卟啉酞菁类化合物的设计合成及性质与自组装纳米结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉(Por)是广泛存在于自然界中的一类有机化合物,它是生物分子叶绿素的功能组成部分,也是氧载体蛋白血红蛋白的活性位点。酞菁(Pc)是卟啉的类似物,由于周围增多了四个苯环,因而比卟啉具有更大的共轭体系。我们可以用化学方法修饰卟啉环和酞菁环,调整其性能。我们同样可以改变卟啉和酞菁的中心金属离子,得到我们所需要的功能材料。一般来讲,过渡金属可以形成单层配合物;离子半径大、配位数高的金属如稀土金属则可以生成夹心三明治型配合物;还有一些金属如锰、锌等,可以在配合物的轴向链接原子、基团及其他配合物。卟啉和酞菁配合物非同寻常的光、电、磁等性质可以应用于新型的分子导体、分子电子元器件、分子磁体等,拥有广阔的应用前景。本论文主要设计、合成了结构新颖的卟啉和酞菁配合物,并全面的研究了结构和性能间的联系;同时,为了合成目标分子,还设计了一种新的酞菁合成方法。
     1、卟啉分子自组装纳米结构的研究
     自组装是分子在基于非共价键的相互作用下自发形成有序结构的一种技术。自组装的过程是一种整体的复杂的协同作用,除了受配体自身的性质影响外,还受各种外界的物理和化学因素的影响。不同的纳米结构可以应用于不同的领域,例如:纳米空心结构可以应用于药物传输,纳米带可以作为有机半导体。近年来,有机功能分子的超分子聚集体和纳米尺度组装的研究成为了广大科研工作者研究的热点,在纳米科学与技术中获得广泛的应用。在本章中,我们设计合成了两种新颖的卟啉分子,并且利用相转移的方法在甲醇和正己烷中将它们分别制备成有机纳米聚集体:metal free5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin H2[DP(CH3COSC5H10O)2P] (1)和5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrinato zinc Zn[DP(CH3COSC5H10O)2P](2)。利用紫外(UV)、红外(FT-IR)、核磁(NMR)、扫描电镜(SEM)、X-射线衍射(XRD)等表征手段系统研究了化合物1和2以及它们聚集体的性质。晶体结构表明,化合物2中存在Zn与O的配位作用。在氯仿中,化合物1表现为二维“气泡”;由于存在Zn-O配位作用,化合物2表现为三维“网状”。在甲醇中的自组装过程中,分子间的π-π相互作用和范德华力使得化合物1自组装成纳米球;π-π相互作用和Zn-O配位作用的竞争和协同作用使得化合物2自组装成纳米棒。在正己烷中的自组装过程中,分子间的π-π作用力和范德华力使得化合物1自组装成纳米带;π-π相互作用和Zn-O配位作用的竞争和协同作用使得化合物2自组装成纳米空心球。我们首次揭示了在宏观的晶体结构中分子排列方式和微观的自组装聚集体中分子排列方式的关系,为设计有机功能材料提供一条新的参考途径。
     2、两亲性三层酞菁化合物的设计合成及OFET性质研究
     酞菁作为一种共面的18π电子共轭大环体系非常稳定,其衍生物与其它有机半导体材料相比,具有良好的化学稳定性和热稳定性。三明治型酞菁稀土配合物具有特殊的结构,分子内酞菁环之间存在着强烈的π-π相互作用,与单层相似物相比,共轭程度有所增加。同时,由于其在有机溶剂中具有良好的可溶性以及成膜性,这类分子材料作为本征的半导体被期待在有机场效应晶体管(OFET)领域起到更重要的作用。目前,多数酞菁类器件都是用真空蒸镀的方法制作而成的。最近,以溶液为基础的薄膜沉积和印刷方法得以广泛应用。本章设计合成了以冠醚环为亲水层,烷氧链为疏水层,具有两亲性的三层三明治型酞菁配合物,并且采用Langmuir-Blodgett (LB)膜的方法,将它们制成OFET器件。我们通过改变冠醚环的大小以及对基底的处理方法,达到调控其OFET性质的目的。我们对这一系列双亲性酞菁进行了紫外、红外和元素分析等完整的表征,研究了其电化学性质及OFET性质,揭示了在这种两亲性三层酞菁化合物中冠醚环的大小和不同的基底处理方法与场效应迁移率和开关比之间的关系,并详细阐释了原因。
     3、α位取代酞菁分子自组装纳米结构的研究
     共轭分子体系自组装形成的各种不同的纳米聚集体主要是通过分子间π-π相互作用和其它非共价键的协同作用所得到的。人们通常在共轭分子体系引入不同的功能基团或者非共价键来调节它们之间的作用,进而调节自组装纳米结构的形貌。酞菁具有大的π共轭体系,良好的热稳定性,易于裁剪和衍生等性质,已经在超分子自组装体系的研究中引起了高度的重视。本章设计合成了两种新颖的α位取代酞菁分子:metal free1,4,8,11,15,18,22,25-octa(butyloxy)phthalocyanine H2Pc(α-OC4H9)8 (1)和1,4,8,11,15,18,22,25-octa(butyloxy)phthalocyaninato lead Pb[Pc(α-OC4H9)8] (2)。我们采用相转移的方法将它们制备成有机纳米聚集体。晶体结构证明化合物1具有马鞍状的构型,化合物2则以伪双层的形式存在。从SEM图片中可以看到,在没有钠离子存在的情况下,1和2分别形成尺寸不同纳米带;在钠离子存在的情况下,1和2分别形成扭曲的纳米带,并且尺寸进一步发生变化。我们利用它们良好的结晶性,系统的探讨组装过程的机理、动力学以及热力学过程;我们还利用它们特殊的分子结构,研究钠离子的作用,以及其所形成的配位键对自组装过程的影响。
     4、α位取代酞菁对称双层化合物合成及性质的研究
     双层酞菁稀土配合物具有特殊的光、电、磁等性质,可以应用于气体传感器、场效应晶体管以及分子磁体等。目前对双层酞菁化合物的研究主要集中在没有取代或者β位取代的酞菁双层,而对α位取代酞菁双层的研究相对较少。由于巨大的空间位阻,α位八取代酞菁双层一直被认为是无法合成的。本章选择变形严重的metal free 1,4,8,11,15,18,22,25-octa(butyloxy)phthalocyanine H2Pc(α-OC4H9)8作为起始原料,利用催化和模板的方法,成功得到了三明治型化合物HMⅢ[Pc(α-OC4H9)8]2 [M=Eu (1), Y (2); Pc(α-OC4H9)8=1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyanine]。我们通过一系列平行实验,证明了1,8-二氮杂环[5,4,0]十一烯-7(DBU)的催化作用,并详细讨论了DBU的催化机理和不同冠醚的模板作用;同时选择不同的金属,证明了该方法的普遍性,对卟啉酞菁类化合物的合成具有重大意义。
Porphyrins are a group of organic compounds that frequently occur in nature. The porphyrin structure is the functional composition of chlorophyll, a kind of biomolecule. It is also the active site of hemoglobin, the well-known oxygen carrier protein. Phthalocyanines are analogues of porphyrins. Due to the additional 4 benzene rings on the periphery, they are more conjugated. Both series belonging to a cyclic tetrapyrrole family are able to be modified by chemical methods. At the same time, different metal atoms can also change the functions. Generally, with the help of transition metals, metal tetrapyrrole complexes can be obtained. While with large metal centers and high coordination numbers, sandwich-type double-and triple-deckers complexes can be formed. Special metal centers such as Mn and Zn can also induce axial coordination. Owing to the extraordinary optical, electrical, and magnetic properties, porphyrins, phthalocyanines, as well as their sandwich-type double-and triple-decker structures have been recently emerging as advanced molecular materials with great potential applications in the fields of molecular conductors, molecular electronics, molecular magnets, etc. In this thesis a series of porphyrin and/or phthalocyanine derivatives are designed, with their structures and properities comprehensively studied. Moreover, a new method for the synthesis of phthalocyanine was involved. Our research work has been focused on the following respects:
     1. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction
     Novel metal free 5,15-di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin H2[DP(CH3COSC5H10O)2P] (1) and its zinc congener Zn[DP(CH3COSC5H10O)2P] (2) were designed and fabricated into organic nanostructures by a phase-transfer method. Their self-assembling properties in MeOH and n-hexane were comparatively investigated by scanning electronic microscopy (SEM) and X-ray diffraction (XRD) technique. Inter-molecularπ-πinteraction of metal free porphyrin 1 leads to the formation of hollow nanospheres and nanoribbons in MeOH and n-hexane, respectively. In contrast, introduction of additional Zn-O coordination bond for porphyrinato zinc complex 2 induces competition with inter-molecularπ-πinteraction, resulting in nanostructures with nanorod and hollow nanosphere morphology in MeOH and n-hexane. The present result appears to represent the first effort towards controlling and tuning the morphology of self-assembled nanostructures of porphyrin derivatives via molecular design and synthesis through introduction of metal-ligand coordination bonding interaction. Nevertheless, availability of single crystal and molecular structure revealed by X-ray diffraction analysis for both porphyrin derivatives renders it possible to investigate the formation mechanism as well as the molecular packing conformation of self-assembled nanostructures of these typical organic building blocks with large conjugated system in a more confirmed manner.
     2. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents
     Two amphiphilic heteroleptic tris(phthalocyaninato) europium complexes with hydrophilic crown ether heads and hydrophobic octyloxy tails [Pc(mCn)4]Eu[Pc(mCn)4]Eu[Pc(OC8H17)8] (m=12, n=4; m=18, n=6) (1,2) were designed and prepared. These novel sandwich triple-decker complexes have been characterized by a wide range of spectroscopic methods and electrochemically studied. With the help of Langmuir-Blodgett (LB) technique, these typical amphiphilic triple-decker complexes have been fabricated into organic field effect transistors (OFET) with top contact configuration on bare SiO2/Si substrate, hexamethyldisilazane (HMDS)-treated SiO2/Si substrate, and octadecyltrichlorosilane (OTS)-treated SiO2/Si substrate, respectively. The device performance is revealed to be dependent on the species of crown ether substituents and substrate surface treatment. The carrier mobility for hole as high as 0.33 cm2 V-1 s-1 and current modulation of 7.91×105 have been reached for the devices of triple-decker compound 1 deposited on the octadecyltrichlorosilane (OTS)-treated SiO2/Si substrates, indicating the effect of substrate surface treatment on the OFET performance due to the improvement on the film quality as demonstrated by the atomic force microscope (AFM) investigation results.
     3. Nonperipherally Octa(butyloxy)-substituted Phthalocyanine Derivatives with Good Crystallinity. Effect of Metal-Ligand Coordination on the Molecular Structure, Internal Structure, and Dimension of Self-Assembled Nanostructures
     To investigate the effect of metal-ligand coordination on the molecular structure, internal structure, dimension, and morphology of self-assembled nanostructures, two non-perpherally octa(alkoxyl)-substituted phthalocyanine compounds with good crystallinity, namely metal free 1,4,8,11,15,18,22,25-octa(butyloxy)phthalocyanine H2Pc(a-OC4H9)8 (1) and its lead complex Pb[Pc(α-OC4H9)8] (2), were designed and synthesized. Single crystal X-ray diffraction analysis reveals the distorted molecular structure with a saddle conformation for 1 and a Pb-connected pseudo-double-decker supramolecular structure with a domed conformation for 2, respectively. The formation of nanoribbons in the absence of Na+ with ca. 100 and 150 nm average width for 1 and 2, respectively, revealed the molecular structure (conformation) associated with metal-ligand (Pb-Nisoindole, Pb-Naza, and Pb-Obutyloxy) coordination on the dimension of nanostructures for 2. The formation of twisted nanoribbons in the presence of Na+ with ca.50 and 100 nm average width for 1 and 2, respectively, revealed the molecular structure (conformation) associated with additional metal-ligand (Na-Naza and Na-Obutyloxy) coordination bonds for both the compounds. Both nanoribbons and twisted nanoribbons display rich higher order refraction peaks in their XRD patterns, giving clear information about the internal structure of the nanoribbons. To the best of our knowledge, the present result represents the first self-assembled nanostructures fabricated from phthalocyanine derivatives with confirmed internal structure, controllable dimension and morphology, and high molecular ordering nature. It will be helpful for the design and preparation of phthalocyanine-based nanoelectronic and nanooptoelectronic devices with good performance due to the close relationship between molecular ordering and dimension of nanostructures and the performance and size of nanodevices.
     4. Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] Rare Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Molecular Structure
     Homoleptic octa-α-substituted bis(phthalocyaninato) rare earth sandwich-type complex HMⅢ[Pc(α-OC4H9)8]2 [M=Eu(1), Y(2)] have been prepared in the presence of organic base 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) and benzo-18-crown-6/benzo-15-crown-5 in refluxing n-octanol. To the best of our knowledge, it is the first example of homoleptic non-peripherally octa(alkoxyl)-substituted bis(phthalocyaninato) rare earth complexes. Comparative studies on a series of reactions reveal the key role of DBU as catalyst and crown ether as template in the formation of homoleptic rare earth double-decker complexes with structurally highly deformed non-peripherally octa(butyloxy)-substituted phthalocyanine ligand. The molecular structure of the complex 1 has been determined by single-crystal X-ray diffraction analysis. The metal center is octa-coordinated by the isoindole nitrogen atoms of the two phthalocyaninato ligands, forming a distorted square antiprism. These two bis(phthalocyaninato) rare earth double-deckers have also been characterized by a wide range of spectroscopic methods including MS,1H NMR, UV-vis, IR, and EPR. Structural and spectroscopic studies reveals that theπ-πinteraction between the two Pc(a-OC4H9)g rings is weaker than that for the corresponding unsubstituted orβ-substituted bis(phthalocyaninato) analogues.
引文
[1]H. Ficsher et al. Die Chemie des pyrrols. [M] Vol 2, part 1, Akademic Verlagsegesllschft, Liepzig,1937,158.
    [2]Zelaski, J. Untersuchungen uber das Mesoporphyrin. [J] Z. Physiol. Chem.,1902,37, 54-74.
    [3]Wong, C.-P.; Venteicher, R. F.; HorrocksJr., W. D. Lanthanide Porphyrin Complexes. Potential New Class of Nuclear Magnetic Resonance Dipolar Probe. [J] J. Am. Chem. Soc,1974,96,7149-7150.
    [4]Wong, C.-P.; HorrocksJr, W. D. New Metalloporphyrins. Thorium and Yttrium Complexes of Tetraphenylporphin. [J] Tetrahydron Lett.,1975,31,2637-2640.
    [5]Darovshikh, A. N.; Frank-Kamenetskaya,O. V.; Fundamenskii, V. S.; Golubev, A. M. The Crystal and Molecular-Structure of Lutecium Diphthalocyanine (Gamma-Phase). [J] Kristallografiya 1986,31,279-283.
    [6]Sun, X.; Li, R.; Wang, D.; Dou, J.; Zhu, P.; Lu, F.; Ma, C; Choi, C.-F.; Cheng, D. Y. Y; Ng, D. K. P.; Kobayashi, N.; Jiang J. Synthesis and Characterization of Mixed Phthalocyaninato and meso-Tetrakis(4-chlorophenyl)porphyrinato Triple-Decker Complexes-Revealing the Origin of Their Electronic Absorptions. [J] Eur. J. Inorg. Chem.2004,19,3806-3813.
    [7]Bennett W. E., Broberg D. E., Baenziger N. C. Crystal Structure of Stannic Pphthalocyanine, an Eight-Coordinated Tin Complex. [J] Inorg. Chem.1973,12, 930-936.
    [8]Kirin I. S., Moskalev P. N., Makashev Yu. A. Formation of Phthalocyanines of Rare-Earth Elements. [J] Russ. J. Inorg. Chem.1965,10,1065-1066.
    [9]De Cian, A.; Moussavi M., Fischer J.; Weiss, R. Synthesis, Structure, and Spectroscopic and Magnetic Properties of Lutetium(III) Phthalocyanine Derivatives: LuPc2·CH2Cl2 and [LuPc(OAc)(H2O)2]·H2O·2CH3OH. [J] Inorg. Chem.,1985,24, 3162-3167.
    [10](a) Lux F., Dempf D., Graw D. Diphthalocyaninato-Thorium(IV) and-Uranium (IV). [J] Angew. Chem. Int. Ed. Eng.,1968,7,819-820. (b) Bott, K. Synthesis of 1-Adamantanecarbaldehydes. [J] Angew. Chem. Int. Ed. Eng.1968,7,894-894.
    [11]Bouvet, M.; Smion, J. Electrical properties of Rare Earth Bisphthalocyanine and Bisnaphthalocyanine Complexes. [J] Chem. Phys. Lett.1990,172,299-302.
    [12]Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [13]姜建壮,吴基培,刘伟,谢经雷,孙思修.对称的二层及三层三明治型金属酞菁配合物的研究进展.[J]化学通报.1999,2.
    [14]计亮年,彭小彬,黄锦汪.金属卟啉配合物模拟某些金属酶的研究进展.[J]自然科学进展2002,12,120-129.
    [15]Sessler, J. S.; Weghom., S. J. Expended, Contracted,81 Isomeric Porphyrins. [M] Pergamon, Perface,1997.
    [16]李德平,胡静.血卟啉类化合物诊治肿瘤的研究进展及应用.[J]中国生化药物杂,志2003,24,162-163.
    [17]杨新国,孙景志,汪茫,陈红征,黄骥.卟啉类光电功能材料研究进展.[J]功能材料,2003,34,113-117.
    [18](a) Kobayashi, N.; Janda, P.; Lever, A. B. P. Cathodic Reduction of Oxygen and Hydrogen Peroxide at Cobalt and Iron Crowned Phthalocyanines Adsorbed on Highly Oriented Pyrolytic Graphite Electrodes. [J] Inorg. Chem.,1992,31,5172-5177. (b) Borisenkova, S. A. New Aspects of the Heterogeneous Catalysis of Thiol Oxidation by Phthalocyanines. [J] Pet. Chem.,1991,31,379-398.(c) Enmanj, K.; Nishiyama, I.; Takahashi, K.; Sanoh, M. Addition Effect of NaF on the Deodorant Efficiency of an Iron Phthalocyanine Derivative. [J] Boll. Chem. Soc. Jpn,1991,64,3213-3214. (d) Zakharov, A. N.; Romanovsky, B. V. Zeolite included Fe(II)Phthalocyanine. [J] J. Inclusion Phenomena,1985,3,389-393. (e) Herron, N.; Stueky, G. D.; Tolman, C. A. Shape Selectivity in Hydrocarbon Oxidations Using Zeolite Encapsulated Iron Phthalocyanine Catalysts. [J].J.Chem. Soc, Chem. Commun.,1986,1521-1522.
    [19](a) Parton, R. F.; Vankelecom, I. F. J.; Casselman, M. J. A.; Bezoukhanova, C. P.; Uytterhoeven, J. B.; Jacobs, P. A. An Efficient Mimic of Cytochrome P-450 from a Zeolite-Encaged Iron Complex in a Polymer Membrane. [J] Nature,1994,370, 541-544. (b) Jin, Z.; Nolan, K.; McArthur, C. R.; Lever, A. B. P.; Leznoff, C. C. Synthesis, Electrochemical and Spectroelectrochemical Studies of Metal-Free 2,9,16,23-Tetraferrocenylphthalocyanine. [J] J. Organometal. Chem.,1994,468, 205-212. (c) Bryee, M. R.; Devonport, W.; Goldenberg, L. M.; Wang, C. Macromolecular Tetrathiafulvalene Chemistry. [J] Chem. Commun.,1998,945-951.
    [20](a) Linssen, T. G; Durr, K.; Hanack, M.; Hirsch, A. A Green Fullerene:Synthesis and Electrochemistry of a Diels-Alder Adduct of [60]Fullerene with a Phthalocyanine. [J] J. Chem. Soc, Chem. Common.,1995,103-104. (b) Clarkson, G J.; Humberstone, P.; MeKeown, N. B. Synthesis of a Phthalocyanine Derivative Containing Easily Oxidized Sterically-Hindered Phenolic Substituents. [J] Chem. Commun.,1997, 1979-1980. (c) Kimura, M.; Hamakawa, T.; Muto, T.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Five-nuclear Complexes of Zinc (Ⅱ) Phthalocyanine with Directly Linked Terpyridine Ligands. [J] Tetrahedron Lett.,1998,39,8471-8474.
    [21](a)王全国,曾凡花,解永树,朱为宏.异卟啉研究进展.[J]化学进展,2009,21,1523-1533. (b) Sessler, J. L.; Andrievsky, A. Efficient Transport of Aromatic Amino Acids by Sapphyrin-Lasalocid Conjugates. [J] Chem. Eur. J.1998,4,159-167. (c)何远航;惠仁杰;易院平;帅志刚.扩展卟啉分子的多光子吸收特性.[J]物理化学学报,2008,24,565-570.(d)孙文芳,王夺元.不对称五氮齿扩展卟啉配合物的激发态性能研究.[J]中国科学B辑:化学,1996,26,318-324.
    [22]王朝晖,衷庆华,熊轶嘉,孙亚,孔繁敖.酞菁锌分子激发态的超快内转换和振动弛豫[J]化学物理学报,1998,2,15-18.
    [23](a) de la Torre, G, Vazquez, P.; Agullo-Lopez, F.; Torres, T. Phthalocyanines and Related Compounds. [J] J. Mater. Chem.,1998,8,1671-1683. (b) Chen, Y.; Barthel, M.; Seiler, M; Subramanian, L. R.; Bertagnolli, H.; Hanack, M. An Axially Bridged Indium Phthalocyanine Dimer with an In-In Bond. [J] Angew. Chem. Int. Ed.2002, 41,3239-3242.
    [24]陈仕艳,刘云圻,黄学斌,邱文丰,朱道本.酞菁在分子材料器件方面的研究进展.[J]自然科学进展,2004,14,125-132.
    [25](a) Grootboom, N.; Nyokong, T. Iron perchlorophthalocyanine and tetrasulfophthalocyanine catalyzed oxidation of cyclohexane using hydrogen peroxide, chloroperoxybenzoic acid and tert-butylhydroperoxide as oxidants [J] J. Mol. Catal. A: Chem.,2002,179,113-123. (b) Sorokin, A.; Meunier, B. Efficient H2O2 Oxidation of Chlorinated Phenols Catalyzed by Supported Iron Phthalocyanine. [J] J. Chem. Soc, Chem. Commun.,1994,1799-1800 (c) Sorokin, A.; Meunier, B.; Seris, J.-L. Efficient
    Oxidative Dechlorination and Aromatic Ring Cleavage of Chlorinated Phenols Catalyzed by Iron Sulfophthalocyanine. [J] Science,1995,268,1163-1166. (d)陈文兴,陈世良,吕慎水,姚玉元,徐敏虹.负载型酞菁催化剂的制备及其光催化氧化苯酚.[J]中国科学B辑:化学,2007,37,369-373.(e)徐强,郭稳尚,唐致远.酞菁催化剂对镍氢电池性能的影响.[J]中国有色金属学报.2007,17,1876-1880.(f)鲁宇浩,吴益华,郭丽.聚合物电解质燃料电池中的酞菁催化剂.[J]电源技术,2003,27,333-338.(g)余远斌,杨锦宗.酞菁类催化剂的研究进展.[J]北京工业大学学报,1998,24,115-120.
    [26]Collins, G. C. S.; Schiffrin, D. J. The Electrochromic Properties of Lutetium and Other Phthalocyanines. [J] J. Electroanal. Chem.1982,139,335-369.
    [27]Frampton, C. S.; O'Connor, J. M.; Peterson, J.; Silver, J. Enhanced Colors and Properties in the Electrochromic Behavior of Mixed Rare-Earth-Element Bisphthalcoyanines. [J] Displays,1988,9,174-178.
    [28]Capobianchi, A.; Paoletti, A. M.; Pennesi, G; Rossi, G; Panero, S. Electrochromism in Sandwich-type Diphthalocyanines:Electrochemical and Spectroscopic Behaviour of Bis(phthalocyaninato)titanium(IV) (Ti(Pc)2) Film. [J] Synth. Met.1995,75,37-42.
    [29]McKeown, N. B. The General Chemistry of Phthalcoyanines. [J] Chem.& Industry; 1999, Feb.1,92.
    [30]Andre, J. J.; Holczer, K.; Petit, P.; Riou, M. T.; Smon, J. Electrical and Magnetic Properties of Thin Films and Single Crystals of Bis(phthalocyaninato) Lutetium. [J] Chem. Phys. Lett.1985,115,463-466.
    [31]Padilla, J.; Hatifield, W. E.; Correlation between π-Orbital Overlap and Conductivity in Bis-Phthalocyaninato Lanthanides. [J] Inorg. Chim. Acta.1991,185,131-136.
    [32]Souto, J.; Aroca, R.; Desaja, J. A. Gas Adsorption and Electrical Conductivity of Langmuir-Blodgett Films of Terbium Bisphthalocyanine. [J] J. Phys. Chem.1994,98, 8998-9001.
    [33]Trometer, M.; Even, R.; Simon, J.; Dubon, A.; Laval, J.-Y.; Germain, J. P.; Maleysson, C; Pauly, A.; Robert, H. Lutetium Bisphthalocyanine Thin Films for Gas Detection. [J] Sens. Actuators B.1992,8,129-135.
    [34]Simon, J.; Sirlin, S. Mesomorphic Molecular Materials for Electronics, Opto- Electronics, Iono-Electronics:Octaalkylphthalocyanine Derivatives. [J] Pure Appl. Chem.1989,61,1625-1629.
    [35]Guillaud, G; Sadoun, M. A.; Maitrot, M.; Andre, J. J.; Simon, J.; Even, R. Field-Effect Transistors Based on Intrinsic Molecular Semiconductors. [J] Chem. Phys. Lett.1990,167,503-506.
    [36]Clarisse, C; Riou, M. T.; Gauneau, M.; le Contellec, M. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron. Lett.1988,24,674-675.
    [37]Toupance, T.; Ahsen, V.; Simon, J. Iono-Electronics:Crown Ether Substituted Lutetium Bisphthalocyanines [J].J.Chem. Soc, Chem. Commun.1994,75-76.
    [38]Nicholson M. M, Pizzarello F. A. Effects of the Gaseous Environment on Propagation of Anodic Reaction Boundaries in Lutetium Diphthalocyanine Films. [J] J. Electrochem Soc,1980,127,2617-2620.
    [39]Nicholson, M. M.; Weismuller, T. P. The Role of Oxygen in the Redox Chemistry of Luterrium Diphthalocyanine. [J] J. Electrochem Soc,1984,131,2311-2313.
    [40]Paillaud J. L.; Drillon M.; De Cian, A.; Fischer, J.; Weiss, R.; Villeneuve, G. Radical-Based Ferromagnetic Chain in Yttrium Diphthalocyanine [YPc2]CH2Cl2. [J] Phys. Rew. Lett.,1991,67,244-247.
    [41]Trojan, K. L.; Kendall, J. L.; Kepler, K. D.; Hatfield, W. E. Strong Exchange Coupling between the Lanthanide Ions and the Phthalocyaninato Ligand Radical in Bis(phthalocyaninato)lanthanide Sandwich Compounds. [J] Inorg. Chim. Acta.1992, 198,795-803.
    [42]Lehn, J.-M. Supramolecular Chemistry. [J] Science 1993,260,1762-1763.
    [43](a) Lehn J. M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim: VCH Publishers,1995. (b) Vogtle F著.张希,林志宏,高倩译,超分子化学.[M]长春:吉林大学出版社,1995.(c) Ringsdorf, H.; Schlarb, B.; Venzmer J. Molecular Architecture and Function in Polymeric Oriented Systems:Models for the Study of Organization, Surface Recognition, and Dynamics in Biomembranes. [J] Angew. Chem. Int. Ed.1998,27,113-158. (d) Zhang, X.; Shen, J. C. Self-Assembled Ultrathin Films:from Layered Nanoarchitectures to Functional Assemblies. [J] Adv. Mater.,1999,11,1139-1143.
    [44]Vogtle, F. Supramolekulare Chemie. [M] Teubner:Stuttgart,1991.
    [45](a) Lehn, J.-M. Perspectives in Supramolecular Chemistry-From Molecular
    Recognition towards Molecular Information Processing and Self-Organization. [J] Angew. Chem. Int. Ed.1990,29,1304-1319. (b) Lehn, J.-M. Supramolecular Chemistry:Concepts and Perspectives; [M] VHC:Weinheim,1995.
    [46]Oshovsky, G. V.; Reinhoudt, D. N.; Verboom, W. Supramolecular Chemistry in Water. [J] Angew. Chem. Int. Ed.2007,46,2366-2393.
    [47](a) Cram, D. J. The Design of Molecular Hosts, Guests, and Their Complexes. [J] Angew. Chem. Int. Ed.1988,27,1009-1020. (b) Lehn, J.-M. Supramolecular Chemistry-Scope and Perspectives Molecules, Supermolecules, and Molecular Devices. [J] Angew. Chem. Int. Ed.1988,27,89-112.
    [48]Lehn J. M. Programmed Chemical Systems:Multiple Subprograms and Multiple Processing/Expression of Molecular Information. [J] Chem. Eur. J.,2000,6, 2097-2102.
    [49](a) Balzani, V.; Credi, A.; Raymo, F. M.; Stoddart, J. F. Artificial Molecular Machines. [J] Angew. Chem. Int. Ed,2000,39,3348-3391. (b)刘育,尤长城,张衡益著超分子化学-合成受体的分子识别与组装[M]天津南开大学出版社,2001.
    [50](a) Hassan, M. H. A. Small Things and Big Changes in the Developing World. [J] Science 2005,309,65-66. (b) Service R. F.; Szuromi, P.; Uppenbrink, J. Strength in Numbers. [J] Science 2002,295,2395-2395.
    [51]Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A Field Guide to Foldamers. [J] Chem. Rev.2001,101,3893-4012.
    [52]Lehn, J.-M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim: VCH Publishers,1995.
    [53]Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.2006,18,1251-1226.
    [54](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers I. [J] Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Electroactive Supramolecular Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc.2005,127,14769-14775.
    [55]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A.
    T.; de Paula, J. C.; Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J] Nano. Lett.2004,4,1261-1265.
    [56]Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am. Chem. Soc.2007,129, 2440-2441.
    [57](a) Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444. (c) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127,12792-12793. (d) Hu, J.-S.; Guo, Y.-G; Liang, H.-P.; Wan, L.-J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms [J] J. Am. Chem. Soc. 2005,127,17090-17095.
    [58](a) Shi, Z.; Li, Y.; Gong, H.; Liu, M.; Xiao, S.; Liu, H.; Li, H.; Xiao, S.; Zhu, D. Self-Assembly and Characterization of Supramolecular [60]Fullerene-Containing 2,6-Diacylamidopyridine with Uracil Derivative by Hydrogen-Bonding Interaction. [J] Org. Lett.2002,4,1179-1182. (b) Xiao, S.; Li, Y.; Fang, H.; Li, H.; Liu, H.; Shi, Z.; Jiang, L.; Zhu, D. Synthesis and Characterization of Three Novel [60]Fullerene Derivatives toward Self-Assembled Nanoparticles through Interaction of Hydrogen Bonding. [J] Org. Lett.2002,4,3063-3066. (c) Li, Y.; Wang, N.; Gan, H.; Liu, H.; Li, H.; Li, Y.; He, X.; Huang, C.; Cui, S.; Wang, S.; Zhu, D. Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyI)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. [J] J. Org. Chem. 2005,70,9686-9692. (d) Liu, Y.; Li, Y.; Jiang, L.; Gan, H.; Liu, H.; Li, Y.; Zhuang, J.; Lu, F.; Zhu, D. Assembly and Characterization of Novel Hydrogen-Bond-Induced Nanoscale Rods. [J] J. Org. Chem.2004,69,9049-9054. (e) Gan, H.; Li, Y.; Liu, H.; Wang, S.; Li, C.; Yuan, M.; Liu, X.; Wang, C.; Jiang, L.; Zhu, D. Self-Assembly of Conjugated Polymers and ds-Oligonucleotides Directed Fractal-Like Aggregates. [J] Biomacromolecules 2007,8,1723-1729.
    [59]Liu, R.; Holman, M. W.; Zang, L.; Adams, D. M. Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems. [J] J. Phys. Chem. A.2003,107,6522-6526.
    [60]Holman, M. W.; Liu, R.; Zang, L.; Yan, P.; DiBenedetto, S. A.; Bowers, R. D.; Adams, D. M. Studying and Switching Electron Transfer:From the Ensemble to the Single Molecule. [J] J. Am. Chem. Soc.2004,126,16126-16133.
    [61]Sauer, M. Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer. [J]Angew. Chem,. Int. Ed.2003,42,1790-1793.
    [62]Grimsdale Andrew, C; Mullen, K. The Chemistry of Organic Nanomaterials. [J] Angew. Chem,. Int. Ed. 2005,44,5592-5629.
    [63](a) Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. [J] J. Am. Chem. Soc. 2005,127,2386-2387. (b) Guo, Y; Li, Y; Xu, J.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H.; Wang, S. Fabrication of Homogeneous Hybrid Nanorod of Organic/Inorganic Semiconductor Materials. [J] J. Phys. Chem. C.2008, 112,8223-8228.
    [64]Li, X.; Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Controlling Charge Transport in Single Molecules Using Electrochemical Gate. [J] Faraday Discuss. 2006,131,111-120.
    [65](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Chen, Y; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701. (c) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [66]Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. [J] Science 2001,293,1119-1122.
    [67]Gregg, B. A. Excitonic Solar Cells. [J] J. Phys. Chem. B.2003,107,4688-4698.
    [68]Gregg, B. A. Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor Annealing. [J] J. Phys. Chem.1996, 100,852-859.
    [69]Tamizhmani, G.; Dodelet, J. P.; Cote, R.; Gravel, D. Photoelectrochemical Characterization of Thin Films of Perylenetetracarboxylic Acid Derivatives. [J] Chem. Mater.1991,5,1046-1053.
    [70](a) Liu, Y.; Xiao, S.; Li, H.; Li, Y.; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. Self-Assembly and Characterization of a Novel Hydrogen-Bonded Nanostructure. [J] J. Phys. Chem. B.2004,108,6256-6260. (b) Xiao, S.; Li, Y; Li, Y; Zhuang, J.; Wang, N.; Liu, H.; Ning, Bin.; Liu, Y; Lu, F.; Fan, L.; Yang, C; Li, Y; Zhu, D. [60]Fullerene-Based Molecular Triads with Expanded Absorptions in the Visible Region:Synthesis and Photovoltaic Properties. [J] J. Phys. Chem. B.2004,108,16677-16685.
    [71]Peeters, E.; Van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E.W. Photoinduced Electron Transfer in a Mesogenic Donor-Acceptor-Donor System. [J] Chem. Eur. J.2002,8,4470-4474.
    [72](a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996; Vols.1-4. (b) McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998. (c) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003; Vols.1-20.
    [73](a) de Saja, J. A.; Rodriguez-Mendez, M. L.; Sensors Based on Double-Decker Rare Earth Phthalocyanines. [J] Adv. Colloid Interface Sci.2005,116,1-11. (b) Parra, V; Bouvet, M.; Brunet, J.; Rodriguez-Mendez, M. L.; de Saja J. A. On the Effect of Ammonia and Wet Atmospheres on the Conducting Properties of Different Lutetium Bisphthalocyanine Thin Films. [J] Thin Solid Films 2008,516,9012-9019. (c) Parra, V.; Brunet, J.; Pauly, A. Bouvet M Molecular Semiconductor-Doped Insulator (MSDI) Heterojunctions:an Alternative Transducer for Gas Chemosensing. [J] Analyst,2009, 1776-1778.
    [74](a) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich Complexes of Naphthalocyanine with the Rare Earth Metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (b) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa) [M] Academic Press:New York,2001, pp.113-210.
    [75](a) Simon, J.; Andre, J. Molecular Semiconductors. [M] Springer-Verlag:Berlin,1985. (b) Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48,45-54. (c) Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jiang, J. Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23,12549-12554.
    [76]Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003,302, 1543-1545.
    [77](a) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets:Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. [J] Angew. Chem., Int. Ed.2005,44, 2931-2935. (b) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet: Bis(Phthalocyaninato)holmium Anion. [J] J. Am. Chem. Soc.2005,127,3650-3651. (c) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. [J] J. Am. Chem. Soc.2003,125,8694-8695.
    [78]刘海洋,胡希明,应晓,刘义,黄锦汪,计亮年,金属卟啉配合物超分子弹自组装.[J]无机化学学报,1998,14,371-387.
    [79]Lehn, J.-M. Supramolecular Chemistry. [M] Verlag Chimie:Weinheim, Germany, 1995.
    [80]Tong, W. Y; Djurii, A. B.; Xie, M. H.; Ng, A. C. M.; Cheung, K. Y; Chan, W. K.; Leung, Y H.; Lin, H. W.; Gwo, S. Metal Phthalocyanine Nanoribbons and Nanowires. [J] J. Phys. Chem. B.2006,110,17406-17413.
    [81]Duzhko, V.; Singer, K. D. Self-Assembled Fibers of a Discotic Phthalocyanine Derivative:Internal Structure, Tailoring of Geometry, and Alignment by a Direct Current Electric Field. [J] J. Phys. Chem. B.2007,111,27-31.
    [82]van Nostrum, C. F.; Picken, S. J.; Schouten, A.-J.; Nolte, R. J. M. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines:Toward Molecular Wires and Molecular Ionoelectronics. [J] J. Am. Chem. Soc.1995,117,9957-9965.
    [83]Drain, C. M., Lehn, J. M, [J] J. Chem. Soc. Chem. Commun.,1994,2313-2314.
    [84]Drain, C. M.; Nifiatis, F.; Vasenko, A.; Batteas, J. D. Porphyrin Tessellation by Design:Metal-Mediated Self-Assembly of Large Arrays and Tapes. [J] Angew. Chem. Int. Ed.,1998,37,2344-2347.
    [85]Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Self-Assembly of Disk-Shaped Molecules to Coiled-Coil Aggregates with Tunable Helicity. [J] Science,1999,284, 785-788
    [86](a) Shirakawa, M.; Fujita, N.; Shinkai, S. A Stable Single Piece of Unimolecularly π-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel:A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. [J] J. Am, Chem. Soc.2005,127,4164-4165. (b) Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Sol-Gel Reaction of Porphyrin-Based Superstructures in the Organogel Phase:Creation of Mechanically Reinforced Porphyrin Hybrids. [J] J. Am. Chem, Soc.2005,127,7298-7299. (c) Shirakawa, M.; Fujita, N.; Shinkai, S. [60]Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites. [J] J. Am. Chem. Soc. 2003,125,9902-9903. (d) Sano, M.; Kamino, A.; Okamura, J.; Shinkai, S. Self-Organization of PEO-graft-Single-Walled Carbon Nanotubes in Solutions and Langmuir-Blodgett Films. [J] Langmuir,2001,17,5125-5128.
    [87]Tamaru S. I.; Nakamuira, M.; Takeuchi M.; Shinkai S. Rational Design of a Sugar-Appended Porphyrin Gelator That Is Forced To Assemble into a One-Dimensional Aggregate. [J] Org. Lett.,2001,3,3631-3634.
    [88]Ayabe, M.; Yamashita, K.; Shinkai, S.; Ikeda, A.; Sakamoto, S.; Yamaguchi, K. Construction of Monomeric and Polymeric Porphyrin Compartments by a Pd(II)-Pyridine Interaction and Their Chiral Twisting by a BINAP Ligand. [J] J. Org. Chem.,2003,68,1059-1066.
    [89]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [90]Minch, B. A.; Xia, W.; Donley, C. L.; Hernandez, R. M.; Carter, C; Carducci, M. D.; Dawson, A.; O'Brien, D. F.; Armstrong, N. R. Octakis(2-benzyloxyethylsulfanyl)
    Copper (II) Phthalocyanine:a New Liquid Crystalline Discotic Material with Benzyl-Terminated, Thioether-Linked Side Chains. [J] Chem. Mater.2005,17, 1618-1627.
    [91](a) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J] J. Am. Chem. Soc,2004,126,15954-15955. (b) Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Metallization of Photocatalytic Porphyrin Nanotubes. [J] J. Am. Chem. Soc,2004,126,16720-16721.
    [92]Lu, G; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y; Li, X.; Jiang, J. Morphology Controlled Self-assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(porphyrinato) Europium Triple-deckers. Effect of Hydrogen Bonding on Tuning the Inter-molecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630.
    [93]Gong, X.; Milic, T.; Xu, C; Batteas, J. D.; Drain, C. M. Preparation and Characterization of Porphyrin Nanoparticles. [J] J. Am. Chem. Soc.2002,124, 14290-14291.
    [94](a) Nitschke, C; O'Flaherty, S. M.; Kroll, M.; Blau, W. J. Material Investigations and Optical Properties of Phthalocyanine Nanoparticles. [J] J. Phys. Chem. B.,2004,108, 1287-1295. (b) Zhang, X.; Wang, Y; Ma, Y; Ye, Y; Wang, Y; Wu, K. Solvent-Stabilized Oxovanadium Phthalocyanine Nanoparticles and Their Application in Xerographic Photoreceptors. [J] Langmuir,2006,22,344-348.
    [95]Burroughes, J. H.; Bradley, D. D.; Brown, A. R. et al. Light-Emitting Diodes Based on Conjugated Polymers. [J] Nature 1990,347,539-542.
    [96]Ebisawa, F.; Kurokawa, T.; Nara, S. Electrical Properties of Polyacetylene/ Polysiloxane Interface. [J] J. Appl. Phys.1983,54,3255-3258.
    [97]Tsumura, A.; Koezuka, H.; Ando, T. Macromolecular Electronic Device:Field-Effect Transistor with a Polythiophene Thin Film. [J] Appl. Phys. Lett.1986,49,1210-1212.
    [98]Tang, C. W.; Van Slyke, S. A. Organic Electroluminescent Diodes. [J] Appl. Phys. Lett.1987,57,913-915.
    [99]Clarisse, C; Riou, M T.; Gauneau, M. Field-Effect Transistor with Diphthalocyanine Thin Film. [J] Electron Lett.1988,24,674-676.
    [100]Crone, B.; Dodabalapur, A.; Gelperin, A. et al. Electronic Sensing of Vapors with Organic Transistors. [J] Appl. Phys. Lett.2001,78,2229-2232.
    [101]Schon, J. H.; Kloc, C; Dodabalapur, A.; Batlogg, B. An Organic Solid State Injection Laser. [J] Science 2000,289,599-601.
    [102]Drury, C. J.; Mutsaers, C. M. J.; Hart, C. M.; Matters, M; de Leeuw, D. M. Low-Cost All-Polymer Integrated Circuits. [J]Appl. Phys. Lett.1998,73,108-110.
    [103]Schon, J. H.; Dodabalapur, A.; Bao, Z.; Kloc, C; Schenker, O.; Batlogg, B. Gate-Induced Superconductivity in a Solution-Processed Organic Polymer Film. [J] Nature 2001,410,189-192.
    [104]Schon, J. H.; Kloc, C; Batlogg, B. High-Temperature Superconductivity in Lattice-Expanded C60. [J] Science 2001,293,2432-2434.
    [105]Koezuka, H.; Tsumura, A.; Ando, T. Field-effect Transistor with Polythiophen Thin Films. [J] Synth Met.1987,18,699-702.
    [106]Horowitz, G. Organic Field-Effect Transistors. [J] Adv. Mater.1998,10,365-377.
    [107]Fichou, D. Structural Order in Conjugated Oligothiophenes and Its Implications on Opto-Electronic Devices. [J] J. Mater. Chem.2000,10,571-588.
    [108]Katz, H. E.; Bao, Z. The Physical Chemistry of Organic Field-Effect Transistors. [J] J. Phys. Chem. B 2000,104,671-678.
    [109]Katz, H. E.; Bao, Z.; Gilat, S. L. Small-Molecule Organic Semiconductors. [J] Acc. Chem. Res.2001,34,359-369.
    [110]Wiirthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics. [J]Angew. Chem. Int. Ed.2001,40,1037-1039.
    [111]Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic Thin Film Transistors for Large Area Electronics. [J] Adv. Mater.2002,14,99-117.
    [112]Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate Insulators in Organic Field-Effect Transistors. [J] Chem. Mater.2004,16,4543-4555.
    [113]Sun, Y.; Liu, Y.; Zhu, D. Advances in Organic Field-Effect Transistors. [J] J. Mater. Chem.2005,15,53-65.
    [114]Sirringhaus, H. Device Physics of Solution-Processed Organic Field-Effect Transistors. [J] Adv. Mater.2005,17,2411-2425.
    [115]Bao, Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits. [J] Adv. Mater.2000,12,227-230.
    [116]Chen, H.; Josowicz, M.; Janata, J. Chemical Effects in Organic Electronics. [J] Chem. Mater.2004,16,4728-4735.
    [117](a) Gamier, F. Electronic Materials:The Oligomer Approach, Eds.:Mullen, K. Wegner, G., [M] Wiley-VCH:Weinheim,1998,559-583. (b) Katz, H. E.; Dodabalapur, A.; Bao, Z.; Handbook of Oligo-and Polythiophenes, Ed.:Fichou, D., [M] Wiley-VCH:Weinheim,1999,459-489.
    [118]Horowitz, G.; Hajlaoui, R.; Fichou, D.; El Kassmi, A. Gate Voltage Dependent Mobility of Oligothiophene Field-Effect Transistors. [J] J. Appl. Phys.1999,85, 3202-3206.
    [119](a) Gamier, F.; Yassa, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. Molecular Engineering of Organic Semiconductors:Design of Self-Assembly Properties in Conjugated Thiophene Oligomers. [J] J. Am. Chem. Soc. 1993,115,8716-8721. (b) Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Soluble and Processable Regular poly(3-hexylthiophene) for Thin Film Field-Effect Transistor Applications with High Mobility. [J] Appl. Phys. Lett,1996,69,4108-4110. (c) Sirringhaus, H.; Tessler, N. R.; Friend, H. Integrated Optoelectronic Devices Based on Conjugated Polymers. [J] Science 1998,280,1741-1744.
    [120](a) Halik, M.; Klauk, H.; Zschieschang, U.; Schmid, G.; Ponomarenko, S.; Kirchmeyer, S.; Weber, W. Relationship between Molecular Structure and Electrical Performance of Oligothiophene Organic Thin Film Transistors. [J] Adv. Mater.2003, 15,917-922. (b) Dimitrakopoulos, C. D.; Furman, B. K.; Graham, T.; Hedge, S.; Purushothaman, S. Field-Effect Transistors Comprising Molecular Beam Deposited a,co-di-hexyl-hexathienylene and Polymeric Iinsulator. [J] Synth. Met.1998,92, 47-52. (c) Horowitz, G.; Hajlaoui, M. E. Mobility in Polycrystalline Oligothiophene Field-Effect Transistors Dependent on Grain Size. [J] Adv. Mater.2000,12, 1046-1050. (d) Facchetti, T.; Mushrushi, M.; Yoon, M.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. Building Blocks for n-Type Molecular and Polymeric Electronics. Perfluoroalkyl-versus Alkyl-Functionalized Oligothiophenes (n=2-6). Systematics of Thin Film Microstructure, Semiconductor Performance, and Modeling of Majority Charge Injection in Field-Effect Transistors. [J] J. Am. Chem. Soc.2004,126, 13859-13874.
    [121]Horowitz, G. Field-Effect Transistors Based on Short Organic Molecules. [J] J. Mater. Chem.1999,9,2021-2026.
    [122]Sundar, V. C; Zaumseil, J.; Podzorov, V.; Menard, E.; Willett, R. L.; Someya, T. Gershenson, M. E.; Rogers, J. A. Elastomeric Transistor Stamps:Reversible Probing of Charge Transport in Organic Crystals. [J] Science 2004,303,1644-1646.
    [123]Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics. [J] IEEE Electron Device Lett.1997,18,606-609.
    [124](a) Brown, A. R.; Pomp, A.; de Leeuw, D. M.; Klaassen, D. B. M.; Havinga, E. E.; Herwig P.; Mullen, K. Precursor Route Pentacene Metal-Insulator-Semiconductor Field-Effect Transistors. [J] J. Appl. Phys.1996,79,2136-2138. (b) Herwig P. T. Mullen, K. Soluble Pentacene Precursor:Synthesis, Solid-State Conversion into Pentacene and Application in a Field-Effect Transistor. [J] Adv. Mater.1999,11, 480-483. (c) Afzali, A.; Dimitrakopoulos, C. D.; Breen, T. L. High-Performance, Solution-Processed Organic Thin Film Transistors from a Novel Pentacene Precursor. [J] J. Am. Chem. Soc.2002,124,8812-8813. (d) Afzali, A.; Dimitrakopoulos, A.; Graham, T. O. Photosensitive Pentacene Precursor:Synthesis, Photothermal Patterning, and Application in Thin-Film Transistors. [J] Adv. Mater.2003,15, 2066-2069.
    [125](a) Weidkamp, K. P.; Afzali, A.; Tromp, R. M.; Hamers, R. J. A Photopatternable Pentacene Precursor for Use in Organic Thin-Film Transistors. [J] J. Am. Chem. Soc. 2004,126,12740-12741. (b) Payne, M. M.; Parkin, S. R.; Anthony, J. E.; Kuo, C.; Jackson, T. N. Organic Field-Effect Transistors from Solution-Deposited Functionalized Acenes with Mobilities as High as 1 cm2/V·s. [J] J. Am. Chem. Soc. 2005,127,4986-4987.
    [126]Snow, A. W.; Barger, W. R. In Phthalocyaniness Properties and Applications; Lezonff, C. C; Lever, A. B. P. Eds.; [M] VCH:New York,1989, Vol.1.
    [127](a) Bao, Z.; Lovinger, A. J.; Dodabalapur, A.; Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine. [J] Appl. Phys. Lett.1996,69, 3066-3068. (b) Bao, Z.; Lovinger, A. J.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208.
    [128]Xiao, K.; Liu, Y.; Huang, X.; Xu, Y.; Yu G.; Zhu, D. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem. B 2003,107,9226-9230.
    [129]Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic Thin-Film Transistors in Sandwich
    Configuration. [J]Appl. Phy Lett.2004,84,142-144.
    [130]Zeis, R.; Siegrist, T.; Kloc Ch. Single-Crystal Field-Effect Transistors Based on Copper Phthalocyanine. [J] Appl. Phys. Lett.2005,86,22103-22105.
    [131]Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G; Liu, Y. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21,6527-6531.
    [132]Babel, A.; Jenekhe, S. A. High Electron Mobility in Ladder Polymer Field-Effect Transistors. [J] J. Am. Chem. Soc.2003,125,13656-13657.
    [133](a) Yasuda, T.; Fujita, K.; Tsutsui, T. Geng, Y; Culligan, S. W.; Chen, S. H. Carrier Transport Properties of Monodisperse Glassy-Nematic Oligofluorenes in Organic Field-Effect Transistors. [J] Chem. Mater.2005,17,264-268. (b) Chua, L. L.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Observation of Field-Effect Transistor Behavior at Self-Organized Interfaces. [J] Adv. Mater.2004,16,1609-1615.
    [134]Bromley, S. T.; Mas-Torrent, M.; Hadley, P.; Rovira, C. Importance of Intermolecular Interactions in Assessing Hopping Mobilities in Organic Field Effect Transistors: Pentacene versus Dithiophene-tetrathiafulvalene. [J] J. Am. Chem. Soc.2004,126, 6544-6545.
    [135]Cornil, J.; Calbert, J. Ph.; Bredas, J. L. Electronic Structure of the Pentacene Single Crystal:Relation to Transport Properties. [J] J. Am. Chem. Soc.2001,123, 1250-1251.
    [136]Paloheimo, J.; Kuivalainen, P.; Stubb, H.; Vuorimaa, E.; Yli-Lahti, P. Molecular Field-Effect Transistors Using Conducting Polymer Langmuir-Blodgett Films. [J] Appl. Phys. Lett.1990,56,1157-1159.
    [137]Xu, H.; Yu, G.; Xu, W.; Xu, Y.; Cui, G.; Zhang, D.; Liu, Y.; Zhu D. High-Performance Field-Effect Transistors Based on Langmuir-Blodgett Films of Cyclopyrrole. [J] Langmuir 2005,21,5391-5395.
    [138]Jin, Y.; Rang, Z.; Nathan, M.; Ruden, P. P. Pentacene Organic Field-Effect Transistor on Metal Substrate with Spin-Coated Smoothing Layer. [J] Appl. Phys. Lett.2004,85, 4406-4408.
    [139]Klauk, H.; Halik, M.; Zdchieschang, U.; Schmid, G; Radlik, W.; Weber, W. High-Mobility Polymer Gate Dielectric Pentacene Thin Film Transistors. [J] J. Appl. Phys.2002,92,5259-5263.
    [140]Bao, Z.; Feng, Y.; Dodabalapur A, High-Performance Plastic Transistors Fabricated by Printing Technique. [J] Chem Mater.1997,9,1299-1302.
    [141]Schon, J. H.; Meng, H.; Bao, Z. Self-Assembled Monolayer Organic Field-Effect Transistors. [J] Nature 2001,413,713-716.
    [1]Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A Field Guide to Foldamers. [J] Chem. Rev.2001,101,3893-4012.
    [2]Lehn, J.-M. Supramolecular Chemistry-Concepts and Perspectives. [M] Weinheim: VCH Publishers,1995.
    [3]Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.2006,18,1251-1226.
    [4](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers I. [J] Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Electroactive Supramolecular Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc.2005,127,14769-14775.
    [5]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C; Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J] Nano. Lett.2004,4,1261-1265.
    [6]Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am, Chem. Soc.2007,129, 2440-2441.
    [7](a) Yan, D. Y; Zhou, Y. F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444. (c) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Nanotubes Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc.2005,127,12792-12793. (d) Hu, J.-S.; Guo, Y.-G; Liang, H.-P.; Wan, L.-J.; Jiang, L. Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms [J] J. Am. Chem. Soc. 2005,127,17090-17095.
    [8](a) Shi, Z.; Li, Y.; Gong, H.; Liu, M.; Xiao, S.; Liu, H.; Li, H.; Xiao, S.; Zhu, D. Self-Assembly and Characterization of Supramolecular [60]Fullerene-Containing 2,6-Diacylamidopyridine with Uracil Derivative by Hydrogen-Bonding Interaction. [J] Org. Lett.2002,4,1179-1182. (b) Xiao, S.; Li, Y.; Fang, H.; Li, H.; Liu, H.; Shi, Z.; Jiang, L.; Zhu, D. Synthesis and Characterization of Three Novel [60]Fullerene Derivatives toward Self-Assembled Nanoparticles through Interaction of Hydrogen Bonding. [J] Org. Lett.2002,4,3063-3066. (c) Li, Y.; Wang, N.; Gan, H.; Liu, H.; Li, H.; Li, Y.; He, X.; Huang, C; Cui, S.; Wang, S.; Zhu, D. Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. [J] J. Org. Chem. 2005,70,9686-9692. (d) Liu, Y.; Li, Y.; Jiang, L.; Gan, H.; Liu, H.; Li, Y.; Zhuang, J.; Lu, F.; Zhu, D. Assembly and Characterization of Novel Hydrogen-Bond-Induced Nanoscale Rods. [J] J. Org. Chem.2004,69,9049-9054. (e) Gan, H.; Li, Y.; Liu, H.; Wang, S.; Li, C; Yuan, M.; Liu, X.; Wang, C; Jiang, L.; Zhu, D. Self-Assembly of Conjugated Polymers and ds-Oligonucleotides Directed Fractal-like Aggregates. [J] Biomacromolecules 2007,8,1723-1729.
    [9]Liu, R.; Holman, M. W.; Zang, L.; Adams, D. M. Single-Molecule Spectroscopy of Intramolecular Electron Transfer in Donor-Bridge-Acceptor Systems. [J] J. Phys. Chem. A.2003,107,6522-6526.
    [10]Holman, M. W.; Liu, R.; Zang, L.; Yan, P.; DiBenedetto, S. A.; Bowers, R. D.; Adams, D. M. Studying and Switching Electron Transfer:From the Ensemble to the Single Molecule. [J] J. Am. Chem. Soc.2004,126,16126-16133.
    [11]Sauer, M. Single-Molecule-Sensitive Fluorescent Sensors Based on Photoinduced Intramolecular Charge Transfer. [J]Angew. Chem,. Int. Ed.2003,42,1790-1793.
    [12]Grimsdale Andrew, C; Mullen, K. The Chemistry of Organic Nanomaterials. [J] Angew. Chem,. Int. Ed. 2005,44,5592-5629.
    [13](a) Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Large Gate Modulation in the Current of a Room Temperature Single Molecule Transistor. [J] J. Am. Chem. Soc. 2005,127,2386-2387. (b) Guo, Y; Li, Y; Xu, J.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H.; Wang, S. Fabrication of Homogeneous Hybrid Nanorod of Organic/Inorganic Semiconductor Materials. [J] J. Phys. Chem. C.2008, 112,8223-8228.
    [14]Li, X.; Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Controlling Charge Transport in Single Molecules Using Electrochemical Gate. [J] Faraday Discuss. 2006,131,111-120.
    [15](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc.2005,127,15700-15701. (c) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [16]Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J. D. Self-Organized Discotic Liquid Crystals for High-Efficiency Organic Photovoltaics. [J] Science 2001,293,1119-1122.
    [17]Gregg, B. A. Excitonic Solar Cells. [J] J. Phys. Chem. B.2003,107,4688-4698.
    [18]Gregg, B. A. Evolution of Photophysical and Photovoltaic Properties of Perylene Bis(phenethylimide) Films upon Solvent Vapor Annealing. [J] J. Phys. Chem.1996, 100,852-859.
    [19]Tamizhmani, G; Dodelet, J. P.; Cote, R.; Gravel, D. Photoelectrochemical Characterization of Thin Films of Perylenetetracarboxylic Acid Derivatives. [J] Chem. Mater.1991,3,1046-1053.
    [20](a) Liu, Y; Xiao, S.; Li, H.; Li, Y; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. Self-Assembly and Characterization of a Novel Hydrogen-Bonded Nanostructure. [J] J. Phys. Chem. B.2004,108,6256-6260. (b) Xiao, S.; Li, Y; Li, Y; Zhuang, J.; Wang, N.; Liu, H.; Ning, Bin.; Liu, Y; Lu, F.; Fan, L.; Yang, C; Li, Y; Zhu, D. [60]Fullerene-Based Molecular Triads with Expanded Absorptions in the Visible Region:Synthesis and Photovoltaic Properties. [J] J. Phys. Chem. B.2004,108,16677-16685.
    [21]Peeters, E.; Van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E.W. Photoinduced Electron Transfer in a Mesogenic Donor-Acceptor-Donor System. [J] Chem. Eur. J.2002,8,4470-4474.
    [22]Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [23]Minch, B. A.; Xia, W.; Donley, C. L.; Hernandez, R. M.; Carter, C; Carducci, M. D.; Dawson, A.; O'Brien, D. F.; Armstrong, N. R. Octakis(2-benzyloxyethylsulfanyl) Copper (II) Phthalocyanine:a New Liquid Crystalline Discotic Material with Benzyl-Terminated, Thioether-Linked Side Chains. [J] Chem. Mater.2005,17, 1618-1627.
    [24]Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006,128,7390-7398.
    [25]Su, W.; Zhang, Y.; Zhao, C; Li, X.; Jiang, J. Self-Assembled Organic Nanostructures:Effectof Substituents on the Morphology. [J] ChemPhysChem 2007, 8,1857-1862.
    [26]Lu, G; Chen, Y; Zhang, Y; Bao, M.; Bian, Y; Li, X.; Jiang, J. Morphology Controlled Self-assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(porphyrinato) Europium Triple-deckers. Effect of Hydrogen Bonding on Tuning the Inter-molecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630.
    [27](a) Hamza I. Intracellular Trafficking of Porphyrins. [J] ACS Chem. Biol.2006,1, 627-629. (b) Lo, P.-C; Chan, C. M. H.; Liu, J.-Y; Fong, W.-P.; Ng, D. K. P. Highly Photocytotoxic Glucosylated Silicon(IV) Phthalocyanines. Effects of Peripheral Chloro Substitution on the Photophysical and Photodynamic Properties. [J] J. Med. Chem.2007,50,2100-2107. (c) Vanyur, R.; Heberger, K.; Jakus, J. Prediction of Anti-HIV-1 Activity of a Series of Tetrapyrrole Molecules. [J] J. Chem. Inf. Comput. Sci.2003,43,1829-1836.
    [28]Li, Y.; Li, X.; Li, Y:Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Controlled Self-Assembly Behavior of an Amphiphilic Bisporphyrin-Bipyridinium-Palladium Complex:From Multibilayer Vesiclesto Hollow Capsules. [J] Angew. Chem,. Int. Ed.2006,45,3639-3643.
    [29]Wang, Z.; Medforth, C. J.; Shelnutt, J. A. Porphyrin Nanotubes by Ionic Self-Assembly. [J]J.Am. Chem. Soc.2004,126,15954-15955.
    [30]Shirakawa, M.; Kawano, S.-i.; Fujita, N.; Sada, K.; Shinkai S. Hydrogen-Bond-Assisted Control of H versus J Aggregation Mode of Porphyrins Stacks in an Organogel System. [J] J. Org. Chem.2003,68,5037-5044.
    [31]Laha, J. K.; Dhanalekshmi, S.; Taniguchi, M.; Ambroise, A.; Lindsey, J. S. A Scalable Synthesis of Meso-Substituted Dipyrromethanes. [J] Org. Process Res. Dev.2003,7, 799-812.
    [32]SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    [33](a) Kasai, H.; Nalwa, H. S.; Oikawa, H.; Okada, S.; Matsuda, H.; Minami, N.; Kakutal, A.; Ono, K.; Mukoh, A.; Nakanishi, H. A Novel Preparation Method of Organic Microcrystals. [J] Jpn. J. Appl. Phys.1992,31,1132-1134. (b) Bertorelle, F.; Lavabre, D.; Fery-Forgues, S. Dendrimer-Tuned Formation of Luminescent Organic Microcrystals. [J] J. Am. Chem. Soc.2003,125,6244-6253. (c) Fu, H.; Xiao, D.; Yao, J. Yang, G. Nanofibers of 1,3-Diphenyl-2-Pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles. [J] Angew. Chem,. Int. Ed.2003,42, 2883-2886. (d) Lee, S. J.; Jensen, R. A.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Effect of Secondary Substituent on the Physical Properties, Crystal Structures, and Nanoparticle Morphologies of (Porphyrin)Sn(OH)2:Diversity Enabled via Synthetic Manipulations. [J] J. Mater. Chem.2008,18,3640-3642. (e) Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Amphiphilic Porphyrin Nanocrystals:Morphology Tuning and Hierarchical Assembly. [J] Adv. Mater.2008,20,3543-3549.
    [34](a) Nagarkatti, J. P.; Ashley, K. R. Synthesis of Pyridyl meso Substituted Dipyrrylmethanes. [J] Synthesis.1974,186-187. (b) Treibs, A.; Haberle, N. Uber die Synthese und die Elektronenspektren ms-substituierter Porphine. [J] Justus Liebigs Ann. Chem.1968,718,183-191. (c) Wallace, D. M.; Leung, S. H.; Senge, M. O.; Smith, K. M. Rational Tetraarylporphyrin Syntheses:Tetraarylporphyrins from the MacDonald Route. [J] J. Org. Chem.1993,58,7245-7257.
    [35]Senge, M. O.; Speck, M.; Wiehe, A.; Dieks, H.; Aguirre, S.; Kurreck, H. Structure and Conformation of Photosynthetic Pigments and Related Compounds.12. A Crystallographic Analysis of Porphyrin-quinones and Their Precursors. [J] Photochem. Photobiol.1999,70,206-216.
    [36]Girolami, G. S.; Milam, S. N.; Suslick, K. S. Actinide Bis(porphyrinate) π-radical Cations and Dications, Including the X-ray Crystal Structure of [(TPP)2Th][SbCl6]. [J] J. Am. Chem. Soc.1988,110,2011-2012.
    [37]Ulman, A.; Manassen, J. Synthesis of New Tetraphenylporphyrin Molecules
    Containing Heteroatoms other than Nitrogen. I. Tetraphenyl-21,23-Dithiaporphyrin. [J] J. Am. Chem. Soc.1975,97,6540-6544.
    [38]Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [39]Orita, A.; Fukudome, M.; Ohe, K.; Murai, S. Reactions via Carbonyl Anions. [4+1] Cyclocoupling of Azadienyllithium with Carbon Monoxide. [J] J. Org. Chem.1994, 59,477-481.
    [40]Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. [J] Science 2001,292,79-83.
    [41](a) Schenning, A. P. H. J.; Benneker, F. B. G.; Geurts, H. P. M.; Liu, X. Y.; Nolte, R. J. M. Porphyrin Wheels. [J] J. Am. Chem. Soc.1996,118,8549-8552. (b) Beysens, D.; Knobler, C. M. Growth of Breath Figures. [J] Phys. Rev. Lett.1986,57,1433-1436. (c) Family, F.; Meakin, P. Scaling of the Droplet-Size Distribution in Vapor-Deposited Thin Films. [J] Phys. Rev. Lett.1988,61,428-431. (d) Limaye, A. V.; Narhe, R. D.; Dhote, A. M.; Ogale, S. B. Evidence for Convective Effects in Breath Figure Formation on Volatile Fluid Surfaces. [J] Phys. Rev. Lett.1996,76, 3762-3765.
    [42]Teo, T.-L.; Vetrichelvan, M.; Lai, Y.-H. Infinite Three-Dimensional Polymeric Metalloporphyrin Network via Six-Coordinate Zn(II) and Two Axial Oxygen Donors. [J] Org. Lett.2003,5,4207-4210.
    [43]Lee, S. J.; Hupp, J. T.; Nguyen, S. T. Growth of Narrowly Dispersed Porphyrin Nanowires and Their Hierarchical Assembly into Macroscopic Columns. [J] J. Am. Chem. Soc.2008,130,9632-9633.
    [44](a) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Direct Visualization of Individual Cylindrical and Spherical Supramolecular Dendrimers. [J] Science 1997,278,449-452. (b) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of Semiconducting Oxides. [J] Science 2001,291, 1947-1949.
    [45](a) Medforth, C. J.; Senge, M. O.; Smith, K. M.; Sparks, L. D.; Shelnutt, J. A. Nonplanar Distortion Modes for Highly Substituted Porphyrins. [J] J. Am, Chem. Soc. 1992,114,9859-9869. (b) Moskalev, P. N.; Shapkin, G. N.; Darovskikh, A. N. Synthesis and Properties of Electrochemically Oxidized Diphthalocyanines of Rare Earth Elements and Americium. [J] Zh. Neorg. Khim.1979,24,340-346. (c) Darovskikh, A. N.; Tsishchenko, A. K.; Frank-Kamenetskaya,O. V.; Fundamenskii, V. S.; Moskalev, P. N. Polymorphism of Neodymium Diphthalocyanine Molecular and Crystal Structure of the β-phase. [J] Kristallografiya 1984,29,455-461. (d) Darovskikh, A. N.; Frank-Kamenetskaya,O. V.; Fundamenskii, V. S. Molecular and Crystal Structure of Tetragonal Alpha.-phase of Neodymium Diphthalocyanine. [J] Kristallografiya 1986,31,901-905. (e) Darovsky, A.; Keserashvili, V.; Harlow, R.; Mutikainen, I. Structure of Oxidized Forms of Neodymium and Praseodymium (Bis)phthalocyanines. [J]Acta Cryst., Sect. B 1994,50,582-588.
    [1]Koezuka, H.; Tsumura, A.; Ando, T. Field-Effect Transistor with Polythiophene Thin Film. [J] Synth. Met.1987,18,699-704.
    [2]Horowitz, G. Organic Field-Effect Transistors. [J] Adv. Mater.1998,10,365-377.
    [3]Fichou, D:Structural Order in Conjugated Oligothiophenes and Its Implications on Opto-Electronic Devices. [J] J. Mater. Chem.2000,10,571-588.
    [4]Katz, H. E.; Bao, Z. The Physical Chemistry of Organic Field-Effect Transistors. [J] J. Phys. Chem. B 2000,104,671-678.
    [5]Katz, H. E.; Bao, Z.; Gilat, S. L. Small-Molecule Organic Semiconductors. [J] Acc. Chem. Res.2001,34,359-369.
    [6]Wurthner, F. Plastic Transistors Reach Maturity for Mass Applications in Microelectronics. [J]Angew. Chem. Int. Ed.2001,40,1037-1039.
    [7]Dimitrakopoulos, C. D.; Malenfant, P. R. L. Organic Thin Film Transistors for Large Area Electronics. [J] Adv. Mater.2002,14,99-117.
    [8]Veres, J.; Ogier, S.; Lloyd, G; de Leeuw, D. Gate Insulators in Organic Field-Effect Transistors. [J] Chem. Mater.2004,16,4543-4555.
    [9]Sun, Y.; Liu, Y; Zhu, D. Advances in Organic Field-Effect Transistors. [J] J. Mater. Chem.2005,15,53-65.
    [10]Sirringhaus, H. Device Physics of Solution-Processed Organic Field-Effect Transistors. [J] Adv. Mater.2005,17,2411-2425.
    [11]Bao, Z. Materials and Fabrication Needs for Low-Cost Organic Transistor Circuits. [J] Adv. Mater.2000,12,227-230.
    [12](a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996; Vols.1-4. (b) McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998. (c) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003; Vols.1-20.
    [13](a) Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Dodabalapur. Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine. [J] Appl. Phys. Lett. 1996,69,3066-3068. (b) Bao, Z.; Lovinger, A. J.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208. (c) Mizuno, E.; Taniguchi, M.; Kawai, T. Ambipolar Organic Field-Effect Transistor Using Gate Insulator Hysteresis. [J] Appl. Phys. Lett.2005,86,143513-143515. (d) Ofuji, M.; Ishikawa, K.; Takezoe, H. Crystallite Size Effect on the Hole Mobility of Uniaxially Aligned Copper Phthalocyanine Thin-Film Field-Effect Transistors. [J] Appl. Phys. Lett.2005,86,062114-062116. (e) Lochlin, J.; Shinbo, K.; Onishi, K. Kaneko, F.; Bao, Z.; Advincula, R. C. Ambipolar Organic Thin Film Transistor-Like Behavior of Cationic and Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from Aqueous Solution. [J] Chem. Mater.2003,15,1404-1412. (f) Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic Thin-Film Transistors in Sandwich Configuration. [J] Appl. Phy. Lett.2004,84,142-144. (g) Xiao, K.; Liu, Y.; Huang, X.; Xu, Y; Yu, G; Zhu, D. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers. [J] J. Phys. Chem. B 2003,107,9226-9230. (h) Bora, M.; Schut, D.; Baldo, M. A. Combinatorial Detection of Volatile Organic Compounds Using Metal-Phthalocyanine Field Effect Transistors. [J] Anal. Chem.2007,79,3298-3303. (i) Tang, Q.; Li, H.; Liu, Y; Hu, W. High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on Organic Single-Crystalline Submicrometer/Nanometer Ribbons. [J] J. Am. Chem. Soc.2006,128,14634-14639.
    [14](a) Simon, J.; Andre, J. Molecular Semiconductors. [M] Springer-Verlag:Berlin, 1985. (b) Bouvet, M.; Simon, J. Electrical Properties of Rare Earth Bisphthalocyanine and Bisnaphthalocyanine Complexes. [J] Chem. Phys. Lett.1990, 172,299-302.
    [15](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Su, W.; Jiang, J.; Xiao, K.; Chen, Y; Zhao, Q.; Yu, G; Liu, Y. Thin-Film Transistors Based on Langmuir-Blodgett Films of Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Langmuir 2005,21,6527-6531.
    [16]Chen, Y; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexe. [J] J. Am. Chem. Soc. 2005,127,15700-15701.
    [17]Chen, Y; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y; Li, X.; Jiang, J. Effect of
    Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23,12549-12554.
    [18]Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [19]Di, C; Yu, G; Liu, Y; Xu, X.; Wei, D.; Song, Y; Sun, Y; Wang, Y; Zhu, D.; Liu, J.; Liu, X. High-Performance Low-Cost Organic Field-Effect Transistors with Chemically Modified Bottom Electrodes. [J] J. Am. Chem. Soc.2006,128, 16418-16419.
    [20]Li, R.; Zhang, X.; Zhu, P.; Li, X.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Electron-Donating or-Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. [J] Inorg. Chem.2006,45, 2327-2334.
    [21]Pedersen, C. J. Cyclic Polyethers and their Complexes with Metal Salts. [J] J. Am. Chem. Soc.1967,89,7017-7036.
    [22](a) Sheng, N.; Li, R.; Choi, C.-F.; Su, W; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem.2006, 45,3794-3802. (b) Ishikawa, N.; Kaizu, Y. Biradical State in Phthalocyanine (2+2) Tetramer Composed of Two Bis(phthalocyaninato) Lutetium Radicals. [J] Chem. Phys. Lett.1993,203,472-476. (c) Ishikawa, N.; Kaizu, Y Thermally Accessible Triplet State in a Phthalocyanine Assembly System Which is Formed from Crown-Ether-Substituted Lutetium Phthalocyanine Dimer Radicals in the Presence of Potassium Ion. [J] Mol. Crsyt. Liq. Cryst.1996,286,263-268. (d) Ishikawa, N.; Kaizu, Y. A Supramolecule Composed of Two Phthalocyanine Dimer Radicals Linked by a Pivot Joint:Synthesis of Mono-15-Crown-5-Substituted Bis(phthalocyaninato)lutetium. [J] Chem. Lett.1998,183-184. (e) Ishikawa, N.; Kaizu, Y. Cation-and Solvent-Induced Formation of Supramolecular Structures Composed of Crown-Ether Substituted Double-Decker Phthalocyanine Radicals. [J] J. Phys. Chem. A 2000,104,10009-10016. (f) Ishikawa, N.; Kaizu, Y. Synthetic, Spectroscopic and Theoretical Study of Novel Supramolecular Structures Composed of Lanthanide Phthalocyanine Double-Ddecker Complexes. [J] Coord. Chem. Rev. 2002,226,93-101.
    [23]Sielcken, O. E.; Van Tilborg, M. M.; Roks, M. F. M.; Hendriks, R.; Drenth, W.; Nolte, R. J. M. Synthesis and Aggregation Behavior of Hosts Containing Phthalocyanine and Crown Ether Subunits. [J] J. Am. Chem. Soc.1987,109,4261-4265.
    [24](a) Bai, M.; Bao, M.; Ma, C; Arnold, D. P.; Choi, M. T. M.; Ng, D. K. P.; Jiang, J. New Dimeric Supramolecular Structure of Mixed (Phthalocyaninato)(Porphyrinato) Europium(III) Sandwiches:Preparation and Spectroscopic Characteristics. [J] J. Mater. Chem.,2003,13,1333-1339. (b) Zhu, P.; Pan, N.; Li, R.; Dou, J.; Zhang, Y.; Cheng, D. Y Y.; Wang, D.; Ng, D. K. P.; Jiang, J. Electron-Donating Alkoxy-Group-Driven Synthesis of Heteroleptic Tris(phthalocyaninato) Lanthanide(III) Triple-Deckers with Symmetrical Molecular Structure. [J] Chem. Eur. J.2005,11,1425-1432. (c) Takami, T.; Arnold, D. P.; Fuchs, A. V.; Will, G. D.; Goh, R.; Waclawik, E. R.; Bell, J. M.; Weiss, P. S.; Sugiura, K.-L; Liu, W.; Jiang, J. Two-Dimensional Crystal Growth and Stacking of Bis(phthalocyaninato) Rare Earth Sandwich Complexes at the 1-Phenyloctane/Graphite Interface. [J] J. Phy. Chem. B 2006,110,1661-1664. (d) Bian, Y.; Li, L.; Wang, D.; Choi, C.-F.; Cheng, D. Y Y.; Zhu, P.; Li, R.; Dou, J.; Wang, R.; Pan, N.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Synthetic, Structural, Spectroscopic, and Electrochemical Studies of Heteroleptic Tris(phthalocyaninato) Rare Earth Complexes. [J] Eur. J. Inorg. Chem.2005, 2612-2618.
    [25]Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational Spectroscopy of Phthalocyanine and Naphthalocyanine in Sandwich-Type (Na)phthalocyaninato and Porphyrinato Rare Earth Complexes. [J] Coord. Chem. Rev.2006,250,424-448 and references therein.
    [26]PCMODEL for windows Version 6.0, Serena Software.
    [27](a) Chen, Y.; Zhang, Y.; Zhu, P.; Fan, Y.; Bian, Y.; Li, X.; Jiang, J. Arrangement of Tris(phthalocyaninato) Gadolinium Triple-Decker Complexes with Multi-Octyloxy Groups on Water Surface. [J] J. Colloid and Interface Sci.2006,303,256-263. (b) Wang, X.; Chen, Y.; Liu, H.; Jiang, J. Spectroscopic and Structural Characteristics of
    Langmuir-Blodgett Films of Bis[2,3,9,10,16,17,24,25-octakis(octyloxy) phthalocyaninato] Rare Earth Complexes. [J] Thin Solid Films 2006,496,619-625. (c) Chen, Y.; Liu, H.; Zhu, P.; Zhang, Y.; Wang, X.; Li, X.; Jiang, J. Aggregation Behavior of Heteroleptic Tris(phthalocyaninato) Dysprosium Complexes with Different Alkoxy Chains in Monolayer or Multilayer Solid Films. [J] Langmuir 2005, 21,11289-11295. (d) Chen, Y.; Liu, H.; Pan, N.; Jiang, J. Langmuir-Blodgett Films of Substituted Bis(naphthalocyaninato) Rare Earth Complexes:Structure and Interaction with Nitrogen Dioxide. [J] Thin Solid Films 2004,460,279-285.
    [28]van Nostrum, C. F.; Picken, S. J.; Schouten, A.-J.; Nolte, R. J. M. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines:Toward Molecular Wires and Molecular Ionoelectronics. [J] J. Am. Chem. Soc.1995,117,9957-9965.
    [29]Smolenyak, P. E.; Osburn, J.; Chen, S.-Y; Chau, L.-K.; O'Brien, D. F.; Armstrong, N. R. Spectroscopic and Electrochemical Characterization of Langmuir-Blodgett Films of (2,3,9,10,16,17,23,24-Octakis((2-benzyloxy)ethoxy)phthalocyaninato)copper and Its Metal-free Analogue. [J] Langmuir 1997,13,6568-6576.
    [30]Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17/Phthalocyanines: Properties and Materials (Ed. Kadsh, K. M.; Smith, K. M.; Guilard, R.). [M] Elsevier Science:USA 2003, pp.37-127.
    [31](a) Kasha, M. In Spectroscopy of the Excited State (Eds:B. DiBartole). [M] Plenum Press:New York,1976; p 337. (b) Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392. (c) Hochstrasser, R. M.; Kasha, M. Photochem. Photobiol.1964,3,317-331. (d) Chau, L.-K.; England, C. D.; Chen, S.; Armstrong, N. R. Visible Absorption and Photocurrent Spectra of Epitaxially Deposited Phthalocyanine Thin Films: Interpretation of Exciton Coupling Effects. [J] J. Phys. Chem.1993,97,2699-2706.
    [32](a) Wurthner, F. Perylene Bisimide Dyes as Versatile Building Blocks for Functional Supramolecular Architectures. [J] Chem. Commun.2004,14,1564-1579. (b) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006,128,7390-7398. (c) Kazmaier, P. M.; Hoffmann, R. A Theoretical Study of Crystallochromy. Quantum Interference Effects in the Spectra of Perylene Pigments. [J] J. Am. Chem. Soc.1994, 116,9684-9691. (d) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. Nanobelt Self-Assembly from an Organic n-Type Semiconductor: Propoxyethyl-PTCDI. [J] J. Am.Chem. Soc.2005,127,10496-10497.
    [33](a) Yoneyama, M.; Sugi, M.; Saito, M.; Ikegama, K.; Kuroda, S.; Iizima, S. Photoelectic Properties of copper phthalocyanine Langmuir-Blodgett Film [J] Jpn. J. Appl. Phys.1986,25,961-965. (b) Kobayashi, N.; Lam, H.; Nevin, W. A.; Janda, P.; Leznoff, C. C; Koyama, T.; Monden, A.; Shiral, H. Sythesis, Spectroscopy, Electrochemistry, Spectroelectrochemistry, Langmuir-Blodgett Film Formation, and Molecular-Orbital Calculations of Planar Binuclear Phthalocyanines. [J] J. Am. Chem. Soc.1994,116,879-890.
    [34]Xiao, K.; Liu, Y.; Yu, G; Zhu, D. Influence of the Substrate Temperature during Deposition on Film Characteristics of Copper Phthalocyanine and Field-Effect Transistor Properties. [J] Appl. Phys. A 2003,77,367-370.
    [35]Sze, S. M. Physics of Semiconductor Devices. [M] John Wiley & Sons:New York 1981.
    [1]Bierman, M. J.; Lau, Y. K. A.; Schmitt, A. L.; Jin, S. Dislocation-Driven Nanowire Growth and Eshelby Twist. [J] Science 2008,320,1060-1063.
    [2]Zang, L.; Che, Y.; Moore, J. S. One-Dimensional Self-Assembly of Planar π-Conjugated Molecules:Adaptable Building Blocks for Organic Nanodevices. [J] Acc. Chem. Res.2008,41,1596-1608.
    [3]Wang, X.; Peng, Q.; Li, Y. Interface-Mediated Growth of Monodispersed Nanostructures. [J] Acc. Chem. Res.2007,40,635-643.
    [4]Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1443.
    [5]Liu, G.-Y; Xu, S.; Qian, Y. Nanofabrication of Self-Assembled Monolayers Using Scanning Probe Lithography. [J] Acc. Chem. Res.2000,33,457-466.
    [6](a) Shultz, A.M.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. A Catalytically Active, Permanently Microporous MOF with Metalloporphyrin Struts. [J] J. Am. Chem. Soc. 2009,131,4204-4205. (b) Lee, S. J.; Cho, S.-H.; Mulfort, K. L.; Tiede, D. M.; Hupp, J. T.; Nguyen, S. T. Self-Sorting Supramolecular Catalytic Boxes for Selective Oxidation. [J] J. Am. Chem. Soc.2008,130,16828-16829.
    [7]Whitesides, G. M.; Boncheva, M. Beyond Molecules:Self-Assembly of Mesoscopic and Macroscopic Components. [J] PNAS 2002,99,4769-4774.
    [8]Olenyuk, B., Whiteford, J. A., Fechtenkotter, A.; Stang, P. J. Self-Assembly of Nanoscale Cuboctahedra by Coordination Chemistry. [J] Nature 1999,398,796-799.
    [9]Reynhout, I. C; Cornelissen, J. J. L. M.; Nolte, R. J. M. Synthesis of Polymer-Biohybrids:From Small to Giant Surfactants. [J] Acc. Chem. Res.2009,42, 681-692.
    [10](a) Kimura, M.; Saito, Y.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Self-Organization of Supramolecular Complex Composed of Rigid Dendritic Porphyrin and Fullerene. [J] J. Am. Chem. Soc.2002,124,5274-5275. (b) Kimura, M.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Preparation of Ordered Stacked Phthalocyanine Polymers through Olefin Metathesis Reaction. [J] Macromolecules 2001,34,4706-4711.
    [11](a) Kimura, M.; Ueki, H.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Aggregation Behavior of Amphiphilic Phthalocyanine Block Copolymers. [J] Langmuir 2002,18,7683-7687. (b) Kimura, M.; Kazumi, W.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Organic-Inorganic Composites Comprised of Ordered Stacks of Amphiphilic Molecular Disks. [J] J. Am. Chem. Soc.2001,123,2438-2439. (c) Kimura, M.; Muto, T.; Takimoto, H.; Kazumi, W.; Ohta, K.; Hanabusa, K.; Shirai, H.; Kobayashi, N. Fibrous Assemblies Made of Amphiphilic Metallophthalocyanines. [J] Langmuir 2000,16,2078-2082.
    [12](a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Self-Assembly and Mineralization of Peptide-Amphiphile Nanofibers. [J] Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. Self-Assembled Fibers Comprised of Doped Tetrathiafulvalene-Based Gelators. [J] J. Am. Chem. Soc.2005,127,14769-14775.
    [13]Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C; Smith, W. F. Photoconductivity of Self-Assembled Porphyrin Nanorods. [J] Nano. Lett.2004,4,1261-1265.
    [14]Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. Self-Assembly and Self-Metallization of Porphyrin Nanosheets. [J] J. Am. Chem. Soc.2007,129, 2440-2441.
    [15](a) Yan, D. Y.; Zhou, Y. F.; Hou, J. Supramolecular Self-Assembly of Macroscopic Tubes. [J] Science 2004,303,65-67. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Supramolecular Nanotube Architectures Based on Amphiphilic Molecules. [J] Chem. Rev.2005,105,1401-1444. (c) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. Fabricated from Ni-Naphthalocyanine by a Template Method. [J] J. Am. Chem. Soc. 2005,127,12792-12793. (d) Hu, J.-S.; Guo, Y.-G.; Liang, H.-P.; Wan, L.-J.; Jiang, L Three-Dimensional Self-Organization of Supramolecular Self-Assembled Porphyrin Hollow Hexagonal Nanoprisms. [J] J. Am. Chem. Soc.2005,127,17090-17095.
    [16]Dinolfo, P. H.; Hupp, J. T. Supramolecular Coordination Chemistry and Functional Microporous Molecular Materials. [J] Chem. Mater.2001,13,3113-3125.
    [17]Hao, E.; Kelly, K. L.; Hupp, J. T.; Schatz, G. C. Synthesis of Silver Nanodisks Using Polystyrene Mesospheres as Templates. [J] J. Am. Chem. Soc.2002,124, 15182-15183.
    [18](a) Guo, Y.; Tang, Q.; Liu, H.; Zhang, Y.; Li, Y.; Hu, W.; Wang, S.; Zhu, D. Light-Controlled Organic/Inorganic P-N Junction Nanowires. [J] J. Am. Chem. Soc. 2008,130,9198-9199. (b) Guo, Y.; Li, Y.; Xu, J.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H.; Wang, S. Fabrication of Homogeneous Hybrid Nanorod of Organic/Inorganic Semiconductor Materials. [J] J. Phys. Chem. C 2008, 112,8223-8228.
    [19](a) Zhou, Y.; Liu, W.; Ma, Y.; Wang, H.; Qi, L.; Cao, Y.; Wang, J.; Pei, J. Single Microwire Transistors of Oligoarenes by Direct Solution Process. [J] J. Am. Chem. Soc.2007,129,12386-12387. (b) Wang, L.; Zhou, Y; Yan, J.; Wang, J.; Pei, J.; Cao, Y. Organic Supernanostructures Self-Assembled via Solution Process for Explosive Detection. [J] Langmuir 2009,25,1306-1310.
    [20]Kishida, T.; Fujita, N.; Sada, K.; Shinkai, S. Sol-Gel Reaction of Porphyrin-Based Superstructures in the Organogel Phase:Creation of Mechanically Reinforced Porphyrin Hybrids. [J] J. Am. Chem. Soc.2005,127,7298-7299.
    [21](a) Liu, H.; Li, Y.; Xiao, S.; Gan, H.; Jiu, T.; Li, H.; Jiang, L.; Zhu, D.; Yu, D.; Xiang, B.; Chen, Y. Synthesis of Organic One-Dimensional Nanomaterials by Solid-Phase Reaction. [J] J. Am. Chem. Soc.2003,125,10794-10795. (b) Enomoto, M.; Kishimura, A.; Aida, T. Coordination Metallacycles of an Achiral Dendron Self-Assemble via Metal-Metal Interaction To Form Luminescent Superhelical Fibers. [J] J. Am. Chem. Soc.2001,123,5608-5609. (c) Chen, H.-B.; Zhou, Y; Yin, J.; Yan, J.; Ma, Y; Wang, L.; Cao, Y; Wang, J.; Pei, J. Single Organic Microtwist with Tunable Pitch. [J] Langmuir 2009,25,5459-5462.
    [22](a) Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. Morphology Controlled Self-Assembled Nanostructures of Sandwich Mixed (Phthalocyaninato)(Porphyrinato) Europium Triple-Deckers. Effect of Hydrogen Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130, 11623-11630. (b) Gao, Y.; Zhang, X.; Ma, C.; Li, X.; Jiang, J. Morphology-Controlled Self-Assembled Nanostructures of 5,15-Di[4-(5-acetylsulfanylpentyloxy)phenyl]porphyrin Derivatives. Effect of Metal-Ligand Coordination Bonding on Tuning the Intermolecular Interaction. [J] J. Am. Chem. Soc.2008,130,17044-17052.
    [23](a) Shirakawa, M.; Fujita, N.; Shinkai, S. [60]Fullerene-Motivated Organogel Formation in a Porphyrin Derivative Bearing Programmed Hydrogen-Bonding Sites.
    [J]J. Am. Chem. Soc.2003,125,9902-9903. (b) Tanaka, S.; Shirakawa, M.; Kaneko, K.; Takeuchi, M.; Shinkai, S. Porphyrin-Based Organogels:Control of the Aggregation Mode by a Pyridine-Carboxylic Acid Interaction. [J] Langmuir 2005,21, 2163-2172.
    [24](a) Shirakawa, M.; Fujita, N.; Shinkai, S. A Stable Single Piece of Unimolecularly π-Stacked Porphyrin Aggregate in a Thixotropic Low Molecular Weight Gel:A One-Dimensional Molecular Template for Polydiacetylene Wiring up to Several Tens of Micrometers in Length. [J] J. Am. Chem. Soc.2005,127,4164-4165. (b) Lee, S. J.; Hupp, J. T.; Nguyen, S. T. Growth of Narrowly Dispersed Porphyrin Nanowires and Their Hierarchical Assembly into Macroscopic Columns. [J] J. Am. Chem. Soc.2008, 130,9632-9633.
    [25](a) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. Effect of Side-Chain Substituents on Self-Assembly of Perylene Diimide Molecules:Morphology Control. [J] J. Am. Chem. Soc.2006,128,7390-7398. (b) Che, Y.; Datar, A.; Balakrishnan, K.; Ling, Z. Ultralong Nanobelts Self-Assembled from an Asymmetric Perylene Tetracarboxylic Diimide. [J] J. Am. Chem. Soc.2007, 129,7234-7235.
    [26](a) Luo, J.; Lei, T.; Wang, L.; Ma, Y; Cao, Y; Wang, J.; Pei, J. Highly Fluorescent Rigid Supramolecular Polymeric Nanowires Constructed through Multiple Hydrogen Bonds. [J] J. Am. Chem. Soc.2009,131,2076-2077. (b) Gan, H.; Liu, H.; Li, Y; Zhao, Q.; Li, Y; Wang, S.; Jiu, T.; Wang, N.; He, X.; Yu, D.; Zhu, D. Fabrication of Polydiacetylene Nanowires by Associated Self-Polymerization and Self-Assembly Processes for Efficient Field Emission Properties. [J] J. Am. Chem. Soc.2005,127, 12452-12453.
    [27]Liu, H.; Zhao, Q.; Li, Y.; Liu, Y.; Lu, F.; Zhuang, J.; Wang, S.; Jiang, L.; Zhu, D.; Yu, D.; Chi, L. Figure 1 Field Emission Properties of Large-Area Nanowires of Organic Charge-Transfer Complexes. [J] J. Am. Chem. Soc.2005,127,1120-1121.
    [28](a) Yamaguchi, T.; Ishii, N.; Tashiro, K.; Aida, T. Supramolecular Peapods Composed of a Metalloporphyrin Nanotube and Fullerenes. [J] J. Am. Chem. Soc.2003,125, 13934-13935. (b) Tsuda, A.; Sakamoto, S.; Yamaguchi, K.; Aida, T. A Novel Supramolecular Multicolor Thermometer by Self-Assembly of a π-Extended Zinc Porphyrin Complex. [J] J. Am. Chem. Soc.2003,125,15722-15723. (c) Guo, Y.; Oike, H.; Aida, T. Chiroptical Transcription of Helical Information through Supramolecular Harmonization with Dynamic Helices. [J] J. Am. Chem. Soc.2004, 126,716-717.
    [29](a) Liu, H.; Li, Y; Jiang, L.; Luo, H.; Xiao, S.; Fang, H.; Li, H.; Zhu, D.; Yu, D.; Xu, J.; Xiang, B. Imaging As-Grown [60]Fullerene Nanotubes by Template Technique. [J] J. Am. Chem. Soc.2002,124,13370-13371. (b) Lv, W.; Zhang, X.; Lu, J.; Zhang, Y.; Li, X.; Jiang, J. Synthesis and Hollow-Sphere Nanostructures of Optically Active Metal-Free Phthalocyanine. [J] Eur. J. Inorg. Chem.2008,27,4255-4261.
    [30](a) Motoyanagi, J.; Fukushima, T.; Ishii, N.; Aida, T. Photochemical Stitching of a Tubularly Assembled Hexabenzocoronene Amphiphile by Dimerization of Coumarin Pendants. [J] J. Am. Chem. Soc.2006,128,4220-4221. (b) Li, W.-S.; Kim, K. S.; Jiang, D.-L.; Tanaka, H.; Kawai, T.; Kwon, J. H.; Kim, D.; Aida, T. Construction of Segregated Arrays of Multiple Donor and Acceptor Units Using a Dendritic Scaffold: Remarkable Dendrimer Effects on Photoinduced Charge Separation. [J] J. Am. Chem. Soc.2006,128,10527-10532. (c) Yamamoto, T.; Fukushima, T.; Yamamoto, Y.; Kosaka, A.; Jin, W.; Ishii, N.; Aida, T. Stabilization of a Kinetically Favored Nanostructure:Surface ROMP of Self-Assembled Conductive Nanocoils from a Norbornene-Appended Hexa-peri-hexabenzocoronene. [J] J. Am. Chem. Soc.2006, 128,14337-14340. (d) Yamamoto, Y.; Fukushima, T.; Saeki, A.; Seki, S.; Tagawa, S.; Ishii, N.; Aida, T. Molecular Engineering of Coaxial Donor-Acceptor Heteroj unction by Coassembly of Two Different Hexabenzocoronenes:Graphitic Nanotubes with Enhanced Photoconducting Properties. [J] J. Am. Chem. Soc.2007,129,9276-9277. (e) Mynar, J. L.; Yamamoto, T.; Kosaka, A.; Fukushima, T.; Ishii, N.; Aida, T. Radially Diblock Nanotube:Site-Selective Functionalization of a Tubularly Assembled Hexabenzocoronene. [J] J. Am. Chem. Soc.2008,130,1530-1531.
    [31](a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996; Vols.1-4. (b) McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998. (c) Kadish, K. M.; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003; Vols.1-20.
    [32](a) de Saja, J. A.; Rodriguez-Mendez, M. L.; Sensors Based on Double-Decker Rare Earth Phthalocyanines. [J] Adv. Colloid Interface Sci.2005,116,1-11. (b) Parra, V.;
    Bouvet, M.; Brunet, J.; Rodriguez-Mendez, M. L.; de Saja J. A. On the Effect of Ammonia and Wet Atmospheres on the Conducting Properties of Different Lutetium Bisphthalocyanine Thin Films. [J] Thin Solid Films 2008,516,9012-9019. (c) Parra, V.; Brunet, J.; Pauly, A. Bouvet M Molecular Semiconductor-Doped Insulator (MSDI) Heterojunctions:an Alternative Transducer for Gas Chemosensing. [J] Analyst,2009, 1776-1778.
    [33](a) Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88. (b) Jiang, J.; Liu, W.; Arnold, D. P. Sandwich Complexes of Naphthalocyanine with the Rare Earth Metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473. (c) Jiang, J.; Kasuga, K.; Arnold, D. P. In Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa) [M] Academic Press:New York,2001, pp.113-210. (d) Ng, D. K. P.; Jiang, J. Sandwich-Type Heteroleptic Phthalocyaninato and Porphyrinato Metal Complexes. [J] Chem. Soc. Rev.1997,26,433-442.
    [34](a) Simon, J.; Andre, J. Molecular Semiconductors. [M] Springer-Verlag:Berlin, 1985. (b) Bouvet, M.; Simon, J. Electrical Properties of Rare Earth Bisphthalocyanine and Bisnaphthalocyanine Complexes. [J] Chem. Phys. Lett.1990, 172,299-302. (c) Chen, Y; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc. 2005,127,15700-15701. (d) Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48,45-54. (e) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404. (f) Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jiang, J. Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23, 12549-12554.
    [35]Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003,302, 1543-1545.
    [36](a) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets:Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. [J] Angew. Chem., Int. Ed.2005,44, 2931-2935. (b) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet: Bis(Phthalocyaninato)holmium Anion. [J] J. Am. Chem. Soc.2005,727,3650-3651. (c) Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. [J] J. Am. Chem. Soc.2003,125,8694-8695.
    [37]Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. A Field Guide to Foldamers. [J] Chem. Rev.2001,101,3893-4012.
    [38]Lehn, J.-M. Supramolecular Chemistry. [M] Verlag Chimie:Weinheim, Germany, 1995.
    [39]Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Molecular Materials by Self-Assembly of Porphyrins, Phthalocyanines, and Perylenes. [J] Adv. Mater.2006,18,1251-1226.
    [40](a) Shi, Z.; Li, Y.; Gong, H.; Liu, M.; Xiao, S.; Liu, H.; Li, H.; Xiao, S.; Zhu, D. Self-Assembly and Characterization of Supramolecular [60]Fullerene-Containing 2,6-Diacylamidopyridine with Uracil Derivative by Hydrogen-Bonding Interaction. [J] Org. Lett.2002,4,1179-1182. (b) Li, Y.; Wang, N.; Gan, H.; Liu, H.; Li, H.; Li, Y.; He, X.; Huang, C.; Cui, S.; Wang, S.; Zhu, D. Synthesis and Characterization of 3,5-Bis(2-hydroxyphenyl)-1,2,4-triazole Functionalized Tetraaryloxy Perylene Bisimide and Metal-Directed Self-Assembly. [J] J. Org. Chem.2005,70,9686-9692. (c) Gan, H.; Li, Y.; Liu, H.; Wang, S.; Li, C; Yuan, M.; Liu, X.; Wang, C.; Jiang, L. Zhu, D. Self-Assembly of Conjugated Polymers and ds-Oligonucleotides Directed Fractal-like Aggregates. [J] Biomacromolecules 2007,8,1723-1729.
    [41]Tong, W. Y.; Djurii, A. B.; Xie, M. H.; Ng, A. C. M.; Cheung, K. Y.; Chan, W. K.; Leung, Y. H.; Lin, H. W.; Gwo, S. Metal Phthalocyanine Nanoribbons and Nanowires. [J] J. Phys. Chem. B.2006,110,17406-17413.
    [42]Duzhko, V.; Singer, K. D. Self-Assembled Fibers of a Discotic Phthalocyanine Derivative:Internal Structure, Tailoring of Geometry, and Alignment by a Direct Current Electric Field. [J] J. Phys. Chem. B.2007,111,27-31.
    [43]van Nostrum, C. F.; Picken, S. J.; Schouten, A.-J.; Nolte, R. J. M. Synthesis and Supramolecular Chemistry of Novel Liquid Crystalline Crown Ether-Substituted Phthalocyanines:Toward Molecular Wires and Molecular Ionoelectronics. [J] J. Am. Chem. Soc.1995,117,9957-9965.
    [44](a) Cook, M. J.; McMurdo, J.; Miles, D. A.; Poynter, R. H.; Simmons, J. M.; Haslam, S. D.; Richardson, R. M.; Welford, K. Monolayer Behaviour and Langmuir-Blodgerr Film Properties of some Amphiphilic Phthalocyanines:Factors Influencing Molecular Organisation within the Film Assembly. [J] J. Mater. Chem.1994,8, 1205-1213. (b) Cook, M. J.1,4,8,11,15,18,22,25-Octasubstituted Phthalocyanines: the Contrasting Effects of Alkyl and Alkoxy Substituents on Molecular Self-Assembly. [J] J. Mater. Sci:Mater. Elec,1994,5,117-128.
    [45]Zhang, Y.; Zhang, Z.; Zhao, Y.; Fan, Y.; Tong, T.; Zhang, H.; Wang, Y. Solution-Processed Microwires of Phthalocyanine Copper(II) Derivative with Excellent Conductivity. [J] Langmuir 2009,25,6045-6048.
    [46](a) Cook, M. J.; McMurdo, J.; Powell, A. K. X-Ray Crystal Structure of 1,4,8,11,15,18,22,25-octa-iso-pentyloxyphthalocyanine. [J] J. Chem. Soc, Chem. Commun.1993,903-904. (b) Donzello, M. P.; Ercolani, C; Gaberkorn, A. A.; Kudrik, E. V. Meneghetti, M.; Marcolongo, G.; Rizzoli, C.; Stuzhin, P. A. Synthesis, X-ray Crystal Structure, UV/Visible Linear and Nonlinear (Optical Limiting) Spectral Properties of Symmetrical and Unsymmetrical Porphyrazines with Annulated 1,2,5-Thiadiazole and 1,4-Diamyloxybenzene Moieties. [J] Chem. Eur. J.2003,9, 4009-4024. (c) McKeown, N. B.; Li, H.; Heliwell, M. A Non-Planar, Hexadeca-Substituted, Metal-Free phthalocyanine. [J] J. Porphyrins Phthalocyanines 2005,9,841-845.
    [47]Zhang, H.; Wang, R.; Zhu, P.; Lai, Z.; Han, J.; Choi, C.-F.; Ng, D. K. P.; Cui, X.; Ma, C.; Jiang, J. The First Slipped Pseudo-Quadruple-Decker Complex of Phthalocyanines. [J] Inorg. Chem.2004,43,4740-4742.
    [48]Gao, Y; Li, R.; Dong, S.; Bian, Y; Jiang, J. Bis[1,4,8,11,15,18,22,25-octa(butyloxyl)phthalocyaninato] Rare Earth Double-Decker Complexes:Synthesis, Spectroscopy, and Molecular Structure. [J] Dalton Trans.2010,39,1321-1327.
    [49]Cook, M. J.; Dunn, A. J.; Howe, S. D.; Thomson, A. J.; Harrison, K. J. Octa-Alkoxy Phthalocyanine and Naphthalocyanine Derivatives:Dyes with Q-Band Absorption in the Far Red or Near Infrared. [J] J. Chem. Soc, Perkin Trans.1 1988,8,2453-2458.
    [50]Li, R.; Zhang, X.; Zhu, P.; Ng, D. K. P.; Kobayashi, N.; Jiang, J. Electron-Donating or-Withdrawing Nature of Substituents Revealed by the Electrochemistry of Metal-Free Phthalocyanines. [J] Inorg. Chem.2006,45,2327-2334.
    ,[51] (a) Hamza, I. Intracellular Trafficking of Porphyrins. [J] ACS Chem. Biol.2006,1, 627-629. (b) Lo, P.-C.; C. Chan, M. H.; Liu, J.-Y.; Fong, W.-P.; Ng, D. K. P. Highly Photocytotoxic Glucosylated Silicon(IV) Phthalocyanines. Effects of Peripheral Chloro Substitution on the Photophysical and Photodynamic Properties. [J] J. Med. Chem.2007,50,2100-2107. (c) Vanyur, R.; Heberger, K.; Jakus, J. Prediction of Anti-HIV-1 Activity of a Series of Tetrapyrrole Molecules. [J] J. Chem. Inf. Comput. Sci.2003,43,1829-1836.
    [52](a) Kasai, H.; Nalwa, H. S.; Oikawa, H.; Okada, S.; Matsuda, H.; Minami, N.; Kakutal, A.; Ono, K.; Mukoh, A.; Nakanishi, H. A Novel Preparation Method of Organic Microcrystals. [J] Jpn. J. Appl. Phys.1992,31,1132-1134. (b) Bertorelle, F.; Lavabre, D.; Fery-Forgues, S. Dendrimer-Tuned Formation of Luminescent Organic Microcrystals. [J] J. Am. Chem. Soc.2003,125,6244-6253. (c) Fu, H.; Xiao, D.; Yao, J. Yang, G. Nanofibers of 1,3-Diphenyl-2-Pyrazoline Induced by Cetyltrimethylammonium Bromide Micelles. [J] Angew. Chem,. Int. Ed.2003,42, 2883-2886. (d) Lee, S. J.; Jensen, R. A.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Effect of Secondary Substituent on the Physical Properties, Crystal Structures, and Nanoparticle Morphologies of (Porphyrin)Sn(OH)2:Diversity Enabled via Synthetic Manipulations. [J] J. Mater. Chem.2008,18,3640-3642. (e) Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Amphiphilic Porphyrin Nanocrystals:Morphology Tuning and Hierarchical Assembly. [J] Adv. Mater.2008,20,3543-3549.
    [53]SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    [54]Burnham, P. M.; Cook, M. J.; Gerrard, L. A.; Heeney, M. J.; Hughes, D. L. Structural
    Characterisation of a red Phthalocyanine. [J] Chem. Commun.2003,2064-2065.
    [55]Bian, Y.; Li, L.; Dou, J.; Cheng, D. Y. Y.; Li, R.; Ma, C.; Ng. D. K. P.; Kobayashi, N.; Jiang, J. Synthesis, Structure, Spectroscopic Properties, and Electrochemistry of (1,8,15,22-Tetrasubstituted Phthalocyaninato)Lead Complexes. [J] Inorg. Chem. 2004,43,7539-7544.
    [56](a) Bouvet, M.; Silinsh, E.; Simon, J. Mol. Cryst. Liq. Cryst.1995,5,255-277. (b) M. Bouvet In The Porphyrin Handbook (K. Kadish, K. M. Smith, R. Guilard, Eds.). [M] Academic Press:San Diego,2003, Vol.19,37-104.
    [57](a) Ukei, K. Lead Phthalocyanine. [J]Acta Cryst, Sect. B 1973,29,2290-2292. (b) Przyborowski, F.; Hamann, C. The Monoclinic Modification of Lead Phthalocyanine a Quasi-one-dimensional Metal with Characteristic Order of Molecular Dipoles. Cryst. Res. Technol.1982,17,1041-1045. (c) Iyechika, Y.; Yakushi, K.; Ikemoto, I.; Kuroda, H. Structure of Lead Phthalocyanine (Triclinic Form). [J] Acta Cryst., Sect. B 1982,38,766-770.
    [58](a) Zhang, Y; Zhang, X.; Liu, Z.; Bian, Y; Jiang, J. Structures and Properties of 1,8,15,22-Tetrasubstituted Phthalocyaninato-Lead Complexes:The Substitutional Effect Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A 2005,109,6363-6370. (b) Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem.2006,45,3794-3802.
    [59]Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] PureAppl. Chem.1965,11,371-392.
    [60]Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational Spectroscopy of Phthalocyanine and Naphthalocyanine in Sandwich-Type (Na)phthalocyaninato and Porphyrinato Rare Earth Complexes. [J] Coord. Rev.2006,250,424-448.
    [I]Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications. [M] VCH:New York,1989-1996; Vols.1-4.
    [2]McKeown, N. B. Phthalocyanines Materials:Synthesis, Structure and Function. [M] Cambridge University Press:New York,1998.
    [3]Kadish, K. M; Smith, K. M.; Guilard, R. The Porphyrin Handbook. [M] Academic Press:San Diego,2000-2003; Vols.1-20.
    [4]Hanack, M.; Heckmann, H.; Polley, R. Houben-weyl:Phthalocyanines and Related Compounds. [M] Vol. E 9d, Thieme Stuttgart,1997, pp.717-842.
    [5]Mortimer, R. J. Organic Electrochromic Materials. [J] Electochim. Acta.1999,44, 2971-2981.
    [6]Wright, J. D. Gas Adsorption on Phthalocyanines and its Effects on Electrical Properties. [J] Prog. Surf. Sci.1989,31,1-60.
    [7]Jiang, J.; Ng, D. K. P. A Decade Journey in the Chemistry of Sandwich-Type Tetrapyrrolato-Rare Earth Complexes. [J] Acc. Chem. Res.2009,42,79-88.
    [8]Jiang, J.; Kasuga, K.; Arnold, D. P. in Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa). [M] Academic Press, New York,2001, pp.113-210.
    [9]Jiang, J.; Liu, W.; Arnold, D. P. Sandwich Complexes of Naphthalocyanine with the Rare Earth Metals. [J] J. Porphyrins Phthalocyanines 2003,7,459-473.
    [10]Buchler, J. W.; Ng, D. K. P. in The Porphyrin Handbook, Vol.3 (Eds.:K. M. Kadish, K. M. Smith, R. Guilard). [M] Academic Press:San Diego,2000, pp.245-294.
    [11]Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Organic Field-Effect Transistors with High Mobility Based on Copper Phthalocyanine. [J] Appl. Phys. Lett.1996,69,3066-3068.
    [12]Bao, Z.; Lovinger, A. J.; Brown, J. New Air-Stable n-Channel Organic Thin Film Transistors. [J] J. Am. Chem. Soc.1998,120,207-208.
    [13]Mizuno, E.; Taniguchi, M.; Kawai, T. Ambipolar Organic Field-Effect Transistor Using Gate Insulator Hysteresis. [J] Appl. Phys. Lett.2005,86,143513-143515.
    [14]Ofuji, M.; Ishikawa, K.; Takezoe, H. Crystallite Size Effect on the Hole Mobility of Uniaxially Aligned Copper Phthalocyanine Thin-Film Field-Effect Transistors. [J] Appl. Phys. Lett.2005,86,062114-062116.
    [15]Lochlin, J.; Shinbo, K.; Onishi, K.; Kaneko, F.; Bao, Z.; Advincula, R. C. Ambipolar Organic Thin Film Transistor-Like Behavior of Cationic and Anionic Phthalocyanines Fabricated Using Layer-by-Layer Deposition from Aqueous Solution. [J] Chem. Mater.2003,15,1404-1412.
    [16]Zhang, J.; Wang, J.; Wang, H.; Yan, D. Organic Thin-Film Transistors in Sandwich Configuration. [J]Appl. Phy. Lett.2004,84,142-144.
    [17]Xiao, K.; liu, Y.; Huang, X.; Xu, Y.; Yu, G.; Zhu, D. Field-Effect Transistors Based on Langmuir-Blodgett Films of Phthalocyanine Derivatives as Semiconductor Layers [J] J. Phys. Chem. B 2003,107,9226-9230.
    [18](a) Bora, M.; Schut, D.; Baldo, M. A. Combinatorial Detection of Volatile Organic Compounds Using Metal-Phthalocyanine Field Effect Transistors. [J] Anal. Chem. 2007,79,3298-3303. (i) Tang, Q.; Li, H.; Liu, Y.; Hu, W. High-Performance Air-Stable n-Type Transistors with an Asymmetrical Device Configuration Based on Organic Single-Crystalline Submicrometer/Nanometer Ribbons. [J] J. Am. Chem. Soc. 2006,128,14634-14639.
    [19]Simon, J.; Andre, J. Molecular Semiconductors. [M] Springer-Verlag:Berlin,1985.
    [20]Bouvet, M.; Simon, J. Electrical Properties of Rare Earth Bisphthalocyanine and Bisnaphthalocyanine Complexes. [J] Chem. Phys. Lett.1990,172,299-302.
    [21]Chen, Y,; Su, W; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. High Performance Organic Field-Effect Transistors Based on Amphiphilic Tris(phthalocyaninato) Rare Earth Triple-Decker Complexes. [J] J. Am. Chem. Soc. 2005,127,15700-15701.
    [22]Gao, Y.; Ma, P.; Chen, Y.; Zhang, Y.; Bian, Y.; Li, X.; Jiang, J.; Ma, C. Design, Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(III) Complexes. The Effect of Crown Ether Hydrophilic Substituents. [J] Inorg. Chem.2009,48,45-54.
    [23]Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y; Li, X.; Jiang, J. Synthesis, Characterization, and OFET Properties of Amphiphilic Heteroleptic Tris(phthalocyaninato) Europium(Ⅲ) Complexes with Hydrophilic Poly(oxyethylene) Substituents. [J] Inorg. Chem.2007,46,11397-11404.
    [24]Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jiang, J. Effect of Peripheral Hydrophobic Alkoxy Substitution on the Organic Field Effect Transistor Performance of Amphiphilic Tris(phthalcoyaninato) Europium Triple-Decker Complexes. [J] Langmuir 2007,23,12549-12554.
    [25]Liu, Z.; Yasseri, A. A.; Lindsey, J. S.; Bocian, D. F. Molecular Memories That Survive Silicon Device Processing and Real-World Operation. [J] Science 2003,302, 1543-1545.
    [26]Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Quantum Tunneling of Magnetization in Lanthanide Single-Molecule Magnets:Bis(phthalocyaninato)terbium and Bis(phthalocyaninato)dysprosium Anions. [J] Angew. Chem., Int. Ed.2005,44, 2931-2935.
    [27]Ishikawa, N.; Sugita, M.; Wernsdorfer, W. Nuclear Spin Driven Quantum Tunneling of Magnetization in a New Lanthanide Single-Molecule Magnet: Bis(Phthalocyaninato)holmium Anion. [J] J. Am. Chem. Soc.2005,127,3650-3651.
    [28]Ishikawa, N.; Sugita, M.; Ishikawa, T.; Koshihara, S.-y.; Kaizu, Y. Lanthanide Double-Decker Complexes Functioning as Magnets at the Single-Molecular Level. [J] J. Am. Chem. Soc.2003,125,8694-8695.
    [29]Kirin, I. S.; Moskalev, P. N.; Makashev, Y. A. Russ. J. Inorg. Chem.1965,10, 1065-1066.
    [30]Tomilova, L. G.; Chernykh, E. V.; Loffe, N. T.; Luk'yanets, E. A. Phthalocyanines and Related Compounds XXII. Synthesis and Spectroscopic-Electrochemical Study of Rare Earth Element Diphthalocyanines. [J] Zh. Obshch. Khim.1983,53, 2594-2601.
    [31]Pondaven, A.; Cozien, Y.; L'Her, M. Unsymmetrically t-butyl Substituted Lutetium Diphthalocyanine. [J] New. J. Chem.1991,15,515-516.
    [32]Jiang, J.; Liu, W.; Law, W.-F.; Lin, J.; Ng, D. K. P. A New Synthetic Route to Unsymmetrical Bis(phthalocyaninato)europium(III) Complexes. [J] Inorg. Chim. Acta.1998,268,141-144.
    [33]Wang, R.; Li, R.; Bian, Y.; Choi, C.-F.; Ng, D. K. P.; Dou, J.; Zhu, P.; Ma, C.; Hartnell, R. D.; Arnold, D. P.; Jiang, J. Studies of "Pinwheel-Like" Bis[1,8,15,22-tetrakis(3-pentyloxy)phthalocyaninato] Rare Earth(Ⅲ) Double-Decker Complexes. [J] Chem. Eur. J.2005,11,7351-7357.
    [34]Bian, Y.; Wang, R.; Jiang, J.; Lee, C.-H.; Wang, J. Ng, D. K. P. Synthesis, Spectroscopic Characterisation and Structure of the First Chiral Heteroleptic Bis(phthalocyaninato) Rare Earth Complexes. [J] Chem. Commun.2003,10, 1194-1195.
    [35]Zhang, H.; Wang, R.; Zhu, P.; Lai, Z.; Han, J.; Choi, C.-F.; Ng, D. K. P.; Cui, X.; Ma, C.; Jiang, J. The First Slipped Pseudo-Quadruple-Decker Complex of Phthalocyanines [J] Inorg. Chem.2004,43,4740-4742.
    [36]Pedersen, C. J. Cyclic Polyethers and their Complexes with Metal Salts. [J] J. Am. Chem. Soc.1967,89,7017-7036.
    [37]Pedersen, C. Crystalline Salt Complexes of Macrocyclic Polyethers. [J] J. Am. Chem. Soc.1970,92,386-391.
    [38]Herr, W. Tragerfreie Isolierung der durch Neutroneneinfangreaktion entstandenen Radioisotope der Seltenen Erden. [J] Angew. Chem.1953,65,303-304.
    [39]L'Her, M.; Cozien, Y.; Courtot-Coupez, J. Electrochemical Behaviour of Lutetium Diphthalocyanine in Methylene Chloride. [J] J. Electroanal. Chem.1983,157, 183-187.
    [40]Khusniyarov, M. M. Metal Complexes with Non-innocent N-donor Ligands: Molecular and Electronic Structures, Reactivity, and Application. [M] Fach bereich Chemie:Philipps-Universitat Marburg,2006.
    [41]Tomoda, H.; Saito, S.; Ogawa, S.; Shiraishi, S. Synthesis of Phthalocyanines from Phthalonitrile with Organic Strong Bases. [J] Chem. Lett.1980,1277-1280.
    [42]The electronic spectrum of [Eu(Pc)2]-was recorded by adding hydrazine hydrate into the solution of Eu(Pc)2 in CHCl3:333,631, and 684 ran.
    [43]Liu, W.; Jiang, J.; Du, D.; Arnold, D. P. Synthesis and Spectroscopic Properties of Homoleptic Bis[octakis(octyloxy)phthalocyaninato] Rare Earth(III) Sandwich Complexes. [J]Aust. J. Chem.2000,53,131-135.
    [44]Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. The Exciton Model in Molecular Spectroscopy. [J] Pure Appl. Chem.1965,11,371-392.
    [45]Zhang, Y.; Cai, X.; Zhou, Y.; Zhang, X.; Xu, H.; Liu, Z.; Li, X.; Jiang, J. Structures and Spectroscopic Properties of Bis(phthalocyaninato) Yttrium and Lanthanum Complexes:Theoretical Study Based on Density Functional Theory Calculations. [J] J. Phys. Chem. A 2007,111,392-400.
    [46]D'Souza, F.; Ito, O. Photoinduced Electron Transfer in Supramolecular Systems of Fullerenes Functionalized with Ligands Capable of Binding to Zinc Porphyrins and Zinc Phthalocyanines. [J] Coord. Chem. Rev.2005,249,1410-1422.
    [47]Takahashi, K.; Tomita, Y.; Hada, Y.; Tsubata, K.; Handa, M.; Kasuga, K.; Sogabe, K. Tokii, T. Preparation and Electrochemical Properties of the Green Ytterbium(III) and Lutetium(III) Sandwich Complexes of Octabutoxy-Substituted Phthalocyanine. [J] Chem. Lett.1992,5,759-762.
    [48]Markovitsi, D.; Tran-Thi, T.-H.; Even, R.; Simon, J. Near Infrared Absorption Spectra of Lanthanide Bis-Pphthalocyanines. [J] Chem. Phys. Lett.1987,137,107-112.
    [49]Zhang, H.; Lai, Z.; Cui, X.; Jiang, J.; Machida, K.-I. Heteroleptic Protonated Bis(phthalocyaninato) Rare Earth Compounds Containing 1,4,8,11,15,18,22,25-octa(butyloxy)-phthalocyanine Ligand. [J] J. Alloys Compd. 2006,408-412,1041-1045.
    [50]Jiang, J.; Bao, M.; Rintoul, L.; Arnold, D. P. Vibrational Spectroscopy of Phthalocyanine and Naphthalocyanine in Sandwich-Type (Na)phthalocyaninato and Porphyrinato Rare Earth Complexes. [J] Coord. Rev.2006,250,424-448.
    [51]Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K.; Kobayashi, N.; Jiang, J. Heteroleptic Bis(Phthalocyaninato) Europium(III) Complexes Fused with Different Numbers of 15-Crown-5 Moieties. Synthesis, Spectroscopy, Electrochemistry, and Supramolecular Structure. [J] Inorg. Chem.2006,45, 3794-3802.
    (1)Hill, D. J.; Mio, M. J.; Prince, R. B.; Hughes, T. S.; Moore, J. S. Chem. Rev.2001, 101,3893-4012.
    (2)Lehn, J.-M. Supramolecular Chemistry (Verlag Chimie, Weinheim, Germany,1995).
    (3)Elemans, J. A. A. W.; van Hameren, R.; Nolte, R. J. M.; Rowan, A. E. Adv. Mater. 2006,18,1251-1226.
    (4)(a) Hartgerink, J. D.; Beniash, E.; Stupp, S. I. Science 2001,294,1684-1688. (b) Kitamura, T.; Nakaso, S.; Mizoshita, N.; Tochigi, Y.; Shimomura, T.; Moriyama, M.; Ito, K.; Kato, T. J. Am. Chem. Soc.2005,127,14769-14775.
    (5)Schwab, A. D.; Smith, D. E.; Bond-Watts, B.; Johnston, D. E.; Hone, J.; Johnson, A. T.; de Paula, J. C; Smith, W. F. Nano. Lett,2004,4,1261-1265.
    (6)Wang, Z.; Li, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc.2007,129, 2440-2441.
    (7)(a) Yan, D. Y.; Zhou, Y. F.; Hou, J. Science 2004,303,65-67. (b) Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev.2005,105,1401-1444. (c) Zhi, L.; Gorelik, T.; Wu, J.; Kolb, U.; Mullen, K. J. Am. Chem. Soc.2005,127,12792-12793. (d) Hu, J.-S.; Guo, Y-G.; Liang, H.-P.; Wan, L.-J.; Jiang, L. J. Am. Chem. Soc.2005,127,17090-17095.
    (8)(a) Shi, Z.; Li, Y.; Gong, H.; Liu, M.; Xiao, S.; Liu, H.; Li, H.; Xiao, S.; Zhu, D. Org. Lett.2002,4,1179-1182. (b) Xiao, S.; Li, Y; Fang, H.; Li, H.; Liu, H.; Shi, Z.; Jiang, L.; Zhu, D. Org. Lett.2002,4,3063-3066. (c) Li, Y.; Wang, N.; Gan, H.; Liu, H.; Li, H.; Li, Y.; He, X.; Huang, C; Cui, S.; Wang, S.; Zhu, D. J. Org. Chem.2005,70,9686-9692. (d) Liu, Y.; Li, Y.; Jiang, L.; Gan, H.; Liu, H.; Li, Y.; Zhuang, J.; Lu, F.; Zhu, D. J. Org. Chem.2004, 69,9049-9054. (e) Gan, H.; Li, Y.; Liu, H.; Wang, S.; Li, C.; Yuan, M.; Liu, X.; Wang, C.; Jiang, L.; Zhu, D. Biomacromolecules 2007,8,1723-1729.
    (9)Liu, R.; Holman, M. W.; Zang, L.; Adams, D. M. J. Phys. Chem. A.2003,107, 6522-6526.
    (10)Holman, M. W.; Liu, R.; Zang, L.; Yan, P.; DiBenedetto, S. A.; Bowers, R. D.; Adams, D. M. J. Am. Chem. Soc.2004,126,16126-16133.
    (11)Sauer, M.Angew. Chem,. Int. Ed.2003,42,1790-1793.
    (12)Grimsdale Andrew, C.; Mullen, K. Angew. Chem,. Int. Ed.2005,44,5592-5629.
    (13)(a) Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. J. Am. Chem. Soc.2005,127, 2386-2387. (b) Guo, Y.; Li, Y.; Xu, J.; Liu, X.; Xu, J.; Lv, J.; Huang, C.; Zhu, M.; Cui, S.; Jiang, L.; Liu, H.; Wang, S. J. Phys. Chem. C.2008,112,8223-8228.
    (14)Li, X.; Xu, B. Q.; Xiao, X.; Yang, X.; Zang, L.; Tao, N. J. Faraday Discuss.2006, 131,111-120.
    (15)(a) Jiang, J.; Ng, D. K. P. Acc. Chem. Res.2009,42,79-88. (b) Chen, Y.; Su, W.; Bai, M; Jiang, J.; Li, X.; Liu, Y; Wang, L.; Wang, S. J. Am. Chem. Soc.2005,127,15700-15701. (c) Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y; Li, X.; Jiang, J. Inorg. Chem.2007,46, 11397-11404.
    (16)Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R.H.; MacKenzie, J. D. Science 2001,293,1119-1122.
    (17)Gregg, B. A. J. Phys. Chem. B. 2003,107,4688-4698.
    (18)Gregg, B. A. J. Phys. Chem,1996,100,852-859.
    (19)Tamizhmani, G.; Dodelet, J. P.; Cote, R.; Gravel, D. Chem. Mater.1991,3, 1046-1053.
    (20)(a) Liu, Y.; Xiao, S.; Li, H.; Li, Y; Liu, H.; Lu, F.; Zhuang, J.; Zhu, D. J. Phys. Chem. B.2004,108,6256-6260. (b) Xiao, S.; Li, Y.; Li, Y.; Zhuang, J.; Wang, N.; Liu, H.; Ning, Bin.; Liu, Y.; Lu, F.; Fan, L.; Yang, C.; Li, Y.; Zhu, D. J. Phys. Chem. B.2004,108, 16677-16685.
    (21)Peeters, E.; Van Hal, P. A.; Meskers, S. C. J.; Janssen, R. A. J.; Meijer, E.W. Chem. Eur. J.2002,8,4470-4474.
    (22)Kimura, M.; Muto, T.; Takimoto, H.; Wada, K.; Ohta, K.; Hanabusa, K.; Shirai. H.; Kobayash, N. Langmuir 2000,16,2078-2082.
    (23)Minch, B. A.; Xia, W.; Donley, C. L.; Hernandez, R. M.; Carter, C.; Carducci, M. D.; Dawson, A.; O'Brien, D. F.; Armstrong, N. R. Chem. Mater.2005,17,1618-1627.
    (24)Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. J. Am. Chem. Soc.2006,128,7390-7398.
    (25)Su, W.; Zhang, Y.; Zhao, C.; Li, X.; Jiang, J.ChemPhysChem 2007,8,1857-1862.
    (26)Lu, G.; Chen, Y.; Zhang, Y.; Bao, M.; Bian, Y.; Li, X.; Jiang, J. J. Am. Chem. Soc. 2008,130,11623-11630.
    (27)(a) The Porphyrin Handbook; Kadish, K. M., Smith, K. M., Guilard, R., Eds.; Academic Press:San Diego,2000; Vols.1-10,2003; Vols.11-20. (b) Hamza I. ACS Chem. Biol.2006,1,627-629. (c) Lo, P.-C.; Chan, C. M. H.; Liu, J.-Y.; Fong, W.-P.; Ng, D. K. P. J. Med. Chem.2007,50,2100-2107. (d) Vanyur, R.; Heberger, K.; Jakus, J. J. Chem. Inf. Comput. Sci.2003,43,1829-1836.
    (28)Li, Y.; Li, X.; Li, Y:Liu, H.; Wang, S.; Gan, H.; Li, J.; Wang, N.; He, X.; Zhu, D. Angew. Chem,. Int. Ed.2006,45,3639-3643.
    (29)Wang, Z.; Medforth, C. J.; Shelnutt, J. A. J. Am. Chem. Soc.2004,126, 15954-15955.
    (30)Shirakawa, M.; Kawano, S.-i.; Fujita, N.; Sada, K.; Shinkai S. J. Org. Chem.2003, 68,5037-5044.
    (31)(a) Nagarkatti, J. P.; Ashley, K. R. Synthesis.1974,186-187. (b) Treibs, A.; Haberle, Liebigs, N. Ann. Chem.1968,718,183-191. (c) Wallace, D. M.; Leung, S. H.; Senge, M. O.; Smith, K. M. J. Org. Chem.1993,58,7245-7257.
    (32)Laha, J. K.; Dhanalekshmi, S.; Taniguchi, M.; Ambroise, A.; Lindsey, J. S. Org. Process Res. Dev.2003,7,799-812.
    (33)Senge, M.O.; Speck, M.; Wiehe, A.; Dieks, H.; Aguirre, S.; Kurreck, H. Photochem. Photobiol.1999,70,206-216.
    (34)Girolami, G. S.; Milam, S. N.; Suslick, K. S. J. Am. Chem. Soc.1988,110, 2011-2012.
    (35)Ulman, A.; Manassen, J. J. Am. Chem. Soc.1975,97,6540-6544.
    (36)Kasha, M.; Rawls, H. R.; EI-Bayoumi, M. A. Pure Appl. Chem.1965,11,371-392.
    (37)Orita, A.; Fukudome, M.; Ohe, K.; Murai, S. J. Org. Chem.1994,59,477-481.
    (38)Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S. Science 2001,292,79-83.
    (39)(a) Schenning, A. P. H. J.; Benneker, F. B. G.; Geurts, H. P. M.; Liu, X. Y.; Nolte, R. J. M. J. Am. Chem. Soc.1996,118,8549-8552. (b) Beysens, D.; Knobler, C. M. Phys. Rev. Lett.1986,57,1433-1436. (c) Family, F.; Meakin, P. Phys. Rev. Lett.1988,61,428-431. (d) Limaye, A. V.; Narhe, R. D.; Dhote, A. M.; Ogale, S. B. Phys. Rev. Lett.1996,76, 3762-3765.
    (40)Teo, T.-L.; Vetrichelvan, M.; Lai, Y.-H. Org. Lett.2003,5,4207-4210.
    (41)Lee, S. J.; Hupp, J. T.; Nguyen, S. T. J. Am. Chem. Soc.2008,130,9632-9633.
    (42)(a) Hudson, S. D.; Jung, H.-T.; Percec, V.; Cho, W.-D.; Johansson, G.; Ungar, G.; Balagurusamy, V. S. K. Science 1997,278,449-452. (b) Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001,291,1947-1949.
    (43)(a) Medforth, C. J.; Senge, M. O.; Smith, K. M; Sparks, L. D.; Shelnutt, J. A. J. Am. Chem. Soc.1992,114,9859-9869. (b) Moskalev, P. N.; Shapkin, G. N.; Darovskikh, A. N. Zh. Neorg. Khim.1979,24,340-346. (c) Darovskikh, A. N.; Tsishchenko, A. K. Frank-Kamenetskaya,O. V.; Fundamenskii, V. S.; Moskalev, P. N. Kristallografiya 1984, 29,455-461. (d) Mossoyan-Deneux, M.; Pierrot, M.; Sorbier, J.-P.; Fournel, A.; Benlian, D. C. R. Seances Acad. Sci, Ser.2 1986,303,669-672. (e) Darovskikh, A. N.; Frank-Kamenetskaya,O. V.; Fundamenskii, V. S. Kristallografiya 1986,31,901-905. (f) Darovsky, A.; Keserashvili, V.; Harlow, R.; Mutikainen, I. Acta Cryst., Sect. B 1994,50, 582-588.
    (44)SMARTand SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    (45)(a) Kasai, H.; Nalwa, H. S.; Oikawa, H.; Okada, S.; Matsuda, H.; Minami, N.; Kakutal, A.; Ono, K.; Mukoh, A.; Nakanishi, H. Jpn. J. Appl. Phys.1992,31,1132-1134. (b) Bertorelle, F.; Lavabre, D.; Fery-Forgues, S. J. Am. Chem. Soc.2003,125,6244-6253. (c) Fu, H.; Xiao, D.; Yao, J. Yang, G. Angew. Chem,. Int. Ed.2003,42,2883-2886. (d) Lee, S. J.; Jensen, R. A.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. J. Mater. Chem.2008,18,3640-3642. (e) Lee, S. J.; Malliakas, C. D.; Kanatzidis, M. G.; Hupp, J. T.; Nguyen, S. T. Adv. Mater.2008,20,3543-3549.
    (46)Sheldrick, G. M. SADABS, A Software for Empirical Absorption Correction, University of Gottingen, Germany,1997.
    (47)SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison, WI,1997. (1) Koezuka, H.; Tsumura, A.; Ando, T. Synth. Met.1987,18,699-704. (2) Horowitz, G. Adv. Mater.1998,10,365-377. (3) Fichou, D. J. Mater. Chem.2000,10,571-588. (4) Katz, H. E.; Bao, Z. J. Phys. Chem. B 2000,104,671-678. (5) Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res.2001,34,359-369. (6) Wurthner, F. Angew. Chem. Int. Ed.2001,40,1037-1039. (7) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater.2002,14,99-117. (8) Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Chem. Mater.2004,16,4543-4555. (9) Sun, Y.; Liu, Y.; Zhu, D. J. Mater. Chem.2005,15,53-65. (10) Sirringhaus, H. Adv. Mater.2005,17,2411-2425. (11) Bao, Z. Adv. Mater.2000,12,227-230. (12) (a) Lever, A. B. P.; Leznoff, C. C. Phthalocyanine:Properties and Applications; VCH: New York,1989-1996; Vols.1-4. (b) McKeown, N. B. Phthalocyanines Materials: Synthesis, Structure and Function; Cambridge University Press:New York,1998. (c) Kadish, K. M; Smith, K. M.; Guilard, R. The Porphyrin Handbook; Academic Press: San Diego,2000-2003; Vols.1-20.
    (13)(a) Bao, Z.; Lovinger, A. J.; Dodabalapur, A. Appl. Phys. Lett.1996,69,3066-3068. (b) Bao, Z.; Lovinger, A. J.; Brown, J. J. Am. Chem. Soc.1998,120,207-208. (c) Mizuno, E.; Taniguchi, M.; Kawai, T. Appl. Phys. Lett.2005,86,143513-143515. (d) Ofuji, M.; Ishikawa, K.; Takezoe, H. Appl. Phys. Lett.2005,86,062114-062116. (e) Lochlin, J.; Shinbo, K.; Onishi, K.; Kaneko, F.; Bao, Z.; Advincula, R. C. Chem. Mater. 2003,15,1404-1412. (f) Zhang, J.; Wang, J.; Wang, H.; Yan, D. Appl. Phy. Lett.2004, 84,142-144. (g) Xiao, K.; Liu, Y; Huang, X.; Xu, Y.; Yu, G.; Zhu, D. J. Phys. Chem. B 2003,107,9226-9230. (h) Bora, M.; Schut, D.; Baldo, M. A. Anal. Chem.2007,79, 3298-3303. (i) Tang, Q.; Li, H.; Liu, Y.; Hu, W. J. Am. Chem. Soc.2006,128, 14634-14639.
    (14)(a) Simon, J.; Andre, J. Molecular Semiconductors; Springer-Verlag:Berlin,1985. (b) Bouvet, M.; Simon, J. Chem. Phys. Lett.1990,172,299-302.
    (15)(a) Jiang, J.; Ng, D. K. P. Acc. Chem. Res. web released on Sep.4,2008. (b) Su, W.; Jiang, J.; Xiao, K.; Chen, Y.; Zhao, Q.; Yu, G.; Liu, Y. Langmuir 2005,21,6527-6531.
    (16)Chen, Y.; Su, W.; Bai, M.; Jiang, J.; Li, X.; Liu, Y.; Wang, L.; Wang, S. J. Am. Chem. Soc.2005,127,15700-15701.
    (17)Chen, Y.; Li, R.; Wang, R.; Ma, P.; Dong, S.; Gao, Y.; Li, X.; Jiang, J. Langmuir 2007, 23,12549-12554.
    (18)Li, R.; Ma, P.; Dong, S.; Zhang, X.; Chen, Y.; Li, X.; Jiang, J. Inorg. Chem.2007,46, 11397-11404.
    (19)(a) Sheng, N.; Li, R.; Choi, C.-F.; Su, W.; Ng, D. K. P.; Cui, X.; Yoshida, K. Kobayashi, N.; Jiang, J. Inorg. Chem.2006,45,3794-3802. (b) Ishikawa, N.; Kaizu, Y. Chem. Phys. Lett.1993,203,472-476. (c) Ishikawa, N.; Kaizu, Y. Mol. Crsyt. Liq. Cryst.1996,286,263-268. (d) Ishikawa, N.; Kaizu,Y. Chem. Lett.1998,183-184. (e) Ishikawa, N.; Kaizu, Y. J. Phys. Chem. A 2000,104,10009-10016. (f) Ishikawa, N.; Kaizu, Y. Coord. Chem. Rev.2002,226,93-101.
    (20)Sielcken, O. E.; Van Tilborg, M. M.; Roks, M. F. M.; Hendriks, R.; Drenth, W; Nolte, R. J. M. J. Am. Chem. Soc.1987,109,4261-4265.
    (21)Pedersen,C.J.,Am.Chem.Soc.1967,89,7017-7036.
    (22)(a)Bai,M.;Bao,M.;Ma,C.;Arnold,D.P.;Choi,M.T.M.;Ng,D.K.P.;Jiang,J., Mater.Chem.,2003,13,1333-1339.(b)Yoshimoto,S.;Sawaguchi,T.;Su,W.;Jiang,J. ,Mater.Chem.,2003,,3,1333-1339.(c)Zhu,P.;Pan,N.;Li,R.;Dou,J.;Zhang,Y; Cheng,D.Y Y;Wang,D.;Ng,D.K.P.;Jiang,J.Chem.Eur.,2005,11,1425-1432. (d)Takami,T.;Arnold,D.P.;Fuchs,A.V;Will,G D.;Goh,R.;Waclawik,E.R.;Bell, J.M.;Weiss,P.S.;Sugiura,K.-I.;Liu,W.;Jiang,J.,J Phy.Chem.B 2006,110, 1661-1664.(e)Chen,Y; Liu,H.-G;Zhu,P.;Zhang,Y;Wang,X.;Li,X.;Jiang,J. Langmuir 2005,21,11289-11295.(f)Bian,Y;Li,L.;Wang,D.;Choi,C.-F.;Cheng,D. Y Y;Zhu,P.;Li,R.;Dou,J.;Wang,R.;Pan,N.;Ng,D.K.P;Kobayashi,N.;Jiang,J. Eur.J,Inorg.Chem.2005.2612-2618.
    (23)Li,R.;Zhang,X.;Zhu,P.;Li,X.;Ng,D.K.P.;Kobayashi,N.;Jiang,J.Inorg.Chem. 2006,45,2327-2334.
    (24)(a)Liu,W.;Jiang,J.;Arnold,D.P;Pan,N.Inorg.Chim.Acta 2000,310,140-146.(b) Arnold,D.P.;Jiang,J.,Phys.Chem.A 2001,105,7525-7533.(c)Zhu,P.;Pan,N.;Li, R.;Dou,J.;Zhang,Y;Cheng,D.Y Y;Wang,D.;Ng,D.K.P.;Jiang,J.Chem.Eur.J. 2005,11,1425-1432.(d)Bian,Y;Li,L.;Wang,D.;Choi,C.-F.;Cheng,D.Y Y;Zhu, P.;Li,R.;Dou,J.;Wang,R.;Pan,N.;Ma,C.;Ng,D.K.P.;Kobayashi,N.;Jiang,J. Eur.,Inorg Chem.2005.2612-2618.
    (25)(a)Ishikawa,N.;Iino,T.;Kaizu,Y.J.Am.Chem.Soc.2002,124,11440-11447.(b) Ishikawa,N.;Iino,T.;Kaizu,Y.J.Phys.Chem.A 2002,106,9543-9550.(c)Ishikawa, N.;Iino,T.;Kaizu,Y.J.Phys.Chem.A 2003,107,7879-884.(d)Ishikawa,N.;Otsuka, S.;Kaizu,Y.Angew Chem.Int.Ed.2005,44,731-733.
    (26)Jiang,J.;Bao,M.;Rintoul,L.;Arnold,D.P.Coord.Chem.Rev.2006,250,424-448 and references therein.
    (27)PCMODEL for windows Version 6.0,Serena Software.
    (28)(a)Chen,Y;Zhang,Y;Zhu,P.;Fan,Y;Bian,Y;Li,X.;Jiang,J.,Colloid and Interface Sci.2006,303,256-263.(b)Wang,X.;Chen,Y;Liu,H.;Jiang,J.Thin Solid Fikms 2006,496,619-625.(c)Chen,Y;Liu,H.;Zhu,P.;Zhang,Y;Wang,X.;Li,X.; Jiang,J.Langmuir.2005,21,11289-11295.(d)Chan,Y;Liu,H.;Pan,N.;Jiang,J. Thin Solid Films 2004,460,279-285.
    (29)van Nostrum,C.F.;Picken,S.J.;Schouten,A.-J.;Nolte,R.J.M.J.Am.Chem.Soc. 1995,117,9957-9965.
    (30)Smolenyak, P. E.; Osburn, J.; Chen, S.-Y.; Chau, L.-K.; O'Brien, D. F.; Armstrong, N. R. Langmuir 1997,13,6568-6576.
    (31)Cook, M. J.; Chambrier, I. in Porphyrin Handbook Vol 17/Phthalocyanines: Properties and Materials (Eds:K. M. Kadsh, K. M. Smith, R. Guilard), Elsevier Science, USA 2003, pp.37-127.
    (32)(a) Kasha, M. In Spectroscopy of the Excited State (Eds:B. DiBartole), Plenum Press: New York,1976; p 337. (b) Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. Pure Appl.Chem.1965,11,371-392. (c) Hochstrasser, R. M.; Kasha, M. Photochem. Photobiol.1964,3,317-331. (d) Chau, L.-K.; England, C. D.; Chen, S.; Armstrong, N. R. J. Phys. Chem.1993,97,2699-2706.
    (33)(a) Wurthner, F. Chem. Commun.2004,14,1564-1579. (b) Balakrishnan, K.; Datar, A.; Naddo, T.; Huang, J.; Oitker, R.; Yen, M.; Zhao, J.; Zang, L. J. Am. Chem. Soc. 2006,128,7390-7398. (c) Kazmaier, P. M.; Hoffmann, R. J. Am. Chem. Soc.1994,116, 9684-9691. (d) Balakrishnan, K.; Datar, A.; Oitker, R.; Chen, H.; Zuo, J.; Zang, L. J. Am.Chem. Soc.2005,127,10496-10497.
    (34)(a) Yoneyama, M.; Sugi, M.; Saito, M.; Ikegama, K.; Kuroda, S.; Iizima, S. Jpn. J. Appl. Phys.1986,25,961-965. (b) Kobayashi, N.; Lam, H.; Nevin, W. A.; Janda, P.; Leznoff, C. C.; Koyama, T.; Monden, A.; Shiral, H. J. Am. Chem. Soc.1994,116, 879-890.
    (35)Kasha, M.; Rawls, H. R.; El-Bayoumi, M. A. Pure. Appl. Chem.1965,11,371-392
    (36)Xiao, K.; Liu, Y.; Yu, G.; Zhu, D. Appl. Phys. A.2003,77,367-370.
    (37)Di, C.; Yu, G.; Liu, Y.; Xu, X.; Wei, D.; Song, Y.; Sun, Y.; Wang, Y.; Zhu, D.; Liu, J.; Liu, X. J. Am. Chem. Soc.2006,128,16418-16419.
    (38)Sze, S. M. Physics of Semiconductor Devices, John Wiley & Sons, New York 1981.
    (39)Chen, H. Z.; Ling, M. M.; Mo, X.; Shi, M. M.; Wang, M.; Bao, Z. Chem. Mater.2007, 19,816-824.
    (40)Sitites, J. G.; McCarty, C. N.; Quill, L. L. J. Am. Chem. Soc.1948,70,3142-3143.
    (1)M. J. Bierman, Y. K. A. Lau, A. V. Kvit, A. L. Schmitt, S. Jin, Science 2008,320, 1060-1063.
    (2)L. Zang, Y. Che, J. S. Moore, Acc. Chem. Res.2008,41,1596-1608.
    (3)X. Wang, Q. Peng, Y. Li, Acc. Chem. Res.2007,40,635-643.
    (4)T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev.2005,105,1401-1443.
    (5)G.-Y. Liu, S. Xu, Y. Qian,Acc. Chem. Res.2000,33,457-466.
    (6)a) A.M. Shultz, O. K. Farha, J. T. Hupp, S. T. Nguyen, J. Am, Chem. Soc.2009,131, 4204-4205; b) S. J. Lee, S.-H. Cho, K. L. Mulfort, D. M. Tiede, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc.2008,130,16828-16829.
    (7)G. M. Whitesides, M. Boncheva, PNAS 2002,99,4769-4774.
    (8)B. Olenyuk, J. A. Whiteford, A. Fechtenkotter, P. J. Stang, Nature 1999,398, 796-799.
    (9)I. C. Reynhout, J. J. L. M. Cornelissen, R. J. M. Nolte, Acc Chem. Res.2009,42, 681-692.
    (10)a) M. Kimura, Y. Saito, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, J. Am. Chem. Soc.2002,124,5274-5275; b) M. Kimura, K. Wada, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, Macromolecules 2001,34,4706-4711.
    (11)a) M. Kimura, H. Ueki, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, Langmuir 2002,18,7683-7687; b) M. Kimura, W. Kazumi, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, J. Am. Chem. Soc.2001,123,2438-2439; c) M. Kimura, T. Muto, H. Takimoto, W. Kazumi, K. Ohta, K. Hanabusa, H. Shirai, N. Kobayashi, Langmuir 2000,16,2078-2082.
    (12)a) J. D. Hartgerink, E. Beniash, S. I. Stupp, Science 2001,294,1684-1688; b) T. Kitamura, S. Nakaso, N. Mizoshita, Y. Tochigi, T. Shimomura, M. Moriyama, K. Ito, T. Kato, J. Am. Chem. Soc.2005,127,14769-14775.
    (13)A. D. Schwab, D. E. Smith, B. Bond-Watts, D. E. Johnston, J. Hone, A. T. Johnson, J. C. de Paula, W. F. Smith, Nano. Lett.2004,4,1261-1265.
    (14)Z. Wang, Z. Li, C. J. Medforth, J. A. Shelnutt, J. Am. Chem. Soc.2007,129, 2440-2441.
    (15)a) D. Y. Yan, Y. F. Zhou, J. Hou, Science 2004,303,65-67; b) T. Shimizu, M. Masuda, H. Minamikawa, Chem. Rev.2005,105,1401-1444; c) L. Zhi, T. Gorelik, J. Wu, U. Kolb, K. Mullen, J. Am. Chem. Soc.2005,127,12792-12793; d) J.-S. Hu, Y.-G. Guo, H.-P. Liang, L.-J. Wan, L. Jiang, J. Am. Chem. Soc.2005,127,17090-17095.
    (16)P. H. Dinolfo, J. T. Hupp, Chem. Mater.2001,13,3113-3125.
    (17)E. Hao, K. L. Kelly, J. T. Hupp, G. C. Schatz, J. Am. Chem. Soc.2002,124, 15182-15183.
    (18)a) Y. Guo, Q. Tang, H. Liu, Y. Zhang, Y. Li, W. Hu, S. Wang, D. Zhu, J. Am. Chem. Soc.2008,130,9198-9199; b) Y. Guo, Y. Li, J. Xu, X. Liu, J. Xu, J. Lv, C. Huang, M. Zhu, S. Cui, L. Jiang, H. Liu, S. Wang, J. Phys. Chem. C 2008,112,8223-8228.
    (19)a) Y. Zhou, W. Liu, Y. Ma, H. Wang, L. Qi, Y. Cao, J. Wang, J. Pei, J. Am. Chem. Soc.2007,129,12386-12387; b) L. Wang, Y. Zhou, J. Yan, J. Wang, J. Pei, Y. Cao, Langmuir 2009,25,1306-1310.
    (20)T. Kishida, N. Fujita, K. Sada, S. Shinkai, J. Am. Chem. Soc.2005,127,7298-7299.
    (21)a) H. Liu, Y. Li, S. Xiao, H. Gan, T. Jiu, H. Li, L. Jiang, D. Zhu, D. Yu, B. Xiang, Y. Chen, J. Am. Chem. Soc.2003,125,10794-10795; b) M. Enomoto, A. Kishimura, T. Aida, J. Am. Chem. Soc.2001,123,5608-5609; c) H.-B. Chen, Y. Zhou, J. Yin, J. Yan, Y. Ma, L. Wang, Y. Cao, J. Wang, J. Pei, Langmuir 2009,25,5459-5462.
    (22)a) G. Lu, Y. Chen, Y. Zhang, M. Bao, Y. Bian, X. Li, J. Jiang, J. Am. Chem. Soc. 2008,130,11623-11630; b) Y. Gao, X. Zhang, C. Ma, X. Li, J. Jiang, J. Am. Chem. Soc. 2008,130,17044-17052.
    (23)a) M. Shirakawa, N. Fujita, S. Shinkai, J. Am. Chem. Soc.2003,125,9902-9903; b) S. Tanaka, M. Shirakawa, K. Kaneko, M. Takeuchi, S. Shinkai, Langmuir 2005,21, 2163-2172.
    (24)a) M. Shirakawa, N. Fujita, S. Shinkai, J. Am. Chem. Soc.2005,127,4164-4165; b) S. J. Lee, J. T. Hupp, S. T. Nguyen, J. Am. Chem. Soc.2008,130,9632-9633.
    (25)a) K. Balakrishnan, A. Datar, T. Naddo, J. Huang, R. Oitker, M. Yen, J. Zhao, L. Zang, J. Am. Chem. Soc.2006,128,7390-7398; b) Y. Che, A. Datar, K. Balakrishnan, Z. Ling,J. Am. Chem. Soc.2007,129,7234-7235.
    (26)a) J. Luo, T. Lei, L. Wang, Y. Ma, Y. Cao, J. Wang, J. Pei, J. Am. Chem. Soc.2009, 131,2076-2077; b) H. Gan, H. Liu, Y Li, Q. Zhao, Y. Li, S. Wang, T. Jiu, N. Wang, X. He, D. Yu, D. Zhu, J. Am. Chem. Soc.2005,127,12452-12453.
    (27)H. Liu, Q. Zhao, Y Li, Y. Liu, F. Lu, J. Zhuang, S. Wang, L. Jiang, D. Zhu, D. Yu, L. Chi, J. Am. Chem. Soc.2005,127,1120-1121.
    (28)a) T. Yamaguchi, N. Ishii, K. Tashiro, T. Aida, J. Am. Chem. Soc.2003,125, 13934-13935; b) A. Tsuda, S. Sakamoto, K. Yamaguchi, T. Aida, J. Am. Chem. Soc.2003, 125,15722-15723; c) Y. Guo, H. Oike, T. Aida, J. Am. Chem. Soc.2004,126,716-717.
    (29)a) H. Liu, Y. Li, L. Jiang, H. Luo, S. Xiao, H. Fang, H. Li, D. Zhu, D. Yu, J. Xu, B. Xiang, J. Am. Chem. Soc.2002,124,13370-13371; b) W. Lv, X. Zhang, J. Lu, Y Zhang, X. Li, J. Jiang, Eur. J. Inorg. Chem.2008,27,4255-4261.
    (30)a) J. Motoyanagi, T. Fukushima, N. Ishii, T. Aida, J. Am. Chem. Soc.2006,128, 4220-4221; b) W.-S. Li, K. S. Kim, D.-L. Jiang, H. Tanaka, T. Kawai, J. H. Kwon, D. Kim, T. Aida, J. Am. Chem, Soc.2006,128,10527-10532; c) T. Yamamoto, T. Fukushima, Y. Yamamoto, A. Kosaka, W. Jin, N. Ishii, T. Aida, J. Am. Chem. Soc.2006,128,14337-14340; d) Y. Yamamoto, T. Fukushima, A. Saeki, S. Seki, S. Tagawa, N. Ishii, T. Aida, J. Am. Chem. Soc.2007,129,9276-9277; e) J. L. Mynar, T. Yamamoto, A. Kosaka, T. Fukushima, N. Ishii, T. Aida, J. Am. Chem. Soc.2008,130,1530-1531.
    (31)a) A. B. P. Lever, C. C. Leznoff, Phthalocyanine:Properties and Applications; VCH: New York,1989-1996; Vols.1-4; b) N. B. McKeown, Phthalocyanines Materials:Synthesis, Structure and Function; Cambridge University Press:New York,1998; c) K. M. Kadish, K. M. Smith, R. Guilard, The Porphyrin Handbook; Academic Press:San Diego,2000-2003; Vols.1-20.
    (32)a) J. A. de Saja, M. L. Rodriguez-Mendez, Adv. Colloid Interface Sci.2005,116, 1-11; b) V. Parra, M. Bouvet, J. Brunet, M. L. Rodriguez-Mendez, J. A. de Saja, Thin Solid Films 2008,516,9012-9019; c) V. Parra, J. Brunet, A. Pauly, M. Bouvet, Analyst, web released on 2009.
    (33)a) J. Jiang, D. K. P. Ng, Acc. Chem. Res.2009,42,79-88; b) J. Jiang, W. Liu, D. P. Arnold, J. Porphyrins Phthalocyanines 2003,7,459-473; c) J. Jiang, K. Kasuga, D. P. Arnold, in Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa), Academic Press, New York,2001, pp.113-210; d) D. K. P. Ng, J. Jiang, Chem. Soc. Rev. 1997,26,433-442.
    (34)a) J. Simon, J. Andre, Molecular Semiconductors; Springer-Verlag:Berlin,1985; b) M. Bouvet, J. Simon, Chem. Phys. Lett.1990,172,299-302; c) Y. Chen, W. Su, M. Bai, J. Jiang, X. Li, Y. Liu, L. Wang, S. Wang, J. Am. Chem. Soc.2005,127,15700-15701; d) Y. Gao, P. Ma, Y. Chen, Y. Zhang, Y. Bian, X. Li, J. Jiang, C. Ma, Inorg. Chem.2009,48,45-54; e) R. Li, P. Ma, S. Dong, X. Zhang, Y. Chen, X.Li, J. Jiang, Inorg. Chem.2007,46, 11397-11404; f) Y. Chen, R. Li, R. Wang, P. Ma, S. Dong, Y. Gao, X. Li, J. Jiang, Langmuir 2007,23,12549-12554.
    (35)Z. Liu, A. A. Yasseri, J. S. Lindsey, D. F. Bocian, Science 2003,302,1543-1545.
    (36)a) N. Ishikawa, M. Sugita, W. Wernsdorfer, Angew. Chem., Int. Ed.2005,44,2931-2935; b) N. Ishikawa, M. Sugita, W. Wernsdorfer, J. Am. Chem. Soc.2005,127,3650-3651; c) N. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara, Y. Kaizu, J. Am. Chem. Soc.2003, 125,8694-8695.
    (37)D. J. Hill, M. J. Mio, R. B. Prince, T. S. Hughes, J. S. Moore, Chem. Rev.2001,101, 3893-4012.
    (38)J.-M. Lehn, Supramolecular Chemistry (Verlag Chimie, Weinheim, Germany, 1995).
    (39)J. A. A. W. Elemans, R. van Hameren, R.J. M. Nolte, A. E. Rowan, Adv. Mater. 2006,18,1251-1226.
    (40)a) Z. Shi, Y. Li, H. Gong, M. Liu, S. Xiao, H. Liu, H. Li, S. Xiao, D. Zhu, Org. Lett. 2002,4,1179-1182; b) Y. Li, N. Wang, H. Gan, H. Liu, H. Li, Y. Li, X. He, C. Huang, S. Cui, S. Wang, D. Zhu, J. Org. Chem.2005,70,9686-9692; c) H. Gan, Y. Li, H. Liu, S. Wang, C. Li, M. Yuan, X. Liu, C. Wang, L. Jiang, D. Zhu, Biomacromolecules 2007,8, 1723-1729.
    (41)W. Y. Tong, A. B. Djurii, M. H. Xie, A. C. M. Ng, K. Y. Cheung, W. K. Chan, Y. H. Leung, H. W. Lin, S. Gwo, J. Phys. Chem. B.2006,110,17406-17413.
    (42)V. Duzhko, K. D. Singer, J. Phys. Chem. C.2007,111,27-31.
    (43)C. F. van Nostrum, S. J. Picken, A.-J. Schouten, R. J. M. Nolte, J. Am. Chem. Soc. 1995,117,9957-9965.
    (44)a) M. J. Cook, J. McMurdo, D. A. Miles, R. H. Poynter, J. M. Simmons, S. D. Haslam, R. M. Richardson, K. Welford, J. Mater. Chem.1994,8,1205-1213; b) M. J. Cook, J. Mater. Sei.:Mater. Elec.,1994,5,117-128.
    (45)Y. Zhang, Z. Zhang, Y. Zhao, Y. Fan, T. Tong, H. Zhang, Y. Wang, Langmuir 2009,25,6045-6048.
    (46)a) M. J. Cook, J. McMurdo, A. K. Powell, Chem. Commun.1993,903-904; b) M. P. Donzello, C. Ercolani, A. A. Gaberkorn, E. V. Kudrik, M. Meneghetti, G. Marcolongo, C. Rizzoli, P. A. Stuzhin, Chem. Eur. J.2003,9,4009-4024; c) N. B. McKeown, H. Li, M. Heliwell, J. Porphyrins Phthalocyanines 2005,9,841-845.
    (47)H. Zhang, R. Wang, P. Zhu, Z. Lai, J. Han, C.-F. Choi, D. K. P. Ng, X. Cui, C. Ma, J. Jiang, Inorg. Chem.2004,43,4740-4742.
    (48)Y. Gao, R. Li, S. Dong, Y. Bian, J. Jiang, manuscript submitted.
    (49)M. J. Cook, A. J. Dunn, S. D. Howe, A. J. Thomson, K. J. Harrison, J. Chem. Soc, Perkin Trans.11988,8,2453-2458.
    (50)R. Li, X. Zhang, P. Zhu, D. K. P. Ng, N. Kobayashi, J. Jiang, Inorg. Chem.2006,45, 2327-2334.
    (51)P. M. Burnham, M. J. Cook, L. A. Gerrard, M. J. Heeney, D. L. Hughes, Chem. Commun.2003,2064-2065.
    (52)Y. Bian, L. Li, J. Dou, D. Y. Y. Cheng, R. Li, C. Ma, D. K. P. Ng, N. Kobayashi, J. Jiang, Inorg. Chem.2004,43,7539-7544.
    (53)a) M. Bouvet, E. Silinsh, J. Simon, Mol. Cryst. Liq. Cryst.1995,5,255-277; b) M. Bouvet in The Porphyrin Handbook, K. Kadish, K. M. Smith, R. Guilard, Eds.; Academic Press:San Diego,2003, Vol.19,37-104.
    (54)a) K. Ukei, Acta Cryst. B 1973,29,2290-2292; b) F. Przyborowski, C. Hamann, Cryst. Res. Technol.1982,17,1041-1045; c) Y. Iyechika, K. Yakushi, I. Ikemoto, H. Kuroda, Acta Cryst. B 1982,38,766-770.
    (55)a) Y. Zhang, X. Zhang, Z. Liu, Y. Bian, J. Jiang, J. Phys. Chem. A 2005,109, 6363-6370; b) N. Sheng, R. Li, C.-F. Choi, W. Su, D.K. P. Ng, X. Cui, K. Yoshida, N. Kobayashi, J. Jiang,Inorg. Chem.2006,45,3794-3802.
    (56)M. Kasha, H. R. Rawls, M. A. EL-Bayoumi, Pure Appl. Chem.1965,11,371-392.
    (57)J. Jiang, M. Bao, L. Rintoul, D. P. Arnold, Coord. Chem. Rev.2006,250,424-448.
    (58)B. A. Minch, W.Xia, C. L. Donley, R. M. Hernandez, C. Carter, M. D. Carducci, A. Dawson, D. F. O'Brien, N. R.Armstrong, Chem. Mater.2005,17,1618-1627.
    (59)a) I. Hamza, ACS Chem. Biol.2006,1,627-629; b) P.-C. Lo, C. M. H. Chan, J.-Y. Liu, W.-P. Fong, D. K. P. Ng, J. Med. Chem.2007,50,2100-2107; c) R. Vanyur, K. He berger, J. Jakus, J. Chem. Inf. Comput. Sci.2003,43,1829-1836.
    (60)a) H. Kasai, H. S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, H. Nakanishi, Jpn. J. Appl. Phys.1992,31,1132-1134; b) F. Bertorelle, D. Lavabre, S. Fery-Forgues, J. Am, Chem. Soc.2003,125,6244-6253; c) H. Fu, D. Xiao, J. Yao, G. Yang, Angew. Chem,. Int. Ed.2003,42,2883-2886; d) S. J. Lee, R. A. Jensen, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T. Nguyen, J. Mater. Chem.2008,18, 3640-3642; e) S. J. Lee, C. D. Malliakas, M. G. Kanatzidis, J. T. Hupp, S. T. Nguyen, Adv. Mater.2008,20,3543-3549; f) G Lu, X. Zhang, X. Cai, J. Jiang, J. Mater. Chem.2009,19, 2417-2424.
    (61)SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    (62)G M. Sheldrick, SADABS, A Software for Empirical Absorption Correction, University of Gottingen, Germany,1997.
    (63)SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    1. A. B. P. Lever and C. C. Leznoff, Phthalocyanine:Properties and Applications; VCH: New York,1989-1996; Vols.1-4.
    2. N. B. McKeown, Phthalocyanines Materials:Synthesis, Structure and Function; Cambridge University Press:New York,1998.
    3. K. M. Kadish, K. M. Smith, and R.Guilard, The Porphyrin Handbook; Academic Press:San Diego,2000-2003; Vols.1-20.
    4. M. Hanack, H. Heckmann, and R. Polley, Houben-weyl:Phthalocyanines and Related Compounds, Vol. E 9d, Thieme Stuttgart,1997, pp.717-842.
    5. R. J. Mortimer, Electochim. Acta.1999,44,2971-2981.
    6. J. D. Wright, Prog. Surf. Sci.1989,31,1-60.
    7. J. Jiang, and D. K. P. Ng, Acc. Chem. Res.2009,42,79-88.
    8. J. Jiang, K. Kasuga, and D. P. Arnold, in Supramolecular Photo-sensitive and Electro-active Materials (Ed.:H. S. Nalwa), Academic Press, New York,2001, pp. 113-210.
    9. J. Jiang, W. Liu, and D. P. Arnold, J. Porphyrins Phthalocyanines 2003,7,459-473.
    10. J. W. Buchler, and D. K. P. Ng, in The Porphyrin Handbook, Vol.3 (Eds.:K. M. Kadish, K. M. Smith, R. Guilard), Academic Press, San Diego,2000, pp.245-294.
    11. Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl. Phys. Lett.1996,69,3066-3068.
    12. Z. Bao, A. J. Lovinger, and J. Brown, J. Am. Chem. Soc.1998,120,207-208.
    13. E. Mizuno, M. Taniguchi, and T. Kawai, Appl. Phys. Lett.2005,86,143513-143515.
    14. M. Ofuji, K. Ishikawa, and H. Takezoe, Appl. Phys. Lett.2005,86,062114-062116.
    15. J. Lochlin, K. Shinbo, K. Onishi, F. Kaneko, Z. Bao, and R. C. Advincula, Chem. Mater.2003,15,1404-1412.
    16. J. Zhang, J. Wang, H. Wang, and D. Yan, Appl. Phy. Lett.2004,84,142-144.
    17. K. Xiao, Y. Liu, X. Huang, Y. Xu, G. Yu, and D. Zhu, J. Phys. Chem. B 2003,107, 9226-9230.
    18. M. Bora, D. Schut, and M. Baldo, A. Anal. Chem.2007,79,3298-3303. Q. Tang, H. Li, Y. Liu, and W. Hu, J. Am. Chem. Soc.2006,128,14634-14639.
    19. J. Simon, and J. Andre, Molecular Semiconductors; Springer-Verlag:Berlin,1985.
    20. M. Bouvet, and J. Simon, Chem. Phys. Lett.1990,172,299-302.
    21. Y, Chen, W. Su, M. Bai, J. Jiang, X. Li, Y. Liu, L. Wang, and S. Wang, J. Am. Chem. Soc.2005,127,15700-15701.
    22. Y. Gao, P. Ma, Y. Chen, Y. Zhang, Y. Bian, X. Li, J. Jiang, and C. Ma, Inorg. Chem. 2009,48,45-54.
    23. R. Li, P. Ma, S. Dong, X. Zhang, Y. Chen, X. Li, and J. Jiang, Inorg. Chem.2007, 46,11397-11404.
    24. Y. Chen, R. Li, R. Wang, P. Ma, S. Dong, Y. Gao, X. Li, and J. Jiang, Langmuir 2007,23,12549-12554.
    25. Z. Liu, A. A. Yasseri, J. S. Lindsey, and D. F. Bocian, Science 2003,302, 1543-1545.
    26. N. Ishikawa, M. Sugita, and W. Wernsdorfer, Angew. Chem., Int. Ed.2005,44, 2931-2935.
    27. N. Ishikawa, M. Sugita, and W. Wernsdorfer, J. Am. Chem. Soc.2005,127, 3650-3651.
    28. N. Ishikawa, M. Sugita, T. Ishikawa, S.-y. Koshihara, and Y. Kaizu, J. Am. Chem. Soc.2003,125,8694-8695.
    29. I. S. Kirin, P. N. Moskalev, and Y. A. Makashev, Russ. J. Inorg. Chem.1965,10, 1065-1066.
    30. L. G. Tomilova, E. V. Chernykh, N. T. Loffe, and E. A. Luk'yanets, zh. obshch. Khim.1983,53,2594-2601.
    31. A. Pondaven, Y. Cozien, and M. L'Her, New. J. Chem.1991,15,515-516.
    32. J. Jiang, W.Liu, W.-F. Law, J. Lin, and D. K. P. Ng, Inorg. Chim. Acta.1998,268, 141-144.
    33. R. Wang, R. Li, Y. Bian, C.-F. Choi, D. K. P. Ng, J. Dou, P. Zhu, C. Ma, R. D. Hartnell, D. P. Arnold, and J. Jiang, Chem. Eur. J.2005,11,7351-7357.
    34. Y. Bian, R. Wang, J. Jiang, C.-H. Lee, J. Wang, and D. K. P. Ng, Chem. Commun. 2003,10,1194-1195.
    35. H. Zhang, R. Wang, P. Zhu, Z. Lai, J. Han, C.-F. Choi, D. K. P. Ng, X. Cui, C. Ma, and J. Jiang, Inorg. Chem.2004,43,4740-4742.
    36. W. Herr, Angew. Chem.1953,65,303-304.
    37. M. L'Her, Y. Cozien, and J. Courtot-Coupez, J. Electroanal. Chem.1983,157, 183-187.
    38. M. M. Khusniyarov, Metal Complexes with Non-innocent N-donor Ligands: Molecular and Electronic Structures, Reactivity, and Application, Fach bereich Chemie, Philipps-Universitat Marburg,2006.
    39 H. Tomoda, S. Saito, S. Ogawa, and S. Shiraishi, Chem. Lett.1980,1277-1280.
    40. The electronic spectrum of [Eu(Pc)2]'was recorded by adding hydrazine hydrate into the solution of Eu(Pc)2 in CHC13:333,631, and 684 nm.
    41. W. Liu, J.Jiang, D. Du, and D.P.Arnold, Aust.J. Chem.2000,53,131-135.
    42. M. Kasha, H. R. Rawls, M. A. EL-Bayoumi, Pure Appl. Chem.1965,11,371-392.
    43. Y. Zhang, X. Cai, Y. Zhou, X. Zhang, H. Xu, Z. Liu, X. Li, and J. Jiang, J. Phys. Chem. A 2007,111,392-400.
    44. F. D' Souza, and O. Ito, Coord. Chem. Rev.2005,249,1410-1422.
    45. K. Takahashi, Y. Tomita, Y. Hada, K. Tsubata, M. Handa, K. Kasuga, K. Sogabe, and T. Tokii, Chem. Lett.1992,5,759-762.
    46. D. Markovitsi, T.-H. Tran-Thi, R. Even, and J. Simon, Chem. Phys. Lett.1987,137, 107-112.
    47. H. Zhang, Z. Lai, X. Cui, J. Jiang, and K.-I. Machida, J. Alloys Compd.2006, 408-412,1041-1045.
    48. J. Jiang, M. Bao, L. Rintoul, and D. P. Arnold, Coord. Rev.2006,250,428-448.
    49. N. Sheng, R. Li, C.-F. Choi, W. Su, D. K. P. Ng, X. Cui, K. Yoshida, N. Kobayashi, and J. Jiang, Inorg. Chem.2006,45,3794-3802.
    50. J. G. Sitites, C. N. McCarty, and L. L. Quill, J. Am. Chem. Soc.1948,70, 3142-3143.
    51. R. Li, X. Zhang, P. Zhu, D. K. P. Ng, N. Kobayashi, and J. Jiang, Inorg. Chem.2006, 45,2327-2334.
    52. C. Perdersen, J. J. Am. Chem. Soc.1967,89,7017-7036.
    53. C. Perdersen, J. J. Am. Chem. Soc.1970,92,386-391.
    54. SMART and SAINT for Windows NT Software Reference Manuals, Version 5.0, Bruker Analytical X-Ray Systems, Madison, WI,1997.
    55. Shelerick, G. M. SADABS-A Software for Empirical Absorption Correction, University of Gottingen, Germany,1997.
    56. SHELXL Reference Manual, Version 5.1, Bruker Analytical X-Ray Systems, Madison, WI,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700