多功能集成的层层组装膜材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着层层组装技术(Layer-by-layer assembly technique)二十多年来发展,其作为一种简单、有效的膜材料制备技术已经被人们所广泛的接受。层层组装技术的众多优点,如可以在非平面基底大面积的制备多层膜,膜材料的结构与组成的可调控性等都是其他膜材料制备技术所无法企及的。因此,充分发挥层层组装技术在制备多层膜材料方面的优势对于功能性膜材料的制备意义重大。更为重要的是层层组装技术可以方便的通过改变构筑基元的种类和多层膜沉积过程并结合后处理等手段来方便的调控膜材料的化学组成与微观结构,这也为获得集多种功能于一身的多层膜材料提供了可能。本论文旨在利用层层组装技术构筑多层膜方面的灵活性以及结合对多层膜的后处理等方法制备集多种功能于一身的膜材料,主要包括以下三个方面:
     (1)利用聚阳离子PDDA和水玻璃sodium silicate在具有微米尺度结构的SiO2微球覆盖的基底表面上的交替沉积,得到了具有微纳米复合结构的表面,经过低表面能含氟硅烷偶联剂修饰后,获得了滚动角为3°,接触角为157°的超疏水表面;接下来进一步将这种制备超疏水表面的方法拓展到具有超疏水性质的近红外减反射膜的制备中,并证明了超疏水性能的引入可以有效的抑制多孔膜对水汽的吸收,从而保证这种多孔近红外减反射膜在相对湿度较大的环境中的使用性能。
     (2)利用聚阳离子PDDA与水玻璃silicate形成的带有正电荷的聚电解质复合物与聚丙烯酸PAA交替沉积,经过煅烧除去膜中的有机组分后,我们得到了具有高机械稳定性的防雾减反射膜材料。
     (3)利用刚性构筑基元TiO2纳米粒子与水玻璃silicate的交替沉积以及在多层膜的制备过程中采用非干燥的沉积过程得到了具有高度多孔结构的silicate/TiO2多层膜,这种高度多孔的silicate/TiO2膜材料可以作为涂层型吸附剂用于水中阳离子型染料污染物的吸附,吸附染料后的多层膜可以方便地通过紫外光照射进行恢复再生,并可重复多次使用。另外,采用原位AFM对多孔silicate/TiO2多层膜的形成过程的研究表明采用当前的这种非干燥的层层组装过程以及刚性的构筑基元对于克服层层组装过程中的自洽作用,形成高度多孔的结构是至关重要的。这一研究也为通过层层组装的方法直接获得多孔膜材料提供了一条新的途径。
The layer-by-layer (LbL) assembly technique has been proven to be a promising method to fabricate various kinds of coatings with well-tailored chemical compositions and architectures on the micro- and nanoscales. The LbL assembly technique for coating fabrication mainly involves multiple dipping, water rinsing and drying steps, which is easy for large-scale production. The versatility of the LbL approach has allowed a broad range of materials (e.g., polymers, nanoparticles, lipids, proteins, dye molecules) to be assembled on various substrates, on the basis of not only electrostatic interactions but also hydrogen bonding, hydrophobic interactions, covalent bonding, and complementary base pairing. During the past decades, although much attention has been paid on this effective multilayer fabrication method, it remains a big challenge for the fabrication of the functionalized especially the multi-funcion integrated LbL assembled multilayer film. In this dissertation, we focus on the fabrication of multi-function integrated LbL assembled films, mainly includes the following aspects:
     In Chapter 2, a facile method for preparing a superhydrophobic surface was first developed by layer-by-layer deposition of poly(diallyldimethylammonium chloride) (PDDA)/sodium silicate multilayer films on a silica-sphere-coated substrate followed with a fluorination treatment. First, a silica-sphere-coated substrate that contains loosely stacked silica spheres of 600 and 220 nm was prepared and cross-linked with SiCl4. PDDA was then alternately assembled with sodium silicate on the silica-sphere-coated surface to prepare a micro- and nanostructured hierarchical surface. After chemical vapor deposition of a layer of fluoroalkylsilane, a superhydrophobic surface with a water contact angle of 157.1°and sliding angle of 3.1°was successfully fabricated. Then, we extend this method of fabrication of a superhydrophobic surface to the preparation of a broad-band superhydrophobic antireflective (AR) coatings in near infrared (NIR) region. The introduction of superhydrophobicity endows the AR coating with the water-repellent ability and makes the resultant AR coating applicable under humid environments. Additionally, the present method for preparing superhydrophobic AR coatings has the advantage of simplicity in fabrication, easy availability of the materials, and applicability to prepare large area coating on non-flat surface. Potential applications of this kind of superhydrophobic AR coatings in areas such as NIR analysis, NIR sensors and so forth are highly anticipated.
     In Chapter 3, we reported a facile and cost-effective method for the fabrication of mechanically stable antireflection and antifogging silica coatings by LbL deposition of PDDA&silicate complexes with PAA on quartz substrates followed by calcination. Calcination removed the organic components in PAA/PDDA&silicate multilayer films and introduced three-dimensional nanopores in the resultant silica coatings. In this way, highly porous silica coatings with a reduced refractive index and superhydrophilic properties can be fabricated simultaneously, which can be used as multifunctional AR and antifogging coatings. Calcination cross-linked the resultant silica coatings via the formation of stable siloxane bridges, which endows the AR and antifogging coatings with high mechanical stability and excellent adhesion to the substrates. We believe that the AR and antifogging silica coatings with a high durability can be widely useful in the production of eyeglasses, swimming goggles, periscopes, lenses in laparoscopic and gastroscopic surgery, and so forth.
     In chapter 4, we developed a facile and cost-effective method to the direct fabrication of highly porous TiO2 coatings by non-drying LbL deposition of sodium silicate and TiO2 nanoparticles without any post treatment. The rigid nature of sodium silicate and the non-drying LbL deposition process are critically important to prohibit the self-healing and lead to the formation of porous TiO2 coatings. Meanwhile, the present method is suitable for the fabrication of large-area porous TiO2 coatings on substrates with complicated morphologies. The as-fabricated porous TiO2 coatings, which can be easily recovered through UV irradiation for recycling usage, show a good ability to remove organic pollutants in wastewater because of their high porosity. The present study creates a novel route of using rigid building blocks and non-drying LbL assembly to prohibit self-healing for the direct fabrication of porous coatings, which we believe to be useful to fabricate other kinds of functional porous coatings.
引文
[1] Whitesides, G. M., et al. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures. Science, 1991, 254, 1312.
    [2] Aricò, A. S. Bruce, P. Scrosati, B. Tarascon, J-M. Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater, 2005, 4, 366.
    [3] Valiev, R. Materials science: Nanomaterial advantage. Nature, 2002, 419, 887.
    [4]陈光华,邓金祥.纳米薄膜技术与应用.北京:化学工业出版社, 2004.
    [5]朱立群功能膜层的电沉积理论与技术.北京:北京航空航天大学出版社, 2005
    [6] Peanard, A. L. Gacoin, T. Boilot, J. P. Functionalized Sol–Gel Coatings for Optical Applications, Acc. Chem. Res., 2007, 40, 895.
    [7]沈家骢.超分子层层结构:组装与功能.科学出版社, 2004.
    [8]吴涛,张希,高等学校化学学报2001, 22, 1057.
    [9] Lehn, J., Sanders, J. Supramolecular chemistry: concepts and perspectives. Weinheim: VCH, 1995.
    [10]张希,林志宏,高倩.超分子化学.长春:吉林大学出版社, 1995.
    [11] Blodgett, K. B. Films Built by Depositing Successive Monomolecular Layers on a Solid Surface. J. Am. Chem. Soc., 1935, 57, 1007.
    [12] Blodgett, K. B. Langmuir, I. Built-Up Films of Barium Stearate and Their Optical Properties. Physical Review, 1937, 51, 964.
    [13] Bigelow, W. C. Pickett, D. L. Zisman, W. A. Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids. J. Colloid Sci., 1946, 1, 513.
    [14] Sagiv, J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc., 1980, 102, 92.
    [15] Nuzzo, R. G.; Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc., 1983, 105, 4481.
    [16] Iler, R. Multilayers of colloidal particles. J. Colloid Interface Sci., 1966, 21, 569.
    [17] Decher, G.; Hong, J. -D. Buildup of ultrathin multilayer films by a self-assembly process: I. Consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromol Chem., Macromol Symp., 1991, 46, 321.
    [18] (a) Hammond, P. T. Form and Function in Multilayer Assembly: New Applications at the Nanoscale. Adv. Mater. 2004, 16, 1271. (b) Bertrand, P.; Jonas, A.; Laschewsky, A. Legras, R. Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol. Rapid Commun., 2000, 21, 319. (c) Caruso, F. Hollow Capsule Processing through Colloidal Templating and Self-Assembly. Chem. Eur. J. 2000, 6, 413.
    [19] (a) Decher, G. Hong, J. -D. Schmitt, J. Buildup of ultrathin multilayer films by aself-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films, 1992, 210, 831. (b) Ferreira, M. Cheung, J. H. Rubner, M. F. Molecular self-assembly of conjugated polyions: A new process for fabricating multilayer thin film heterostructures. Thin Solid Films, 1994, 244, 806.
    [20] (a) Kong, W. Zhang, X. Gao, M. L. Zhou, H. Li, W. Shen, J. C. A new kind of immobilized enzyme multilayer based on cationic and anionic interaction. Macromol. Rapid Commun., 1994, 15, 405. (b) Lvov, Y. Lu, Z. Schenkman, J. B. Zu, X. Rusling, J. F. Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions. J. Am. Chem. Soc., 1998, 120, 4073. (c) Qi, Z. Honma, I. Ichihara, M. Zhou, H. Layer-by-Layer Fabrication and Characterization of Gold-Nanoparticle/Myoglobin Nanocomposite Films. 2006, 16, 377. (d) Lvov, Y. Haas, H. Decher, G. M?hwald, H. Mikhailov, A. Mtchedlishvily, B. Morgunova, E. Vainshtein, B. Successive deposition of alternate layers of polyelectrolytes and a charged virus. Langmuir, 1994, 10, 4232.
    [21] (a) Schmitt, J. Decher, G. Dressick, W. J. Brandow, S. L. Geer, R. E. Shashidhar, R. Calvert, J. M. Metal nanoparticle/polymer superlattice films: fabrication and control of layer structure. Adv. Mater., 1997, 9, 61. (b) Sun, Y. P. Hao, E. C. Zhang, X. Yang, B. Shen, J. C. Chi, L. F. Fuchs, H. Buildup of composite films containing TiO2/PbS nanoparticles and polyelectrolytes based on electrostatic interaction. Langmuir, 1997, 13, 5168. (c) Wang, Z. S. Sasaki, T. Muramatsu, M. Ebina, Y. Tanaka, T. Wang, L. Z. Watanabe, M. Self-assembled multilayers of titania nanoparticles and nanosheets with polyelectrolytes. Chem. Mater., 2003, 15, 807.
    [22] (a) Ariga, K. Lvov, Y. Kunitake, T. Assembling alternate dye-polyion molecular films by electrostatic layer-by-layer adsorption. J. Am. Chem. Soc., 1997, 119, 2224. (b) Van Cott, K. E. Guzy, M. Neyman, P. Brands, C. Heflin, J. R. Gibson, H. W. Davis, R. M. Layer-by-layer deposition and ordering of low-molecular-weight dye molecules for second-order nonlinear optics. Angew. Chem., Int. Ed., 2002, 41, 3236.
    [23] (a) Zhang, H. Y. Fu, Y. Wang, D. Wang, L. Y. Wang, Z. Q. Zhang, X. Hydrogen-bonding-directed layer-by-layer assembly of dendrimer and poly(4-vinylpyridine)and micropore formation by post-base treatment. Langmuir, 2003, 19, 8497. (b) He, J. A. Valluzzi, R. Yang, K. Dolukhan, T. Sun, C. M. Kumar, J. Tripathy, S. K. Samuelson, L. Balogh, L. Tomalia, D. A. Electrostatic multilayer deposition of a gold-dendrimer nanocomposite. Chem. Mater., 1999, 11, 3268.
    [24] (a) Kong, W. Zhang, X. Gao, M. L. Zhou, H. Li, W. Shen, J. C. Macromol. Rapid Commun., 1994, 15, 405. (b) Caruso, F. Caruso, R. A. M?hwald, H. Science, 1998, 282, 1111. (c) Ai, S. Lu, G. He, Q. Li, J. J. Am. Chem. Soc., 2003, 125, 11140. (d) Dotzauer, D. M. Dai, J. Sun, L. Bruening, M. L. Catalytic Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolyte/Metal Nanoparticle Films in Porous Supports. Nano Lett., 2006, 6, 2268. (e) Ma, Y. Sun, J. Q. Shen, J. C. Ion-Triggered Exfoliation of Layer-by-Layer Assembled Poly(acrylic acid)/Poly(allylamine hydrochloride) Films from Substrates: A Facile Way To Prepare Free-Standing Multilayer Films. Chem. Mater., 2007, 19, 5058. (f) Wang, Y. Angelatos, A. S. Caruso, F. Template Synthesis of Nanostructured Materials via Layer-by-Layer Assembly. Chem. Mater., 2008, 20, 848.
    [25] Wang, L. Y. Wang, Z. Q. Zhang, X. Shen, J. C. Chi, L. F. Fuchs, H. A new approach for the fabrication of alternating multilayer film of poly(4-vinylpyridine) and polyacrylic acid based on hydrogen bonding. Macromol. Rapid Commun., 1997, 18, 509.
    [26] Wang, L. Y. Fu, Y. Wang, Z. Q. Fan, Y. G. Zhang, X. Investigation into an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Langmuir, 1999, 15, 1360.
    [27] Wang, F. Ma, N. Chen, Q. Wang, W. B. Wang, L. Y. Halogen Bonding as a New Driving Force for Layer-by-Layer Assembly. Langmuir, 2007, 23, 9540.
    [28] (a) Shimazaki, Y. Mitsuishi, M. Ito, S. Yamamoto, M. Preparation of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction. Langmuir, 1997, 13, 1385. (b) Shimazaki, Y. Mitsuishi, M. Ito, S. Yamamoto, M. Preparation and characterization of the layer-by-layer deposited ultrathin film based on the charge-transfer interaction in organic solvents. Langmuir, 1998, 14, 2768.
    [29] Crespo-Biel, O. Dordi, B. Reinhoudt, D. N. Huskens, J. Supramolecular layer-by-layerassembly: alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions. J. Am. Chem. Soc., 2005, 127, 7594.
    [30] (a) Zhai, L.; McCullough, R. D. Layer-by-layer assembly of polythiophene. Adv. Mater., 2002, 14, 901. (b) Tang, T., Qu, J. Mullen, K. Molecular Layer-by-Layer Self-Assembly of Water-Soluble Perylene Diimides throughπ-πand Electrostatic Interactions. Langmuir, 2006, 22, 26.
    [31] Serizawa, T., Hamada, K.-i., Kitayama, T. Fujimoto, N. Hatada, K. Akashi, M. Stepwise Stereocomplex Assembly of Stereoregular Poly(methyl methacrylate)s on a Substrate. J. Am. Chem. Soc., 2000, 122, 1891.
    [32] Anzai, J.-i. Kobayashi, Y. Construction of Multilayer Thin Films of Enzymes by Means of Sugar-Lectin Interactions. Langmuir, 2000, 16, 2851.
    [33] Such, G. K. Quinn, J. F. Quinn, A. Tjipto, E. Caruso, F. Assembly of ultrathin polymer multilayer films by click chemistry. J. Am. Chem. Soc., 2006, 128, 9318.
    [34] Matsusaki, M. Kadowaki, K. Nakahara, Y., Akashi, M. Fabrication of celtular multilayers with nanometer-sized extracellular matrix films. Angew. Chem., Inter. Ed., 2007, 46, 4689.
    [35] Cho, J. Char, K. Hong, J.-D. Lee, K.–B. Fabrication of Highly Ordered Multilayer Films Using a Spin Self-Assembly Method. Adv. Mater. ,2001, 13, 1076.
    [36] Chiarelli, P. A. Johal, M. S. Casson, J. L. Roberts, J. B. Robinson, J. M. Wang, H. -L. Controlled fabrication of polyelectrolyte multilayer thin films using spin-assembly. Adv. Mater., 2001, 13, 1167.
    [37] Schlenoff, J. B. Dubas, S. T. Farhat, T. Sprayed Polyelectrolyte Multilayers. Langmuir, 2000, 16, 9968.
    [38] Izquierdo, A. Ono, S. S. Voegel, J.-C. Schaaf, P. Decher, G. Dipping versus Spraying: Exploring the Deposition Conditions for Speeding Up Layer-by-Layer Assembly. Langmuir, 2005, 21, 7558.
    [39] Kim, H. J. Lee, K. Kumar, S. Kim, J. S. Dynamic Sequential Layer-by-Layer Deposition Method for Fast and Region-Selective Multilayer Thin Film Fabrication. Langmuir, 2005, 21, 8532.
    [40] (a) Kr?tschmer, W. Lamb, L. D. Fostiropoulos, K. Huffman, D. R. Solid C60: a new form of carbon. Nature, 1990, 347, 354. (b) Iijima, S. Helical microtubules of graphitic carbon. Nature, 1991, 354, 56.
    [41] Ikeda, A. Hatano, T. Shinkai, S. Akiyama T. Yamada, S. Efficient photocurrent generation in novel self-assembled multilayers comprised of [60]Fullerene-cationic homooxacalix[3]arene inclusion complex and anionic porphyrin polymer. J. Am. Chem. Soc., 2001, 123, 4855.
    [42] Artyukhin, A. B. Bakajin, O. Stroeve, P. Noy, A. Layer-by-layer electrostatic self-assembly of polyelectrolyte nanoshells on individual carbon nanotube templates. Langmuir, 2004, 20, 1442.
    [43] Chen, H. Zeng, G. H. Wang, Z. Q. Zhang, X. Peng, M. L. Wu, L. Z. Tung, C. H. To Combine Precursor Assembly and Layer-by-layer Deposition for Incorporation of Single-charged Species: Nanocontainers with Charge-selectivity and Nanoreactors Chem. Mater., 2005, 17, 6679.
    [44] Ma, N. Wang, Y. P. Wang, B. Y. Wang, Z. Q. Zhang, X. Wang, G. Zhao Y. The Interaction between Block Copolymer Micelles and Azobenzene- Containing Surfactants: From Co-assembly in Water to Layer-by-layer Assembly at Interface Langmuir, 2007, 23, 2874.
    [45] Thunemann1, A. F. Muller, M. Dautzenberg, H. Joanny, J.-F. Lowen, H. Polyelectrolyte Complexes. Adv. Polym. Sci., 2004, 166, 113.
    [46]郭永梅.聚合物复合物层层组装膜的构筑.长春:吉林大学化学学院, 2009.
    [47] Guo, Y. M. Geng, W. Sun, J. Q. Layer-by-Layer Deposition of Polyelectrolyte-Polyelectrolyte Complexes for Multilayer Film Fabrication. Langmuir, 2009, 25, 1004.
    [48] Liu, X. K. Dai, B. Y. Zhou, L. Sun, J. Q. Polymeric complexes as building blocks for rapid fabrication of layer-by-layer assembled multilayer films and their application as superhydrophobic coatings. J. Mater. Chem., 2009, 19, 497.
    [49]魏盟.心血管疾病的诊断与鉴别诊断.天津:天津科学技术出版社. 2005.
    [50] Tan, Q. G. Ji, J. Barbosa, M. A. Fonseca, C. Shen, J. C. Constructing thromboresistant surface on biomedical stainless steel via layer-by-layer deposition anticoagulant. Biomaterial, 2003, 24, 4699.
    [51] Wang, Q. F. Zhong, L. Sun, J. Q. Shen, J. C. A Facile Layer-by-Layer Adsorption and Reaction Method to the Preparation of Titanium Phosphate Ultrathin Films Chem. Mater., 2005, 17, 3563.
    [52] Wang, Q. F. Yu, H. J. Zhong, L. Liu, J. Q. Sun, J. Q. Shen, J. C. Incorporation of Silver Ions into Ultrathin Titanium Phosphate Films: In Situ Reduction to Prepare Silver Nanoparticles and Their Antibacterial Activity" Chem. Mater., 2006, 18, 1988.
    [53] Lee, H. Lee, Y. Statz, A. R. Rho, J. Park, T. G. Messersmith, P. B. Substrate-Independent Layer-by-Layer Assembly by Using Mussel-Adhesive-Inspired Polymers. Adv. Mater., 2008, 20, 1916.
    [54] Boudou, T. Crouzier, T. Ren, K. F. Blin, G. Picart, C. Multiple Functionalities of Polyelectrolyte Multilayer Films: New Biomedical Applications. Adv. Mater., 2010, 22, 441.
    [55] Wang, L. Wang, X. Xu, M. F. Chen, D. D. Sun, J. Q. Layer-by-Layer Assembled Microgel Films with High Loading Capacity: Reversible Loading and Release of Dyes and Nanoparticles. Langmuir, 2008, 24, 1902.
    [56] Wang, L. Chen, D. D. Sun, J. Q. Layer-by-Layer Deposition of Polymeric Microgel Films on Surgical Sutures for Loading and Release of Ibuprofen. Langmuir, 2009, 25, 7990.
    [57] Sun, T. L. Feng, L. Gao, X. F. Jiang, L. Bioinspired Surfaces with Special Wettability Acc. Chem. Res., 2005, 38. 644.
    [58] Lafuma, A. Quéré, D. Superhydrophobic states. Nature Mater., 2003, 2, 457.
    [59] (a) Feng, L. Li, S. Li, Y. Li, H. Zhang, L. Zhai, J. Song, Y. Liu, B. Jiang, L. Zhu, D Super-hydrophobic surface: from natural to artificial. Adv. Mater., 2002, 14, 1857. (b) Barthlott, W. Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1.
    [60] Zhai, L. Cebeci, F. C. Cohen, R. E. Stable Superhydrophobic Coatings from Polyelectrolyte Multilayers. Nano Lett., 2004, 4, 1349.
    [61] Ji, J. Fu, J. H. Shen, J. C. Fabrication of a Superhydrophobic Surface from the Amplified Exponential Growth of a Multilayer. Adv. Mater., 2006, 18, 1441.
    [62] Cebeci, F. ?. Wu, Z. Z. Zhai, L. Cohen, R. E. Rubner, M. F. Nanoporosity-DrivenSuperhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir, 2006, 22, 2856.
    [63] Decher, G. Hong, J. D. Macromol. Chem., 1992, 46, 321.
    [64] Lin, Y. W. Tseng, W. L. Chang, H. T. Using a layer-by-layer assembly technique to fabricate multicolored-light-emitting films of CdSe@CdS and Cd Te quantum dots. Adv. Mater, 2006, 18, 1381.
    [65]康恩华.偶氮化合物层层薄膜的制备及其功能.长春:吉林大学化学学院, 2007.
    [66] Hiller, J. A. Mendelsohn, J. D. Rubner, M. F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nat. Mater., 2002, 1, 59.
    [67] Wu, Z. Z. Lee, D. Y. Rubner, M. F. Cohen, R. E. Structural Color in Porous, Superhydrophilic, and Self-Cleaning SiO2/TiO2 Bragg Stacks. Small, 2007, 3, 1445.
    [68] Kang, E. H. Jin, P. C. Yang, Y. Q. Sun, J. Q. Shen, J. C. A Facile Room Temperature Layer-by-Layer Deposition Process for the Fabrication of Ultrathin Films with Noncentrosymmetrically Oriented Azobenzene Chromophores. Chem. Commun., 2006, 4332-4334.
    [69] (a) Fujishima, A. Rao, T. N. Tryk, D. A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2000, 1, 1. (b) Bavykin, D. V. Friedrich, J. M. Walsh, F. C. Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Adv. Mater., 2006, 18, 2807. (c) Chen, X. B. Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev., 2007, 107, 2891.
    [70] Grandcolas, M. Louvet, A. Keller, N. Keller, V. Layer-by-Layer Deposited Titanate-Based Nanotubes for Solar Photocatalytic Removal of Chemical Warfare Agents from Textiles. Angew. Chem., Int. Ed., 2009, 48, 161.
    [71] Dotzauer, D. M. Dai, J. Sun, L. Bruening, M. L. Catalytic Membranes Prepared Using Layer-by-Layer Adsorption of Polyelectrolyte/Metal Nanoparticle Films in Porous Supports. Nano Lett., 2006, 6, 2268.
    [72] Wang, Y. Stedronsky, E. Regen, S. L. Defects in a Polyelectrolyte Multilayer: The InsideStory. J. Am. Chem. Soc., 2008, 130, 16510.
    [73] Kang, E. H. Liu, X. K. Sun, J. Q. Shen, J. C. Robust Ion-Permselective Multilayer Films Prepared by Photolysis of Polyelectrolyte Multilayers Containing Photo-Cross-Linkable and Photolabile Groups. Langmuir, 2006, 22, 7894.
    [74] (a) Lutkenhaus, J. L. Hammond, P. T. Electrochemically enabled polyelectrolyte multilayer devices: from fuel cells to sensors. Soft Matter, 2007, 3, 804. (b) Lowman, G. M. Tokuhisa, H. Lutkenhaus, J. L. Hammond, P. T. Novel Solid-State Polymer Electrolyte Consisting of a Porous Layer-by-Layer Polyelectrolyte Thin Film and Oligoethylene Glycol. Langmuir, 2004, 20, 9791.
    [75] (a) Daiko, Y. Katagiri, K. Matsuda, A. Proton Conduction in Thickness-Controlled Ultrathin Polycation/Nafion Multilayers Prepared via Layer-by-Layer Assembly. Chem. Mater., 2008, 20, 6405. (b) Tago, T. Shibata, H. Nishide, H. Proton conductivity in the dry membrane of poly(sulfonic acid) and polyamine layer-by-layer complex. Chem. Commun., 2007, 2989.
    [76] (a) Andreeva, D. V. Fix, D. Mohwald, H. Shchukin, D. G. Buffering polyelectrolyte multilayers for active corrosion protection. J. Mater. Chem., 2008, 18, 1738. (b) Lamaka, S. V. Shchukin, D. G. Andreeva, D. V. Zheludkevich, M. L. Mohwald, H. Ferreira, M G. S. Sol-Gel/Polyelectrolyte Active Corrosion Protection System. Adv. Funct. Mater., 2008, 18, 3137.
    [1] (a) B. S. Richards, Comparison of TiO2 and other dielectric coatings for buried-contact solar cells: a review. Prog. Photovolt Res. Appl. 2004, 12. 253. (b) Ho, P. K. H. Thomas, D. S. Friend, R. H. Tessler, N. All-polymer optoelectronic devices Science 1999, 285, 233. (c) Ishikawa, H. Honjo, Y. Watanabe, K. Three-layer broad-band antirefective coating on web. Thin Solid Films. 1999, 351, 212. (d) Ohsaki, H. Kokubu, Y. Global market and technology trends on coated glass for architectural, automotive and display applicationsThin Solid Films.1999, 351, 1. (e) Macleod, H. A. Thin Film Optical Filters, 2nd ed.; Adam Hilger Ltd.: Bristol, U.K., 1986.
    [2] (a) Walheim, S. Sch?ffer, E. Mlynek, J. Steiner, U. Nanophase-Separated Polymer Films as High-Performance Antire?ection Coatings. Science 1999, 283, 520. (b) Ibn-Elhaj, M. Schadt, M. Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies. Nature 2001, 410, 796.
    [3] (a) Cao, M. Song, X. Zhai, J. Wang, J. Wang, Y. J. Fabrication of Highly Antireflective Silicon Surfaces with Superhydrophobicity. Phys. Chem. B 2006, 110, 13072. (b) Lee, C. Bae, S. Y. Mobasser, S. Manohara, H. A Novel Silicon Nanotips Antireflection Surface for the Micro Sun Sensor. Nano Lett. 2005, 5, 2438.
    [4] (a) Fu, G.-D. Yuan, Z. Kang, E.-T. Neoh, K.-G. Lai, D. M. Huan, A. C. H. Nanoporous Ultra-Low-Dielectric-Constant Fluoropolymer Films via Selective UV Decomposition of Poly(pentafluorostyrene)-block-Poly(methyl methacrylate) Copolymers Prepared Using Atom Transfer Radical Polymerization. Adv. Funct. Mater. 2005, 15, 315. (b) Joo, W. Park, M. S. Kim, J. K. Block Copolymer Film with Sponge-Like Nanoporous Strucutre for Antireflection Coating. Langmuir 2006, 22, 7960. (c) Kim, H. C. Wilds, J. B. Kreller, C. R. Volksen, W. Brock, P. J. Lee, V. Y. Magbitang, T. Hedrick, J. L. Hawker, C. J. Miller, R. D. Fabrication of Multilayered Nanoporous Poly(methyl silsesquioxane). Adv. Mater. 2002, 14, 1637.
    [5] (a) Uhlmann, D. R. Suratwala, T. Davidson, K. Boulton, J. M. Teowee, G. Sol-gel derived coatings on glass. J. Non-Cryst. Solids 1997, 218, 113. (b) Penard, A. L. Gacoin, T. Boilot, J. P. Functionalized Sol–Gel Coatings for Optical Applications. Acc. Chem. Res. 2007, 40, 895. (c) Chen, D. Anti-refection (AR) coatings made by sol-gel processes: A review. Sol. Energy Mater. Sol. Cells 2001, 68, 313.
    [6] (a) Hiller, J. A. Mendelsohn, J. D. Rubner, M. F. Reversibly erasable nanoporous anti-reflection coatings from polyelectrolyte multilayers. Nat. Mater. 2002, 1, 59. (b) Rouse, J. H. Ferguson, G. S. J. Preparation of Thin Silica Films with Controlled Thickness and Tunable Refractive Index. Am. Chem. Soc. 2003, 125, 15529. (c) Podsiadlo, P. Sui, L. Elkasabi, Y. Burgardt, P. Lee, J. Miryala, A. Kusumaatmaja, W. Carman, M. R. Shtein, M. Kieffer, J. Lahann, J. Kotov, N. A.Layer-by-Layer Assembled Films of Cellulose Nanowires with Antireflective Properties Langmuir. 2007, 23, 7901. (d) Cho, J. Hong, J. Char, K. Caruso, F. Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties. J. Am. Chem. Soc. 2006, 128, 9935.
    [7] (a) Kleinfeld, E. R. Ferguson, G. S. Rapid, Reversible Sorption of Water from the Vapor by a Multilayered Composite Film: A Nanostructured Humidity Sensor Chem. Mater. 1995, 7, 2327 (b) Balkenende, A. R. Theije, F. K. de Kriege, J. C. Koen Controlling Dielectric and Optical Properties of Ordered mesoporous Organosilicate Films. Adv. Mater. 2003, 15, 139.
    [8] McClure, W. F. Review: 204 years of near infrared technology. J. Near Infrared Spec. 2003, 11, 487.
    [9] (a) Barthlott, W. Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1. (b) Feng, L. Li, S. H. Li, Y. S. Li, H. J. Zhang, L. J. Zhai, J. Song, L. Y. Liu, B. Q. Jiang, L. Zhu, D. B. Super-Hydrophobic Surface: From natural to Artificial. Adv. Mater. 2002, 14, 1857.
    [10] Sun, T. L. Feng, L. Gao, X. F. Jiang, L. Bioinspired Surfaces with Special Wettability. Acc. Chem. Res. 2005, 38, 644.
    [11] Takai, K.; Saito, H.; Yamauchi, G..; Proceedings of the composites: design for performance, Lake Louise, Canada, 1997, 220.
    [12] Patankar, N. A. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces. Langmuir 2003, 19, 1249.
    [13] (a) Sun, T. L Tan, H. Han, D. Fu, Q. Jiang, L. No Platelet Can Adhere-Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces. Small 2005, 1, 959. (b) Busscher, H. J. Stokroos, I. Van der Mei, H. C. Rouxhet, P. G. Schakenraad, J. M. J. Adhes. Sci. Technol. 1992, 6, 347.
    [14] St?ber, W. Fink, A. Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 1968, 26, 62.
    [15] Volmer, M. Weber, A. Nuclei formation in supersaturated states. Z. Phys. Chem. 1926, 119, 277.
    [16] Wenzel, R. N. Dependence of the wetting characteristics of a solid on the roughness of its surface is inherent in the fundamental theory of wetting action. Ind. Eng. Chem. 1936, 28, 988.
    [17] Cassie, A. B. D. Baxter, S. Wettability of porous surfaces, Trans. Faraday Soc. 1944, 40, 546.
    [1] Ohdaira, T. Ngai, H. Kayano, S. kazuhito, H. Antifogging effects of a socket-type device with the superhydrophilic, titanium dioxide–coated glass for the laparoscope. Surg. Endosc. 2007, 21,333.
    [2] Zhang, X. T. Sato, O. Taguchi, M. Einaga, Y. Murakami, T. Fujishima, A. Self-Cleaning Particle Coating with Antireflection Properties. Chem. Mater. 2005, 17, 696.
    [3] Cebeci, F. C. Wu, Z. Z. Zhai, L. Cohen, R. E. Rubner, M. F. Nanoporosity-Driven Superhydrophilicity: A Means to Create Multifunctional Antifogging Coatings. Langmuir 2006, 22, 2856.
    [4] Howarter, J. A. Youngblood, J. P. Self-cleaning and next generation anti-fog surfaces and coatings. Macromol. Rapid Commun. 2008, 29, 455.
    [5] (a) Lin, V. S. Y. Motesharei, K. Dancil, K. P. S. Sailor, M. J. Ghadiri, M. R. A Porous Silicon-Based Optical Interferometric Biosensor. Science, 1997, 278, 840. (b) Guan, Y. Yang, S. Zhang, Y. Xu, J. Han, C. C. Kotov, N. A. Fabry?Perot Fringes and Their Application To Study the Film Growth, Chain Rearrangement, and Erosion of Hydrogen-Bonded PVPON/PAA Films J. Phys. Chem. B 2006, 110, 13484.
    [6] Wenzel, R. N. Dependence of the wetting characteristics of a solid on the roughness of its surface is inherent in the fundamental theory of wetting action. Ind. Eng. Chem. 1936, 28, 988.
    [7] Liu, X. He, J. Hierarchically structured superhydrophilic coatings fabricated by self-assembling raspberry-like silica nanospheres. J. Colloid Interface Sci. 2007, 314, 341.
    [1] (a) Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716. (b) Bahri, A. Water Woes Nature, 2008, 456, 39.
    [2]盛连喜.现代环境科学导论北京:化学工业出版社, 2006。
    [3] Ali, I. Aboul-Enein, H. Y. Chiral pollutants: Distribution, toxicity and analysis by chromatography and capillary electrophoresis, John Wiley & Sons, Chichester, UK, 2004.
    [4] Zollinger, H. Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments, 2nd revised ed., VCH publishers, New York, 1991.
    [5] (a) Ali, I. Jain, C. K. in Water Encyclopedia: Domestic, municipal, and industrial water supply and waste disposal. (Eds: J. Lehr), John Wiley & Sons, New York, 2005. (b) G. Crini, Non-conventional low-cost adsorbents for dye removal-A review. Bior. Tech., 2006, 97, 1061. (c) Ali, I. Gupta, V. K. Advances in water treatment by adsorption technology. Nat. Protoc., 2006, 1, 2661.
    [6] (a) Fei, J. Cui, Y. Yan, X. Qi, W. Yang, Y. Wang, K. He, Q. Li, J. Controlled Preparation of MnO2 Hierarchical Hollow Nanostructures and Their Application in Water Treatment. Adv. Mater., 2008, 20, 452. (b) Zhong, L. S. Hu, J. S. Liang, H. P. Cao, A. M. Song, W. G. Wan, L. J. Self-Assembled 3D Flowerlike Iron Oxide Nanostructures and Their Application in Water Treatment. Adv. Mater., 2006, 18, 2426.
    [7] (a) Zhuang, X. Wan, Y. Feng, C. Shen, Y. Zhao, D. Highly Efficient Adsorption of Bulky Dye Molecules in Wastewater on Ordered Mesoporous Carbons. Chem. Mater., 2009, 21, 706. (b) N. K. Lazaridis, G. Z. Kyzas, A. A. Vassiliou, D. N. Bikiaris, Chitosan Derivatives as Biosorbents for Basic Dyes. Langmuir, 2007, 23, 7634. (c) V. Bekiari, P. Lianos, Ureasil Gels as a Highly Efficient Adsorbent for Water Purification Chem. Mater., 2006, 18, 4142. (d) L. Zhang, J. Q. Sun, Chem. Commun., 2009, 3901.
    [8] (a) Fujishima, A. Rao, T. N. Tryk, D. A. Titanium dioxide photocatalysis. Journal ofPhotochemistry and Photobiology C: Photochemistry Reviews. 2000, 1, 1. (b) Bavykin, D. V. Friedrich, J. M. Walsh, F. C. Protonated Titanates and TiO2 Nanostructured Materials: Synthesis, Properties, and Applications. Adv. Mater. 2006, 18, 2807. (c) Chen, X. B. Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications. Chem. Rev. 2007, 107, 2891.
    [9] (a) Pan, J. H. Zhang, X. Du, A. J. Sun, D. D. Leckie, J. O. Self-Etching Reconstruction of Hierarchically Mesoporous F-TiO2 Hollow Microspherical Photocatalyst for Concurrent Membrane Water Purifications. J. Am. Chem. Soc., 2008, 130, 11256. (b) Kim, T. W. Hwang, S. J. Jhung, S. H. Chang, J. S. Park, H. Choi, W. Choy, J. H. Bifunctional Heterogeneous Catalysts for Selective Epoxidation and Visible Light Driven Photolysis: Nickel Oxide-Containing Porous Nanocomposite. Adv. Mater., 2008, 20, 539. (c) Zhao, W. Sun, Y. Castellano, F. N. Visible-Light Induced Water Detoxification Catalyzed by PtII Dye Sensitized Titania J. Am. Chem. Soc. 2008, 130, 12566. (d) Sakthivel, S. Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide. Angew. Chem., Int. Ed., 2003, 42, 4908. (e) Yu, A. Lu, G. Q. M. Drennan, J. Gentle, I. R. Tubular Titania Nanostructures via Layer-by-Layer Self-Assembly. Adv. Funct. Mater., 2007, 17, 2600.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700