太阳能高倍聚光能量传输利用理论及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为新能源,太阳能具有绿色环保可持续利用等优点,在解决传统能源危机中,太阳能利用是各国竞相开发和研究的热点。同时,由于太阳能的能量密度小,光照过程不连续,使得太阳能在收集、传输以及转化过程产生高耗性投资。非聚光及低倍太阳能聚光不利于能源品味的进一步提高,限制了太阳能的应用范围,因而太阳能只是作为传统能源的辅助性能源。
     从提高能源利用效率和能源梯级利用的角度,必须研究开发太阳能模块化聚光技术和中高温能源的储存利用技术。本文为太阳能利用在强度和时间上的内在制约提供了新型的解决方案,研究成果对高倍聚光太阳能系统在特殊场合的实用性,常规条件下的商业规模化都具有重要的意义。研究的具体内容包括:
     (1)通过应用热力学第一定律和第二定律过对太阳能聚光能量传输和利用系统进行热力学分析,发现理想系统对外输出功率最大时的集热温度为2464K,几何聚光比为2617,太阳能的转换效率极限值可达84.9%。这表明在太阳能高倍聚光条件下,对太阳能综合利用效率具有较大的提升潜力。
     (2)基于几何光学的知识,对全光谱的太阳光进行光线追踪,优化高倍聚光太阳能的实现方案。通过对三种两级高倍聚光方法的理论分析和相关实验研究,分析了太阳辐射特征与聚光光斑尺寸,入射偏角与热流密度的关系,也对光学效率的进行了测试和分析,获得聚光器形面的设计方法以及提高光学效率的能量传输方式,并提出了以两级菲涅尔透镜系统为模块化的太阳能高倍聚光方案。
     (3)根据所提出的两级菲涅尔透镜聚光方案,建立了菲涅尔透镜几何光学分析模型,通过仿真计算,获得了不同偏角下的静态聚光光斑的位置,能量密度,光强分布特性。基于太阳辐射的变工况条件,研究聚焦光斑在接收面上的偏移,光斑处的温度变化特性,太阳辐射以及热流密度的关系,得到的结果对模块化时的接收面研制的合理性和有效性有指导意义。
     (4)通过实验对所提出的菲涅尔两级聚光太阳能系统进行整体性能评估,同时,对仿真模型的有效性进行了验证。利用所建立的两级多维调试测量平台,研究了聚光太阳能系统的能量效率,包括传光及传能特性。结果表明,聚光比大于1000倍条件下,聚光系统的全光谱平均能量效率大于50%,在可见光的范围内,4合1耦合光纤的传光效率大于50%,光导管中的近红外光的能量传输效率大于70%;研究表明两级系统的追踪角误差可以控制在1°范围内,从而证明了所研制的菲涅尔两级聚光系统可以在较大的追踪允许误差范围内工作,可以降低追踪系统的投资费用。
     (5)探讨了高倍聚光太阳能转换装置在一种电热联用系统中的应用。以一种电热联用的模块化应用为例,对系统光热和光电转换特性进行了分析和评估。光电转换过程的分析结果认为,聚光条件下的热电联用具有提升利用效率的潜力。把热分区技术应用于能量储存,可以在规模化应用的大型太阳能系统中获得更多的可用能储存。通过研究,总体效率可以达到70%以上。
With the renewable characteristic, solar energy has the advantages of environmental friendly and sustainable for uitilization. During the process of solving the traditional energy crisis, many countries focus their eyes on exploitation and research of solar energy. However, with the low power density, discontinuous radiation, solar energy generates high investments on collection, transfer and conversion, non-concentration and lower concentration solar energy block the universal application and make it to be as the auxiliary in comparision with the traditional energy.
     Based on the viewpoint of high efficiency and grad utilization of solar energy, modularized transmission and utilization system of high concentration solar energy, as well as energy storage at high temperature, are in consideration, which brings out a new solution to relieve the restriction of strength and time. Research results have proved the significance and the feasibility of high concentrated solar energy used under special conditions and also its market potentials. The specific contents include the following work:
     (1) The first law and the second law of thermodynamics are used to analyze the energy conversion of a solar concentrator with high concentration ratio, it is founded that the optimal collector temperature is 2464K and concentration ratio is 2617 suns, under which the conversion limit is 84.9%. It is of great potential in improving the energy conversion efficiency comprehensively with the high concentration of solar radiation
     (2) Based on geometrical optics, solar ray trace is done for the full spectrum, and high concentration schemes are optimized. By comparison of three different means based on theoretical analysis and experimental validation, the radiation characteristic is investigated including diameter of solar facular spot, relations of deviation angle and energy density, thermal efficiency, measurement on optical efficiency and analysis. Design on concentrator profile and transfer means of concentrated energy are obtained. Based on this analysis, a set of highly concentrated solar energy system with the two-stage Fresnel lens is proposed.
     (3) With the designed two stages Fresnel lens system, optical model of Fresnel lens is presented and simulated. The position of focus spot at different deviation angle, energy density and radiation distribution are achieved. Under the variable conditions of solar radiation, the deviation of focus spot at receiver, temperature features of focus spot, relations of solar radiation and heat flux are studied. Those conclusions have significant effect on receiver modular design for the rationality and the validity.
     (4) Experimental validation is done based on the design of the two stage Fresnel lens system, and the simulation model is also validated. Optical efficiency measurements have been carried out on the practical Fresnel lens group, including heat and light transfer performance. According to this study, 50~60% of the collected solar radiation can transmit through the Fresnel lens group under condition of over 1000 suns, light transfer efficiency is near 50% in the four in one light path. Infrared ray can transmit more than 70% through light tube. The track angle error of two stage system can be limited within 1°, which shows that the designed device has the higher precision on solar tracking and lower investment.
     (5) To exploit the application of highly concentrated solar energy, a combination system of photovoltaic and thermal system is introduced and investigated, and thermal and power characteristics of this coupled system are analyzed. The results of photovoltaic process show that the combination system has the potential ability on efficiency improving, and more exergy can be obtained in large scale solar energy storage by using thermal partition technology. It is found that the whole efficiency can be expected more than 70%.
引文
[1] 张鹤飞, 俞金娣, 赵承龙. 太阳能热利用原理与计算机模拟. 西安:西北工业大学出版社. 1999.
    [2] An assessment of solar energy conversion technologies and research opportunities. GCEP Energy Assessment Analysis, Summer 2006, http://gcep.stanford.edu.
    [3] 王志峰. 太阳能与建筑相结合的技术设计. 2000 环境·可再生能源和节能国际研讨会.
    [4] 张来福, 李 然, 童建忠, 倪秋芽. 碱金属热点转换器(AMTEC)的新技术. 能源技术. 2001, 22 (1):21-23.
    [5] Wientzen Richard, Davis, W.J., Forkey R.E. High temperature solar concentrator design [C], Proceedings of the Society of Photo-Optical Instrumentation Engineers, 1980, 237: 281-291.
    [6] Welfkd W.T., Winston R. High Collection Non-imaging Optics. Academic Press, San Diego. 1989.
    [7] Yogev A. Private communication, Based on enquiries to domestic and foreign producers of non-planar specula reflectors. Solar Energy Center, Weizmann Institute of Science, Rehovot, Israel.1995.
    [8] Gordon J.M. A l00-sun linear photovoltaic solar concentrator design from inexpensive commercial components [J]. Solar Energy, 1996, 57 (4).
    [9] Winston R. Principle of solar concentrators of a novel design [J]. Solar Energy, 1974, 16:89-95.
    [10] Rabl A. Comparison of solar concentrators [J]. Solar Energy, 1976, 18:93-111.
    [11] Collares Pereira M. High concentration two-stage optics for parabolic trough solar collectors with tubular absorber and large rim angle [J]. Solar Energy, 1991, 47(6):457-66.
    [12] Brunotte M, Goetzberger A, Blieske U. Two stage concentrator permitting concentration factors up to 300X with one axis tracking [J]. Solar Energy, 1996, 50(3):285-300.
    [13] Rabl A. Optics and thermal properties of compound parabolic concentrators [J]. Solar Energy, 1976, 18:497-511.
    [14] Weksler M., Shwartz J. IEEE J. Quantum Electron, 1988, 24 (6).
    [15] Luzzi, A. Solar Thermal Electricity: A Technology Survey, Status and Trends. Public Report Pacific Power, GPO Box 5257, Sydney, NSW 2001, Australia, 1994.
    [16] Baum W.A., Strong J.D. Basic optical considerations in the choice of a design for a solar furnace, Solar Energy, 1958, 2 (3-4):37-45.
    [17] Bett A.W., Burger B., Dimroth F., Siefer G., Lerchenmüller H. High-concentration PV using III-V solar cells, 2006 IEEE 4th World Conference on Photovoltaic Energy Conversion, May 7- 12, 2006, Hawaii
    [18] Avenue S.A., van der Meerschenlaan. ENE, 2000, Energies Nouvelles & Environment, 188, B-1150 Brussels, Belgium (private communication).
    [19] Feuermann D., Gordon J.M. Solar surgery: remote fiber-optic irradiation with highly concentrated sunlight in lieu of lasers. Optical Engineering, 1998, 37: 2760–2767.
    [20] Feuermann Daniel, Gordon Jeffrey M., High-concentration photovoltaic designs based on miniature parabolic dishes. Solar Energy, 2001, 70 (5): 423-430.
    [21] Naito H., Kohsaka Y., Cooke D., Arashi H. Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system. Solar Energy, 1996, 58(4-6):191-195.
    [22] Omera D., Siddig A., David G. Infield. Design and thermal analysis of a two stage solar concentrator for combined heat and thermoelectric power generation, Energy Conversion & Management, 2000, 41: 737-756.
    [23] Xiaohui Ning, Joseph O'Gallagher, Roland, Winston, Optics of two-stage photovoltaic concentrators with dielectric second stages, Applied Optics, 1987, 26 (7):1207-1212.
    [24] Andreev V.M., Grilikhes V.A., Khvostikov V.P. Concentrator PV modules and solar cells for TPV systems. Solar Energy Materials & Solar Cells, 2004, 84: 3–17.
    [25] 张耀明. 采集太阳光的照明系统研究. 中国工程科学, 2002, 4(9):63-68.
    [26] Feuermann D., Gordon J.M. Solar fiber-optical mini-dishes: A new approach to the efficient collection of sunlight. Solar Energy1999, 65(3):159-170.
    [27] Feuermann D., Gordon J.M., Huleihil M. Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Solar Energy 2002, 72(6):459-472.
    [28] Kwangsun Ryu, Jin-Geun Rhee, Kang-Min Park, Jeong Kim. Concept and design of modular Fresnel lenses for concentration solar PV system [J]. Solar Energy, 2006, 80:1580–1587.
    [29] Ralf Leutz, Akio Suzuki, Atsushi Akisawa, Takao Kashiwagi. Shaped non-imagingFresnel lenses[J]. J. Opt. A: Pure Appl, 2000, 2:112–116.
    [30] Tripanagnostopoulos Y., Siabekou Ch., Tonui J.K. The Fresnel lens concept for solar control of buildings[J]. Solar Energy, 2007, 81:661–675.
    [31] 李宝骏,曹文济,王巧玉,刘晓晰,穆存运,杨世龙. 地下建筑太阳能光导采光的实验研究, 太阳能学报, 1993, 14(1):48-52.
    [32] 袁 兵,王一平,黄群武,杨智勇.采集太阳光的照明系统.太阳能学报, 2005, 26(6):878-881.
    [33] Stein, W. Feasibility study for a DSG dish solar thermal power station in Australia [C]. In: Proceedings of the 7th International Symposium on Solar Thermal Concentrating Technologies, Moscow, Russia, 1994, 420–429.
    [34] Segal, A., Levy, M. Modular solar chemical heat pipe for a parabolic dish: conceptual design and model calculations [J]. Solar Energy, 1993, (51)5: 419-422.
    [35] Avenue S.A., Meerschenlaan van der, Energies Nouvelles & Environment, ENE (2000), 188, B-1150 Brussels,Belgium (private communication).
    [36] Algora C., Rey-Stolle I., Ortiz E., Pena R., Diaz V., Khvostikov V., Andreev V., Smekens G., de Villers T. 26% efficient 1000 sun GaAs solar cells for cost competitive terrestrial PV electricity. In 16th European Photovoltaic Solar Energy Conference and Exhibition, Glasgow, UK, May 2000.
    [37] Bett A.W., Stollwerck G., Sulima G.V., Wettling W. Highest efficiency GaAs /GaSb tandem concentrator module. In IEEE Second World Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 1998:268-271.
    [38] Ning X., Winston R., O’Gallazher J. Dielectric tally internally reflecting concentrators. Appl. Opt. 1987, 26: 300-305.
    [39] Araujo G.L., Marti A., Luque A. The efficiency of Si and GaAs concentrator solar cells operated inside integrating cavity receivers. Solar Cells, 1991, 31:203-216.
    [40] Luque A., Miiiano J.C. Optical aspects in photovoltaic energy conversion [J]. Solar Cells, 1991, 31:237-258.
    [41] Mifiano J.C. Light confining cavities. In Physical Limitations to Photovoltaic Solar Enemy Conversion, Luque A. and Aratijo G.L. (Eds). Adam Hilger, Bristol 1990, 53-80.
    [42] Davies P.A. Light-trapping lenses for solar cells. Appl.Opt, 1992, 31:6021-6026.
    [43] Burkhard D.G., Shealy D L., Design of reflectors which will distribute sunlight in a specified manner. Solar Energy, 1975, 17:221-227
    [44] Haraldries, Gordon J.M., Lasken Michelle. High flux photovoltaic solar concentration with Kaleidoscope based optical designs. Solar Energy, 1997, 60(1):11-16.
    [45] Clifford M.J., Eastwood D. Design of a novel passive solar tracker. Solar Energy. 2004, 77: 269-280.
    [46] Gay C.F., Yerkes J.W., Wilson J.H. Performance advantages of two-axis tracking for large flat-plate photovoltaic energy system. In: Proceedings of 16th IEEE Photovoltaic Specialists Conference,1982:1368-1371
    [47] Boes E.C, Maish A.B. Advances in concentrator technology. In: Proceedings of 19th IEEE Photovoltaic Specialists Conference, 1987: 985–991.
    [48] Zomeworks Corporation, Passive solar track rack, Albuquerque, NM, US Pat. No. 4275712.
    [49] Edwards B.P. Computer based sun following system. Solar Energy, 1978, 21(6):491–8.
    [50] Maish A.B. A self-aligning photovoltaic array tracking controller. In: Proceedings of the 20th IEEE Photovoltaic Specialists Conference, 1988.
    [51] Rumala SSN. A shadow method for automatic tracking. Solar Energy 1986, 37(3):245–247.
    [52] Lynch W.A, Salameh Z.M. Simple electro-optically controlled dual-axis sun tracker. Solar Energy 1990, 45(2):65–69.
    [53] Finster C. El, heliostato de la Universidad Santa Maria. Scientia, 1962, 119:5–20.
    [54] Saavedra A.S. Diseno de un servomecanismo seguidor solar para un instrumento registrador de la irradiacion solar directa. Memoria, Universidad Te′cnica Federico Santa Maria, Valpara?so, Chile, 1963.
    [55] Maldonado JA. Disenoy, construccion de un sistema de control automatico para el posicionamiento de unpirhelio′metro. Memoria, Universidad Te′cnica Federico Santa Maria, Valparaiso, Chile, 1983.
    [56] BRUSAG, Sensorik, messtechnische Entwicklungen, Electronic catalogue, 2003. http://www.brusag.ch/.
    [57] 郑小年, 黄巧燕. 太阳跟踪方法及应用, 能源技术, 2003, 24(4).24-38
    [58] 李业发, 杨赶柱.能铆工程导[M], 安徽:中国科学技术大学出版社,1999:152-155.
    [59] 王涛. 基于球面机构的太阳跟踪装置控制系统的研究[D]. 河北工业大学, 2005.
    [60] Gupta B.P. Technical feasibility of a modular dish solar electric system, Int Sol Energy Soc, Am Sect, Cape, 1976,5:291-309.
    [61] Furber, John. Concentrator photovoltaic systems for economical electricity and heat, Annual offshore Technology Conference,1978:720-724.
    [62] Karrais, B. Ultralight Modulat Ceramic High-Flux Receiver. Conference article, Springer-Verlag, Berlin, 1986:613-623.
    [63] Stern, Theodore G., Cornwall Mickey, Peterson, David M. Modular concentrator using high efficiency Photovoltaics for space station application. General Dynamics/Space Systems Div, San Diego, CA, USA, Solar Engineering, 1992, Apr 5-9.
    [64] Cariou, J.M., Martin L., Dugas J. Concentrated Solar Energy Transport by Optical Fibers, 1981, 2:557-563.
    [65] Bodart, M. and A. De Herde. Global energy savings in offices buildings by the use of daylighting. Energy and Buildings, 2002, 34 (5): 421-29.
    [66] 冯巍. 太阳能光导采光技术的研究[M]. 沈阳:沈阳建筑大学. 2005.
    [67] Ciamberlini, C., et al. Solar system for exploitation of the whole collected energy. Optics and Lasers in Engineering 2003, 39 (2): 233-46.
    [68] Feuermann D., Gordon J.M., Huleihil M. Light leakage in optical fibers: Experimental results, modeling and the consequences for solar concentrators. Solar Energy, 2002, 72(3):195-204.
    [69] Courio J.M, Dugas J, Martin L. Solar Energy, 1982, 29: 397.
    [70] Dawei Lianga. Fiber-optic solar energy transmission and concentration. Solar Energy Materials and Solar Cells. 1998, 54 (1-4): 323-31.
    [71] Polymicro Technologies LLC, 18019 N. 25th Ave., Phoenix, AZ. Private communications, 2001.
    [72] Becker M., Klimas P.C. Second Generation Central Receiver Technologies, Verlag C.F. Muller, Karlsruhe. 1993.
    [73] Reddy T. A., Shetty S., Jian S., Scoles K., Eisenstein B., Feuermann D., Gordon J.M. Preliminary Design and Experimental Results from a New Miniaturized and Modular High-Concentration Solar Photovoltaic Mini-Dish Program, Report submitted to US DOE. 2003, June.
    [74] Fraidenraich N., Gordon J.M., Tiba C. Optimithe zation of gas-turbine combined cycles for solar energy and alternative power generation. Solar Energy, 1991, 48: 301–307.
    [75] Kribus A., Krupkin V., Yogev A., Spirkl W. Performance limitations of heliostat fields. J. Solar Energy Eng. 1998, 120: 240–246.
    [76] Kribus A., Zaibel Z., Segal A., Carey D., Karni J. A solar-driven combined cycle plant. Solar Energy, 1998, 62:121–129.
    [77] 童建忠,倪秋芽,杨培尧,楼国锋,王素敏,姚来顺. 高效率点聚焦太阳热直接发电, 中国科学院电工研究所, http://www.cct.org.cn/.
    [78] http://www.cn-solar.net/《太阳能信息》编务部.
    [79] Goswami, D. Yogi, Xu, Feng, Goswami, D. Yogi. Analysis of a new thermodynamic cycle for combined power and cooling using low and mid temperature solar collectors, International Solar Energy Conference, Solar Engineering, 1998,111-120.
    [80] Rose D.T., Zuritz C.A., Perez-Blanco Horacio. Thermodynamic analysis and pilot plant design for a solar assisted double-effect refrigeration absorption cycle, Proceedings of the International Absorption Heat Pump Conference, 1994, 109-115
    [81] Tamainot-Telto Z., Critoph R.E., Solar sorption refrigerator using a CPC collector Source: Renewable Energy, 1999, 16( 1-4):735-738.
    [82] De Francisco, Illanes A., Torres R., Castillo J.L., De Blas M., M. Prieto, Garcia, A. Development and testing of a prototype of low-power water-ammonia absorption equipment for solar energy applications, Renewable Energy, 2002, 25(4): 537-544.
    [83] Jeffrey M. Gordon Kim Choonng, High-efficiency solar cooling, solar energy, 2000, 68(1):23-31.
    [84] Gordon J.M., Ng K.C. Predictive and diagnostic aspects of a universal thermo- dynamic model for chillers. Int J Heat Mass Transfer 1995, 38:807–818.
    [85] Vorobiev Yu., Gonzalez Hernandez J., Vorobiev P., Bulat L., Thermal photovoltaic solar hybrid system for efficient solar energy conversion, Solar Energy, 2005.
    [86] Welford W.T., Winston R. The optics non-imaging concentrators. Light and solar Energy. Academic Press, 1984.
    [87] 李宝浚著. 太阳能光导采光设计原理. 沈阳:东北大学出版社,1992.
    [88] El-Op Ltd. Rehovot, Israel, private communication. 1998.
    [89] 张怀德. 热辐射不可逆性的研究. 德州学院学报. 2003, 19(4):26-28.
    [90] Spanner D.C. Introduction to thermodynamics. London: Academic Press,1964.
    [91] Landsberg, P.T., Mallinson, J.R. Thermodynamic constraints. Effective temperatures and solar cells [J]. Toulouse: CNES, 1976, 27–46.
    [92] Haught, A.F. Physics considerations of solar energy conversion. Energy production and conversion [J], 1984, 5(106):3-15.
    [93] Sean Wright. The Exergy of Thermal Radiation and its Relevance in Solar EnergyConversion [D].University of Victoria, M. A. Sc., Victoria, 1998.
    [94] Jeter S.M. Maximum conversion efficiency for the utilization of direct solar radiation. Sol Energy [J], 1981, 26(3):231–6.
    [95] Bejan A. Advanced engineering thermodynamics. New York: Wiley; 1988.
    [96] Weright Sean E., Scott David S., Haddow James B., The upper limit to solar energy conversion, AIAA-2000-2861.
    [97] De Vos A., Pauwels H. On the Thermodynamic Limit of photovoltaic energy conversion, Journal Applied Physics [J], 1981, 25:119-125.
    [98] Bejan A., unification of three different theories concerning the ideal conversion of enclosed radiation, ASME Journal of solar energy engineering [J], 1987, 109: 46-51.
    [99] Vos A.De, Pauwels H., Discussion, ASME Journal of Solar Energy Engineering, 1986, 108: 80-84.
    [100] Landsberg P.T. Non-Equilibrium concenpts in Solar energy conversion, Procedings of the NATO Advanvced Stusy Institute on Energy Transfer Processes in Condensed Matter. 1983, June 16-30,
    [101] Haraldries, Gordon J.M., Michelle Lasken. High-flux photovoltaic solar concentrators with kaleidoscope-based optical designs. Int. J. Solar energy, 1997, 60(1):11-16.
    [102] Kaneff S. Paraboloidal dishes of 400 m2 aperture and larger. Proc. ISES World Congr., Farkas I. (Ed.). August 1993. Budanest. Hungarv. Hungarian Energy Society, 1993, 4: 79-84.
    [103] Johnston G. Flux mapping the 400m2 “Big Dish” at the Australian National University. ASME 3. Solar Energy Engineering, 1995, 117(4):290-293.
    [104] 张鹤飞. 太阳能热利用原理与计算机模拟. 西安:西北工业大学出版社, 1990.
    [105] Jaramillo, O.A., Del Rio, J.A. Optical fibres for a mini-dish/Stirling system: thermodynamic optimization. J .Phys. D: Appl. Phys .2002, 35(11):1241-1250.
    [106] 童钧耕,吴孟余,王平阳, 高等工程热力学, 北京:科学出版社, 2006.
    [107] Welford, W.T., Winston, R. 非成像聚光器光学: 光和太阳能,北京: 科学出版社, 1987.
    [108] 郭孝武. 菲涅尔透镜统一设计方法.太阳能学报,1991,12(4):423-426.
    [109] Tekelioglu M., Wood B. D., Prediction of light-transmission losses in plastic optical fibers, Appl. Opt., 2003, 44(12): 2318-2326.
    [110] TracePro Software for Opto-Mechanical. Modeling User’s Manual, Release 3.0, Lambda Research Corporation, 2002.
    [111] 杨义. 空芯光纤的传输性能[M]. 燕山大学, 2003.
    [112] 陈红萍, 韩建军, 赵修建. 传输太阳能用 Ag/PMMA 空芯光纤的制备. 激光与红外. 2007, 37(3): 255-261.
    [113] Bett AW, Dimroth Glunz S. Development of concentrator solar cells and systems at Fraunhofer ISE. 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen[C],Alice Springs, 2003.
    [114] Rumyantsev V.D, Chosta O.I, Grilikhes V.A, et a1. Terrestrial and space concentrator PV modules with composite(glass-silicone) Fresnel Lenses[A]. 29th IEEE PVSC[C]. New Orleans, 2002: 1596-1599.
    [115] Araki K, Kondo M, Uozymi H, Kemmoku Y, et a1. A 28%Efficient, 200Wp, 400X Concentrator Module and its Packaging Technologies. 2nd International Solar Concentrator Conference for the Generation of Electricity or Hydrogen [C], Alice Springs, 2003.
    [116] Terao A, Chao P.O, Daroczi, et a1. Recent developments on the flat-plate micro-concentrator module[A]. 29th IEEE PVSC [C], New Orleans. 2002: 1373~1376.
    [117] 王科, 崔文智, 李隆键, 陈清华. 聚光型太阳能电热联用系统的研究进展[J].太阳能, 2007, 8:27-32.
    [118] 王一平, 刘永辉, 田玮. 太阳能电热联用系统研究进展[J]. 太阳能学报, 2005, 26(5): 639~646.
    [119] Rosell J.I., Vallverdú X., Lechón M.A., Ibánez M. Design and simulation of a low concentrating photovoltaic/thermal system [J]. Energy Conversion and Management 2005, 46: 3034-3046.
    [120] Coventry Joe S. Performance of a concentrating photovoltaic/thermal solar collector [J]. Solar Energy, 2005,78: 211-222
    [121] Brogren M., Nostell P., Karlsson B. Optical efficiency of a PV–Thermal hybrid CPC module for high latitudes [J]. Solar Energy, 2000, 69(Suppl. 1–6):173-185.
    [122] Bitnar, B., Mayor J.C., Durisch W., Meyer A., Palfinger G., von Roth F. , Sigg H. In: Proceedings of the Fifth Conference on Thermophotovoltaic Generation of Electricity, AIP Conference Proceedings, Vol. 653, Rome, Italy, 16–19 September 2002,18-28.
    [123] 苏亚欣, 费正定, 杨翔翔. 太阳能冷热电联供分布式能源系统的研究. 能源工程, 2004, (5): 23-27.
    [124] 韩延民, 刘伟等, CPL 蒸发器多孔芯内传热传质的非稳态数值模拟, 宇航学报(英文版), 2003, 24 (4): 397-402.
    [125] 孙迎光. 自动跟踪聚焦式太阳能光伏发电技术. 能源工程, 2002, 3:7-10.
    [126] 卢志强,姚强.平板式太阳能电热联用面板[J].太阳能学报.2006, 27(6): 545-553.
    [127] Kern Jr E.C., Russell M.C. Combined photovoltaic and thermal hybrid collector systems [A]. In Proceeding of the 13th IEEE Photovoltaic Specialists[C], Washington DC, USA, 1978, 1153-1157.
    [128] Hendrie S.D. Evaluation of combined photovoltaic/thermalcollectors [A]. In Proceeding of ISES International Congress [C], Atlanta, USA, 1979, 3: 1865-1869.
    [129] Florschuetz L.W. Extension of the Hottel-Whillier model to the analysis of combined photovoltaic/thermal flat plate collectors [J]. Solar Energy, 1979, 22: 361-366.
    [130] Bhargava A.K, Garg H.P, Agarwal R.K. Study of a hybrid solar system-solar air heater combined with solar cells [J]. Energy Convers Mgmt, 1991, 31: 471-479.
    [131] Prakash J. Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water [J]. Energy Convers Mgmt, 1994, 35: 967-972.
    [132] SopianK, YigitKS, LiuHT, et al. Performance analysis of photovoltaic thermal air heaters [J]. Energy Convers, Mgmt, 1996, 37: 1657-1670.
    [133] 孟庆巨, 刘海波, 孟庆辉. 半导体器件物理, 北京:科学出版社, 2005.
    [134] 吴玉庭, 朱宏晔, 任建勋, 梁新刚. 聚光条件下太阳电池的热电特性分析. 太阳能学报. 2004, 25(3):338-340.
    [135] Knudsen S., Consumer’s Influence on the Thermal Performance of Small SDHW Systems -Theoretical Investigations. Proceedings, NorthSun, Leiden, Holland. 2001
    [136] Lavan Z., Thompson J, Experimental study thermally stratified hot water storage tanks. Solar Energy, 1977, 19: 519-524.
    [137] Van Berkel J., Rindt C.C.M., van Steenhoven A.A., Modelling of two-layer stratified stores. Solar Energy 1999, 67(1–3), 65-78.
    [138] Han Y.M., Dai Y.J., Wang R.Z. Stratification study of horizontally partitioned thermal energy storage tank in a solar powered air conditioning system, The 22nd International Congress of Refrigeration, Aug.21-26, 2007, Beijing, China.
    [139] 韩延民, 王如竹, 代彦军等. 新型太阳能温度分层水箱储能特性分析 [C].第四届全国制冷空调新技术研讨会, 南京, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700