了系统的研究,解决了微刀具制造中的难点,提高了我国工具行业对微细切削刀具的自主开发能力。
     本文首先搭建了基于FIB技术制备微刀具的系统平台,将聚焦离子束/扫描电子显微镜(FIB/SEM)双束系统与样品旋转器相结合,精确控制了刀具相对离子束的方位,解决了微刀具制备中多自由度加工和高精度定位的技术瓶颈。
     提出了基于FIB铣削技术制备微刀具的加工方法,优化了制备流程及加工工艺,获得了具有纳米级锋锐刃口、高精度特征尺寸以及各种复杂形状的微刀具。研究了微刀具的超精密切削性能,分析了硬质合金(WC)、立方氮化硼(CBN)、聚晶金刚石(PCD)以及单晶金刚石(SCD)等典型材料的切槽微刀具在不同的切削参数下对加工结果的影响。
     研究了利用扫描电子显微镜(SEM)和原子力显微镜(AFM)测量微刀具刃口半径的方法,利用FIB修整AFM探针的方法实现了微刀具刃口轮廓的高精度测量,并对测量结果进行了最小二乘拟合以及探针展宽效应的修正,获得了刃口半径小于30nm的测量及评定方法。
     将FIB制备的微刀具应用于微光学元件及其模具的开发中,根据光学元件的加工需求进行微刀具的设计,采用FIB制备的微刀具实现了衍射微光学元件、菲涅耳反射镜、正弦调制模板等微光学元件的超精密车削加工,为微光学元件的制造开辟了新的途径。
Recently, because of the miniaturization tendency of manufacturing, the needs for micro-systems, precision devices and equipment and miniature three-dimensional structures become increasingly urgent, and corresponding machining technologies have higher demands. Micro-cutting is a micrometer-nanometer machining technology that adapts to processing demand of microminiature parts or structures with a variety of materials. Micro-cutting tools technology is important basis of developing micro-machining. Continuously, its preparation method is one of key technologies limiting the development of micrometer-nanometer machining, and it is especially difficult for the preparation for micro-tools with micron feature sizes, nano-scale sharp cutting edge and complicated shapes. For the demands and existing problems of micro-machining, a novel method of micro-tools preparation using focused ion beam (FIB) milling was presented, and study on the key technologies such as machining technique, practical applications, measurement for cutting edge radius of micro-tools have been carried out systematically. As a result, some of the difficulties in micro-cutting tools manufacturing were solved and the ability to develop independently for tool industry in China was improved.
     Firstly, the system platform of micro-tools preparation by FIB technology was set up, which combines FIB/SEM dual-beam system with a sample rotation axis. Based on the system, the relative orientation of micro-tools and focused ion beam was controlled precisely so that the technical bottleneck was resolved for machining of multi-degree of freedom and high-precision position.
     Then, the machining method by FIB milling was presented for micro-tools preparation. The preparation processes and processing technology were optimized and thus micro-tools were obtained with nano-scale sharp cutting edge profile, high-precision feather sizes and various shapes. Ultra-precision cutting performances of the FIB-fabricated micro-tools were evaluated by analyzing micro-grooving tools of typical materials, such as tungsten carbide (WC), cubic boron nitride (CBN), polycrystalline diamond (PCD) and single-crystal diamond (SCD), impact on processing results with different cutting parameters.
     The measuring methods of micro-tools cutting edge radius of curvature were studied respectively utilizing scanning electron microscope (SEM) and atomic force microscope (AFM). High-precision measurement of cutting edge profile was achieved by using FIB-tailoring AFM probe. Moreover, measuring results were assessed by least-squares fitting and elimination of probe broadening-effect. Thereby, measurement and evaluation method of tools cutting edge radii of curvature of less than 30 nanometers was acquired.
     Finally, FIB-fabricated tools were applied for the development of micro-optical components and corresponding moulds. The micro-tools were firstly designed and fabricated by FIB according to demands of micro-optical components processing, and then they were used for ultra-precision turning of diffractive micro-optical elements, Fresnel reflectors, sinusoidal modulation template, etc. This opened new avenue for micro-optical components manufacturing.
引文
[1]罗塔尔·库格勒,微加工技术之现状,光机电信息,2008(2):38~42
    [2] Kurita T,Hattori M,Development of new-concept desk top size machine tool,International Journal of Machine Tools & Manufacture Design Research and Application,2005(45):959~965
    [3]杨叔子,独立自主地发展中国现代制造业,院士论坛,2005,9:27.
    [4]苑伟政,马炳和,微机械与微细加工技术,西安:西北工业大学出版社,2001
    [5]刘战强,微切削加工技术,工具技术,2006,40(3):28~34
    [6] Fang, F. Z.,Liu, K.,T. Kurfess,Tool-based Micro Machining and Applications in MEMS,MEMS/NEMS Handbook: Techniques and Applications,edited by C. T. Leondes,published by Kluwer Academic Press, Massachusetts,USA,2005,III:63~126
    [7] Fang, F. Z.,Liu, Y. C.,On minimum exit-burr in micro cutting, Journal of Micromechanics and Microengineering,2004,14:984~988
    [8] Fang, F. Z.,Wu, H.,Liu, X. D.,Tool geometry study in micro machining,Journal of Micromechanics and Microengineering,2003,13:726~731
    [9]刘志兵,王西彬,解丽静等,微细切削刀具的特征及其制备技术,工具技术,2006,40(10):16~19
    [10] Th Schaller,L Bohn,J Mayer,Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills,Precision Engineering,1999,23:229~235
    [11] T Masuzawa, M Yamaguchi, M Fujino, Surface finishing of micropins produced by WEDG, Annals of the CIRP, 2005, 54 (1):171~174
    [12] D. P. Adams,M. J. Vasile, G. Benavides,Micromilling of metal alloys with focused ion beam fabricated tools,Precision Engineering,2001,25:107~113
    [13] .J Schmidt, H Tritschler,Improvement of micro end milling tools through variation of tool manufacturing method and geometry,International Journal of Nonlinear Sciences and Numerical Simulation,2002,3:595~598
    [14] T. Schaller,L. Bohn,J. Mayer,Microstructure grooves with a width of less than 50μm cut with ground hard metal micro end mills,Precision Engineering,1999,23:229~235
    [15] E. Uhlmann, K. Schauer , Dynamic Load and Strain Analysis for the Optimization of Micro End Mills, Annals of the CIRP,2005,54(1):75~78
    [16] H. Ohmori, K. Katahira,Y. Uehara, Improvement of Mechanical Strength of Micro Tools by Controlling Surface Characteristics, Annals of the CIRP, 2003, 52(2):102~105
    [17] H. Onikural,O. Ohnishi,Y. Take,Fabrication of Micro Carbide Tools by Ultrasonic Vibration Grinding,Annals of the CIRP,2000,49(1):257~260
    [18] H. Suzuki,T. Moriwaki,Y. Yamamoto,Precision Cutting of Aspherical Ceramic Molds with Micro PCD Milling Tool,Annals of the CIRP,2007,56(1):131~134
    [19] W. K. Chen,T. Kuriyagawa,H. Huang,Machining of micro aspherical mould inserts,Precision Engineering,2005,29(3):315~323
    [20] K. Egashira, K. Mizutani,Micro-drilling of monocrystalline silicon using a cutting Tool,Precision Engineering,2002,26(3):263~268
    [21] J. Fleischer,T. Masuzawa,J. Schmidt,New applications for micro-EDM,Journal of Materials Processing Technology,2004,149(1-3):246~249
    [22] Y. N. Picard,D. P. Adams,M. J. Vasile,Focused ion beam-shaped microtools for ultra-precision machining of cylindrical components , Precision Engineering,2003,27:59~69
    [23] D. P. Adams,M. J. Vasileb,A S M Krishnanb,Microgrooving and microthreading tools for fabricating curvilinear features , Precision Engineering,2000,24:347~356
    [24] D. P. Adams,M. J. Vasile,G. Benavides,Micromilling of metal alloys with focused ion beam-fabricated tools,Precision Engineering,2001,25:107~113
    [25] M. J. Vasile,C. R. Friedrich,Micrometer-scale machining:tool fabrication and initial Results,Precision Engineering,1996,19:180~186
    [26] J. Schmidt,H. Tritschler,Micro cutting of steel,Microsystem Technologies,2004(10):167~174
    [27] J. Schmidt,H. Tritschler,Improvement of Micro End Milling Tools through Variation of Tool Manufacturing Method and Geometry,International Journal of Nonlinear Sciences and Numerical Simulation,2002,3:595~598
    [28] P. J. Heaney,A. V. Sumant,C. D. Torres,Diamond coatings for micro end mills: Enabling the dry machining of aluminum at the micro-scale,Diamond and Related Materials,2008,17(3):223~233
    [29] H. Sein,W. Ahmed,I. U. Hassan,Chemical vapour deposition of microdrill cutting edges for microand nanotechnology applications,Journal of materials science,2002,37:5057~5063
    [30] Y. Takeuchi,T. Sata,Ultraprecision 3D Micromachining of Glass,Annals of the CIRP,1996,45(1):401~404
    [31] Z. Lu,T. Yoneyama,Micro cutting in the micro lathe turning system,International Journal of Machine Tools & Manufacture,1999,39:1171~1183
    [32] Y.T akeuchi , M. Murota , T. Kawai , Creation of Flat-End V-Shaped Microgrooves by Non-Rotational Cutting Tools,Annals of the CIRP,2003,52(1):41~44
    [33] Almen O,Burce G,Collection and sputtering experiments with noble gas ions,Nucl. Instrum. Methods,1961,11:257–78
    [34] Ben Assayag G, Vieu C, Gierak J,New characterization method of ion current–density profile based on damage distribution of Ga+ focused-ion beam implantation in GaAs,J. Vac. Sci. Technol. B,1993,11:2420–6
    [35] Brodie I,Muray J J,Particle beams: sources, optics, and interactions,The Physics of Micro/Nano-Fabrication,New York: Plenum,chapter 2,1992
    [36] Blauner P G, Butt Y, Ro J S,Focused ion beam fabrication of submicron gold structures,J. Vac. Sci. Technol. B,1989,7:609–17
    [37] Bischoff L, Teichert J,Heera V,Focused ion beam sputtering investigations on SiC,Appl. Surf. Sci.,2001,184:372–6
    [38] Biersack J P,Haggmark L G, A Monte Carlo computer program for the transport of energetic ions in amorphous targets,Nucl. Instrum. Methods Phys. Res. B,1980,174:257–69
    [39] Bi J, de Jager P W H, Barth J E,Influence of Coulomb interactions on current density distribution in a two-lens focused ion beam system,Microelectron. Eng. 1998,42:249–52
    [40]刘立建,谢进,王家楫,聚焦离子束(FIB)技术及其在微电子领域中的应用,半导体技术,2001,26(2),19~24
    [41]毕建华,陆家和,聚焦离子束(FIB)刻蚀在光电子器件方面的应用,真空科学与技术,1994,14(4),299~306
    [42] M.W. Phaneuf, Applications of focused ion beam microscopy to materials science specimens, Micron, 1999, 30, 277~288
    [43] D. Verkleij, The use of the Focused Ion Beam in failure analysis, Microelectron Reliability, 1998, 38:869~876
    [44] J. H. Daniel, D. F. Moore,A microaccelerometer structure fabricated in silicon-on-insulator using a focused ion beam process,Sensors Actuators, 1999, A 73:201~209
    [45] Steve Reyntjens,Robert Puers,A review of focused ion beam applications in microsystem technology,Micromich. Microeng.,2001,11:287~300
    [46]王克礼,张化一等,液态金属离子源与聚焦离子束的研制进展,清华大学学报,1987,6:9~12
    [47]董桂芳,康文运,应根裕等,AuSi液态金属离子源,清华大学学报,1997,9:27
    [48] J. Melngailis, Applications of ion microbeam lithography and direct processing,in Handbook of VLSI Lithography(2nd ed), edited by J. N. Helbert, 2001, pp. 791–855
    [49]王广厚,粒子同固体相互作用物理学(上册),北京:科学出版社,1988
    [50]王克礼,张化一,液态金属离子源与聚焦离子束的研制进展,清华大学学报,1987,6:9~12
    [51]董桂芳,康文运,应根裕等,AuSi液态金属离子源.清华大学学报(自然科学版),1997,9:27~29
    [52] Orloff J,Utlaut M, Swanson L M,High Resolution Focused Ion Beams, Interaction of ions with solids,Kluwer Academic Publisher,2003
    [53] K. Nordlund,Molecular dynamics simulation of ion ranges in the 1-100KeV energy range,Preprint of ComP.,Mat.Sci.3,1995:448
    [54] J. D. Kerss,D. E. Hanson,A. F. Voter,Molecular dynamics simulation of Cu and Ar ion sputtering of Cu (111) surfaces, J. Vac. Sci. Technol. A, 17(5):1999~2819
    [55] Hebrert M. Urbassek,Molecular-dynamics simulation of sputtering,Nucl Instu and Methods in Phys Reseaeh,B,122:1997~427
    [56] Mark T. Robinson,Computer simulation of the self-sputtering of uranium, J Appl Phys, 1983,54(5):2650
    [57] J.P. Biersack, W. Eckstein,Sputtering studies with the monte-carlo program TRIM.SP,Appl. Phy. A,1984,34:73
    [58] Iizuka, Takashi, Hoshide, et al,Molecular dynamics simulations on structural characteristics of Al thin films in early sputtering process, JSME International Journal, 1999,Series A,42(3):334
    [59] Ampere A. Tseng, Recent developments in micromilling using focused ion beams, J. Micromech. Microeng., 2004, 14:R15-R34
    [60] Yamaguchi H, Shimase A, Haraichi S and Miyauchi T 1985 Characteristics of silicon removal by fine focused gallium ion beam,J. Vac. Sci. Technol. B,3:71–4
    [61] Yamaguchi A,Nishikawa T,Low-damage specimen preparation technique for transmission electron microscopy using iodine gas-assisted focused ion beam milling,J. Vac. Sci. Technol B,1995,13:962–6
    [62] Yongqi F,Bryan N K A,Investigation of 3D microfabrication characteristics by focused ion beam technology in silicon,J. Mater. Process. Technol.,2000,104:44–7
    [63] Tseng A A, Insua I A,Vakanas G P,Maskless submicron machining by focusedion beams,Proc. 2002 NSF Design, Service and Manufacturing Grantees & Research Conf. (Arlington VA: US National Science Foundation),2002,pp. 2043–4
    [64] Ishitani T, Ohnishi T, Madokoro Y, Focused ion beam“cutter”and“attacher”for micromachining and device transplantation,J. Vac. Sci. Technol. B,1991,9:2633–7
    [65] Yamamura Y, Itakawa Y,Itoh N,Angular dependence of sputtering yields of monatomic solids,IIPJ-AM-26 (Nagoya University, Nagoya, Japan),1983
    [66] Stanishevsky A,Focused ion beam patterning of diamond-like carbon films Diamond,Relat. Mater.,1999,8:1246–50
    [67] Harriott L R, Beam-size measurements in focused ion beam systems,J. Vac. Sci. Technol. A, 1990,8:899~901
    [68] Ben Assayag G, Vieu C, Gierak J, New characterization method of ion current–density profile based on damage distribution of Ga+ focused-ion beam implantation in GaAs,J. Vac. Sci. Technol. B, 1993,11:2420–6
    [69] Edinger K,Kraus T,Modeling of focused ion beam induced surface chemistry,J. Vac. Sci. Technol. B,2000,18:3190–3
    [70] http://mathworld.wolfram.com/GaussianFunction.html
    [71] C. A. Volkert,A.M. Minor,Guest Editors,Focused Ion Beam microscopy and micromachining,MRS Bulletin,May,2007,32:389~399
    [72]孙涛,谭久彬,董申,基于原子力显微镜扫描的金刚石刀具纳米刃口轮廓测量方法研究,仪器仪表学报,2000,21(1):54~57
    [73]中山一雄等,细线への转写にょる切れ刃棱の锐利さの测定,精密工学会志,1989,12
    [74]浅井昭一等,改良走查电子显微镜(SEM)による单结晶工具の切れ刃棱丸み半径の测定と解析,精密工学志,1990,7
    [75] S. Asai , A. Kobayashi , Observations of Chip Producing Behavior in Ultra-precision Diamond Machining and Study on Mirror-like Surface Generating Mechanism,Precision Engineering,1990,12
    [76] D. A. Lucca, Y. W. Seo,Effect of Tool Edge Geometry on Energy Dissipation in Ultra-precision Machining,Annals of the CIRP, 1993, 43 (1)
    [77] E. B rink smeier,Characterization of Micromachined Surfaces by Atomic Force Microscopy,Industrial Diamond Review , 1996, 2
    [78] Fang, F. Z., Mirror surface finishing for gallium arsenide, ASPE 15th Annual Meeting, USA, Nov, 1999, pp.62-66
    [79]张鸿海,张华书,师汉民,宽范围原子力显微镜在超精加工中应用研究,制造技术与机床,1997,6: 27~30
    [80]孙涛,谭久彬,董申,用原子力显微镜扫描测量金刚石刀具刃口半径,工具技术,1999,33(1):30~32
    [81]孙涛,金刚石刀具刃口轮廓三维测量技术的研究,博士学位论文,哈尔滨工业大学,1999
    [82]国立秋,原子力显微镜碳纳米管针尖的制作及性能实验研究,博士学位论文,哈尔滨工业大学,2003
    [83] H. P.赫尔齐克,微光学元件、系统和应用,周海宪,王永年等译,北京:国防工业出版社,2002
    [84]陈非凡,殷玲,李云龙,微光机电系统(MOEMS)的研究现状及展望,微细加工技术,2002,3
    [85]付博,赵月月,微光机电系统(MOEMS)研究综述,传感器世界,2004,10
    [86]杨元华,陈时锦,程凯等,超精密机械加工技术在微光学元件制造中的应用,航空精密制造技术,2005,4(4):10~12
    [87]杨福兴,非球面零件超精密加工技术,航空精密制造技术, 1997,33(5)
    [88]王跃林,王渭源,集成微光机电系统研究现况及其产业化前景,功能材料与器件学报,2000,6 (l)
    [89]金国藩,严瑛白,邬敏贤,二元光学,北京:国防工业出版社,1998
    [90] Clark P P, Londono C. Production of kinoforms by single point diamond machining,Optics News , 1989,15:353~358
    [91] T.Stone,N.George,Hybrid diffraetive-refractive lens and achromats,Appl. Opt, 1988, Vol. (14):2960~2971
    [92]王鹏,衍射光学元件设计及金刚石单点车削技术的研究,硕士毕业论文,长春理工大学,2007
    [93] Riedl M J.,Analysis and Performance Limits of Diamond-turned Diffractive Lenses for 3~5 and 8~12 Micrometer Regions,Infrared Optical Design and Fabrication:Proceedings of a Conference,1991
    [94]刘莉萍,王涌天,李荣刚等,制作在非球面基底上的红外衍射光学元件,红外与毫米波学报,2004,23(4):308~312
    [95] M. J. Riedl,Diamond-turned diffractive optical elements for the infrared,Proc. SPIE, 1995,3540:257~269
    [96] Fernando Erismann,Design of a plastic aspheric Fresnel lens with a spherical shape,Opt . Eng.,1997, 36 (4):988~991
    [97] Martin Schmitz , Olof Bryngdahl,Rigorous analysis and design of diffractive cylindrical lenses with high numerical and large geometrical apertures,Opt. Commun.,1998,153:118~124
    [98] H. R.êder, H. J. Ehrke, R. Gerhard,Full-colour diffraction-based opticalsystem for light-valve projection displays,Display,1995,16 (1):27~33
    [99] Hiroshi Fukuda,Tsunco Terasawa,Design and analysis of diffraction mirror optics for EUV projection lithography,Microelectronic Engineering,1995, 27:239~242
    [100] Bright V M, Introduction to MEMS with emphasis on optical applications, Technical Journal, 2000,1(6):227
    [101] Kim N S,Hamada T,Prabhu M,Numerical analysis and experimental results of output performance for Nd-doped double-clad fiber lasers , Optics Communication,2000,180(15):329~337
    [102]周彦均,菲涅耳反射镜及投影系统,中国专利, 200410068317.5 ,2006-03-01
    [103] Naito H , Kohsaka Y, Cooke D,Development of a solar receiver for a high efficiency thermionic/thermoelectric conversion system,Solar Energy, 1996,58 (426):191~195
    [104] Omera A,Siddig D,Infield David G,Design and thermal analysis of a two-stage solar concentrator for combined heat and thermoelectric power generation. Energy Conversion & Management,2000,41 (7):737~756
    [105] Bett A W,Burger B,Dimroth F,High concentration PV using iii-v solar cells, IEEE 4th World Conference on Photovoltaic Energy Conversion,Hawaii, 2006,7212
    [106]韩延民,代彦军,王如竹,太阳能高倍聚光的方案优化及装置构建,上海交通大学学报,2009,43(2):261-265
    [107] J. A. Cox,Application of diffractive optics to infrared imagers, Proc. SPIE., 1995,2552:305~312
    [108] Riedl M J,Optical Design Fundamentals for Infrared Systems(Second Edition),SPIE,2001,48
    [109] Emery M H , Gardner J H , Bodner S E,Strongly Inhibited Rayleigh2Taylor Growth With 0. 25μm Lasers,Phys. Rev. Lett., 1986 , 57 ( 6):703~706
    [110] Aref H , Tryggvason G. Model of Rayleigh-Taylor Instability, Phys. Rev. Lett., 1989,62 (7):749~752
    [111] Mikaelian K O,Explicit Growth Rates for the Rayleigh-Taylor Instability in Exponential Density Profiles,Phys. Rev. A,1989,40 (8):4801~4803
    [112] Mikaelian K O,Lasnex Simulations of the Classical and Laser-driven Rayleigh-Taylor Instability,Phys. Rev. A,1990,42 (8):4944~4951
    [113] Marinak M M , Remington B A, Weber SV, Three-dimensional Single Mode Rayleigh-Taylor Experiments on Nova,Phy. Rev. Lett. , 1995,75 (20):3677~3680
    [114]孙骐,周斌,沈军,ICF研究中的Rayleigh-Taylor不稳定性实验用靶,强激光与粒子束,2004,16(12):1535~1539
    [115] Schappert G T, Batha S H, Klare K A,Rayleigh-Taylor spike evaporation,Phys of Plasmas , 2001 , 8 (9):4156~4162
    [116] Neil A , Wes B , Chandu B, Inertial Confinement Fusion Target Component Fabrication and Technology Development Support:GAA23240,California:General Atomics, 1999
    [117] Neil A , Wes B , Chandu B, Inertial Confinement Fusion Target Component Fabrication and Technology Development Support :GAA23537,California:General Atomics, 2000
    [118] Neil A , Wes B , Chandu B, Inertial Confinement Fusion Target Component Fabrication and Technology Development Support:GAA23852,California: General Atomics,2001
    [119] Neil A,Wes B,Chandu B,Inertial Confinement Fusion Target Component Fabrication and Technology Development Support:GAA24174,California:General Atomics,2002
    [120]陈建荣,王珏,陈玲燕,平面调制靶的表面起伏图形研究,强激光与离子束,1996,8 (4):616~621
    [121]孙骐,周斌,黄耀东等,二维正弦调制靶的图形转移研究,原子能科学技术,2002,36 (4/5):327~330

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700