多光谱、超光谱成像探测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多光谱、超光谱成像探测技术是新一代光电探测技术,该技术利用具有一定光谱分辨率的多光谱、超光谱图像进行目标探测,在目标材质识别、异常目标检测、伪装目标辨识、复杂背景抑制等目标探测技术领域都有着极为重要的应用。
     小型化、实用化的成像光谱仪的研制和相关探测性能、探测方法的研究是成像光谱技术研究领域的一个主要趋势。本文正是以此为核心,深入进行了如下方面内容的研究:
     1.综合考虑目标红外辐射特性、大气传输透过率、色散式光谱仪辐射传递特性、选用红外探测器参数、数据链传输等环节,研究了成像光谱探测系统的辐射能量传递模型。研究了成像光谱探测器光谱分辨率和作用距离的表达公式。选用多种典型地物红外发射率数据,非制冷微测辐射热计红外焦平面阵列参数,利用大气辐射传输计算软件生成大气红外透过率曲线,根据所建立模型,计算了以非制冷微测辐射热计阵列为探测器的色散式分光的成像光谱仪的光谱分辨率参数。
     2.研究了一种基于可见光/近红外波段多光谱、超光谱图像数据的地面场景建模方法,探讨了无监督分类方法和有监督分类方法相结合的像元地物分类、匹配、标记的策略,可以高效地解决像元地物自动匹配标记的问题。利用RGB彩色图像验证了这一方法,在将图像分割后为每类像元赋予相应的红外发射率数值,生成了四个红外波段的多光谱仿真图像,验证了该方法的可行性,探讨了多光谱、超光谱图像数据在仿真应用中的各自特点。在仿真结果中,观察到了不同波段图像中目标和背景之间呈现不同特征,利用SCR指标对目标探测性能进行了评估,结果表明在窄带特征波段可以有效提升探测性能。
     3.基于共像面分割的光学原理,利用光学仿真技术设计构建了一种基于楔形转像棱镜实现共像面分割的小型化四波段光谱成像实验光路装置。利用构建的四波段光谱成像光路装置进行了颜色相近目标的辨识实验研究,试验中通过窄带滤光片在不同光谱波段成像,利用聚类技术对目标的多光谱图像数据进行了分析,结果表明采用目标的多光谱图像数据可以可靠地区分颜色相近的不同目标,在真伪目标识别应用中具有一定意义。
Multispectral/hyperspectral imaging detection technology is one of the new generation of photoelectric detection technologies which can use multispectral/hyperspectral image data with different levels of spectral resolution to discriminate targets. It has significant applications in many fields of detection technologies such as material identification, anormaly detection, false-target discrimination, backgrounds suppression.
     Development of small size, practical imaging spectrometers and research of their detection abilities and relevant detection methods are the leading trends in the future. These mentioned technologies are the key research contents in this paper, which are:
     1. A integrated radiative transfer model is researched considering characteristic of target infrared radiation, the effect of atmospheric transmission, characteristic of energy transmission of dispersive spectrometer, performance parameters of the infrared detector array, as well as data communication. The parameters of spectral resolution and detection range of the imaging spectrometer are analyzed according to the radiative transfer model. Selecting infrared emissivity data of several typical ground objects, the performance parameters of the state-of-the art uncooled microbolometer FPA, utilizing LOWTRAN code to generate the atmospheric transmittance, the value of spectral resolution of a LWIR dispersive imaging spectrometer is calculated based on an uncooled microbolometer FPA.
     2. A ground scene modeling method is researched based on multispectral or hyperspectral image data in VIS/NIR band. A combined strategy of unsupervised and supervised is put forward to efficiently solve the auto-matching and marking of pixels. The method is verified by RGB images. Simulation images in four LWIR bands are generated after pixels segmentation and infrared emissivity assignment. The respective characteristis of multispectral and hyperspectral image data in pixel classification and matching are pointed out. In simulation results, the difference between targets and backgrounds are observed. Using the index of SCR to evaluate the detection performance, it is shown that the detection performance can be effectively improved in certain narrow spectral band.
     3. A small size, four bands multispectral imaging experimental optical facility is constructed based on the optical technique of imaging surface division, taking advantage of the tools of optical simulation. Using the designed multispectral imaging experimental optical facility, the research experiments of discrimination of targets with similar colors are carried out. Using the clustering technology to analyze multispectral image data, the result shows that color similar targets can be reliably discriminated by multispectral data.
引文
[1]许洪,王向军,多光谱、超光谱成像技术在军事上的应用,红外与激光工程,2007,36(1):13-17
    [2]Bubner T.P., Kempinger S.G., Shettigara V.K. An investigation of target detection ability using spectral signatures at hyperspectral resolution, Technical Report #DSTO-TR-0807, Australia, Surveillance Systems Division(SSD), 2001-02.
    [3]Rouse D.M., Trussell H.J. A set theoretic approach to target detection using spectral signature statistics, In: 2004 International Conference on Image Processing (ICIP), Piscataway, NJ, USA: IEEE, 2004, 2439-42.
    [4]Hoff, L.E., Evans, J.R., Bunney, L.E. Detection of targets in terrain clutter by using multispectral infrared image processing, In: Proceedings of Signal and Data Processing of Small Targets 1991, Orlando, FL, USA: SPIE, 1991, vol.1481, 98-109.
    [5]黄士科,张天序,李丽娟等,空空导弹多光谱红外成像制导技术研究,红外与激光工程,2006,35(1):16-20
    [6]Gat N., Subramanian S., Barhen J., et al. Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS), In: Proceedings of Electro-Optical Technology for Remote Chemical Detection and Identification II, Orlando, FL, USA: SPIE, 1997, vol.3082, 156-64.
    [7]http://www.opticsreport.com/content/printable.php?id=1009&command=article
    [8]Manolakis D., Shaw G. Detection algorithms for hyperspectral imaging applications, IEEE Signal Processing Magazine, 2002, 19(1): 29-43.
    [9]李智勇,高光谱图像异常检测方法研究:[博士学位论文],湖南;国防科技大学,2004
    [10]Moya M.M., Taylor J.G., Stallard B.R., et al. Anomaly detection using simulated MTI data cubes derived form HYDICE data, In: Proceedings of Imaging Spectrometry IV, San Diego, CA, USA: SPIE, 1998, vol.3438, 355-66.
    [11]Mayer R.R., Schaum A.P. Target detection enhancement using temporal signature propagation, In: Proceedings of Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI, Orlando, FL, USA: SPIE, 2000, vol.4049, 64-74.
    [12]Wehn Hans, Goldstein Norman, Burke Ian, et al. Hyperspectral mosaicking, coregistration and change detection, In: Proceedings of the 1998 IEEE Aerospace Conference. Part 2 (of 5), Snowmass at Aspen, CO, USA: IEEE, 1998, vol.2, 13-20.
    [13]Johnson Alfred J., Windesheim Eric, Brockhaus John. Hyperspectral imagery for trafficability analysis, In: Proceedings of the 1998 IEEE Aerospace Conference. Part 2 (of 5), Snowmass at Aspen, CO, USA: IEEE, 1998, vol.2, 21-35.
    [14]Alan D.Stocker, William A.Shaffer, Michael T.Eismann, et al. Analysis of infrared hyperspectral measurements by the Joint Multispectral Program, In: Proceedings of Targets and Backgrounds: Characterization and Representation, Orlando, FL, USA: SPIE, 1995, vol.2469, 587-602.
    [15]Michael T.Eismann, John N.Cederquist, Craig R.Schwartz. Infrared multispectral target/background field measurements, In: Proceedings of Signal and Data Processing of Small Targets 1994, Orlando, FL, USA: SPIE, 1994, vol.2235, 130-147.
    [16]Craig R.Schwartz, Michael T.Eismann, John N. Cederquist, et al. Thermal multispectral detection of military vehicles in vegetated and desert backgrounds, In: Proceedings of Targets and Backgrounds: Characterization and Representation II, Orlando, FL, USA: SPIE, 1996, vol.2742, 286-297.
    [17]Michael T.Eismann. Thermal spectral imaging for air-to-ground target detection, In: 15th Annual AESS/IEEE Dayton Section Symposium. Sensing the World: Analog Sensors and Systems Across the Spectrum, New York, NY, USA: IEEE, 1998, 79-96.
    [18] Paul F.McManamon. Suggestions for low cost multifunction sensing, In: 1998 IEEE Aerospace Conference. Snowmass at Aspen, CO, USA: IEEE, vol.1, 283-307.
    [19]http://www.techexpo.com/WWW/opto-knowledge/hyperspectrum/hypersp4.html
    [20]John Nella, Playa del Rey, Joseph W. Austin, et al. Hyperspectral air-to-air missile seeker, United States Patent, Patent Number: 6079665, 2000-07-27.
    [21]Filip Neele. Two-colour infrared missile warning sensors, In: Proceedings of Airborne Intelligence, Surveillance, Reconnaissance (ISR) Systems and Applications II, Orlando, FL, United States: SPIE, 2005, vol.5787, 134-145.
    [22]A. M. Smith, R. Horvath, L. S. Nooden, et al. Mine Spectral Signature Collections and Data Archive, Technical Report #10012200-15-T, ERIM International Inc., Ann Arbor, Mich., 1999-03.
    [23]Haskett Hanna T., Reago Donald A., Rupp Ronald R. Detectability of Buried Mines in 3–4μm and 8–12μm Regions for Various Soils Using Hyperspectral Signatures, In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets VI, Orlando, FL, USA: SPIE, 2001, vol.4394, 296–309.
    [24]McFee John E., Ripley Herb T. Detection of Buried Land Mines Using a CASI Hyperspectral Imager, In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets II, Orlando, FL, USA: SPIE, 1997, vol.3079, 738–749.
    [25]Stetson S.P., Witherspoon N.H., Holloway J.H., et al. COBRA ATD Minefield Detection Results for the Joint Countermine ACTD Demonstrations, In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets V, Orlando, FL, USA: SPIE, 2000, vol.4038, 1268–1279.
    [26]Gunapala S.D. 640×512 pixel narrow-band, four-band, and broad-band quantum well infrared photodetector focal plane arrays, Infrared Physics and Technology, 2003, 44:411-425.
    [27]http:// www.jpl.nasa.gov
    [28]Goldberg A. Dual-band infrared imagery of an Atlas 5 launch vehicle in flight, AIAA Journal, 2005, 43: 174-183.
    [29]王丽霞,王慧,高军,星载超光谱成像技术应用及现状分析,航天返回与遥感,2000,21(1):40-47
    [30]王向军,文鹏程,张召才等,像面分割多光学通道共像面成像技术,中国专利,200810052148.4,2008
    [31]童庆禧,张兵,郑兰芬,高光谱遥感-原理、技术与应用,北京:高等教育出版社,2006,19-28
    [32]浦瑞良,宫鹏,高光谱遥感及其应用,北京:高等教育出版社,2000,48-52
    [33]张宗贵,王润生,基于谱学的成像光谱遥感技术发展与应用,国土资源遥感,2000,3:17-24
    [34]许绍祖,大气物理学基础,北京:气象出版社,1993,212-278
    [35]韩心志,航天多光谱遥感,北京:宇航出版社,1989,40-44
    [36]Pieter A. Jacobs,地面目标和背景的热红外特性(吴文建),北京:国防工业出版社,2004,5-7
    [37]Ben-David A., Embury J.F., Davidson C.E. Radiative transfer model for aerosols in infrared wavelengths for passive remote sensing applications, Applied Optics, 2006, 45(26): 6860-75.
    [38]Duan M., Min Q., Li J. A fast radiative transfer model for simulating high-resolution absorption bands, Journal of Geophysical Research-Part D-Atmospheres, 2005, 110(D15): 5679-5691.
    [39]Zdunkowski W.G., Crandall W.K. Radiative transfer of infrared radiation in model clouds, Tellus, 1971, 23(6): 517-27.
    [40]田国良,热红外遥感,北京:电子工业出版社,2006,6-7
    [41]Xu Liu, Smith W.L., Zhou D.K., et al. Principal component-based radiative transfer model for hyperspectral sensors: theoretical concept, Applied Optics, 2006, 45(1): 201-9.
    [42]Fanning J., Halford C., Jacobs E. Multispectral imager modeling, In: Proceedings of Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XVI, Orlando, FL, USA: SPIE, 2005, vol.5784, 136-45.
    [43]Bijl P., Hogervorst M.A. Test method for multiband imaging sensors, In: Proceedings of Infrared Imaging Systems: Design, Analysis, Modeling, and Testing XIV, Orlando, FL, USA: SPIE, 2003, vol.5076, 208-19.
    [44]A.B.巴甫洛夫,光电装置(理论与计算基础)(赖叔昌译),北京:国防工业出版社,1981,351-370
    [45]郑玉权,禹秉熙,成像光谱仪分光技术概览,遥感学报,2002,6(1):75-80
    [46]王丽霞,王慧,高军,星载超光谱成像技术应用及现状分析,航天返回与遥感,2000,21(1):40-47
    [47]Bernd P. Kunkel, Winfried Posselt, Elke Schmidt. Hyperspectral imager survey and developments for scientific and operational land processes monitoring applications, In: Proceedings of Remote Sensing of Vegetation and Water, and Standardization of Remote Sensing Methods, Munich, Germany: SPIE, 1997, vol.3107, 2-14.
    [48]Peter A. Jones. Imaging spectrometry using a grating in divergent light, In: Proceedings of Imaging Spectrometry of the Terrestrial Environment, Orlando, FL, USA: SPIE, 1993, vol.1937, 234-243.
    [49]Schaepman M.E., Itten K.I., Schlapfer D., et al. APEX: current status of the Airborne Dispersive Pushbroom Imaging spectrometer, In: Proceedings of Sensors, Systems, and Next-Generation Satellites VII, Barcelona, Spain: SPIE, 2004, vol.5234, 202-10.
    [50]Cain S.C. High-throughput dispersive imaging spectrometer for astronomy at visible wavelengths, In: Proceedings of Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, Orlando, FL, USA: SPIE, 2001, vol.4381, 527-538.
    [51]Simeoni Denis. New concept for a highly compact imaging Fourier transform spectrometer, In: Proceedings of Surveillance Technologies, Orlando, FL, USA: SPIE, 1991, vol.1479, 127-138.
    [52]Michael R Carter, Charles L Bennett, David J Fields, et al. Livemore imaging Fourier transform infrared spectrometer(LIFTIRS), In: Proceedings of Imaging Spectrometry, USA: SPIE, 1995, vol.2480, 380-386.
    [53]Leonard John Otten III, Eugene W. Butler, Bruce Rafert, et al. Design of an airborne Fourier transform visible hyperspectral imaging system for light aircraft environmental remote sensing, In: Proceedings of Imaging Spectrometry, USA: SPIE, 1995, vol.2480, 418-423.
    [54]宗德蓉,罗斌,黎俊杰,声光可调滤光片及其在光谱分析方面的应用,光电工程,1998,25(6):102-105
    [55]Greg A. Kopp, Michael J. Derks, Alan Graham. Liquid crystal tunable birefringent filters, In: Proceedings of Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, Denver, CO, USA: SPIE, 1996, vol.2830, 345-350.
    [56]Thomas G. Chrien, Christopher Chovit, Peter J. Miller. Imaging spectrometer using a liquid crystal tunable filter, In: Proceedings of Imaging Spectrometry of the Terrestrial Environment, Orlando, FL, USA: SPIE, 1993, vol.1937, 256-261.
    [57]Mika Aram M. Linear-wedge spectrometer, In: proceedings of Imaging Spectroscopy of the Terrestrial Environment, Orlando, FL, USA: SPIE, 1990, vol.1298, 127-131.
    [58]Bernard D. Seery, D. Bryant Cramer, Christopher M. Stevens, et al. EO-1: NASA's first new millennium earth orbiting mission, In: Proceedings of Space Sciencecraft Control and Tracking in the New Millennium, USA: SPIE, 1996, vol.2810, 4-10.
    [59]Betremieux Y., Cook T.A., Cotton D.M., et al. SPINR: two-dimensional spectral imaging through tomographic reconstruction, Optical Engineering, 1993, 32(12): 3133-8.
    [60]Bulygin F.V., Vishnyakov G.N., Levin G.G., et al. Spectrotomography-a new method of obtaining spectrograms of 2-D objects, Optics and Spectroscopy, 1991, 71(6): 561-563.
    [61]Descour M.R., Volin C.E., Dereniak E.L., et al. Demonstration of a computed-tomography imaging spectrometer using a computer-generated hologram disperser, Applied Optics, 1997, 36(16): 3694-8.
    [62]Denise M. Lyons. Image spectrometry with a diffractive optic, In: Proceedings of Imaging Spectrometry, USA: SPIE, 1995, vol.2480, 123-131.
    [63]Michele Hinnrichs, Mark A. Massie. New approach to imaging spectroscopy using diffractive optics, In: Proceedings of Imaging Spectrometry III, USA: SPIE, 1997, vol.3118, 194-205.
    [64]Krabbe Alfred, Weitzel L., Kroker H., 3D: a new generation imaging spectrometer, In: Proceedings of Infrared Detectors and Instrumentation for Astronomy, Orlando, FL, USA: SPIE, 1995, vol.2475, 172-183.
    [65]Demirci S., Yazgan B., Ersoy O. Multispectral target detection by statistical methods, In: Proceedings of 2nd International Conference on Recent Advances in Space Technologies, Piscataway, NJ, USA: IEEE, 2005, 653-9.
    [66]Ohel E., Rotman S.R., Blumberg D.G. Multipixel anomaly detection in noisy multispectral images, In: Proceedings of Imaging Spectrometry X, Denver, CO, USA: SPIE, 2004, vol.5546, 390-9.
    [67]Buganim S., Rotman S.R. Matched filters for multispectral point target detection, In: Proceedings of Imaging Spectrometry XI, San Diego, CA, USA: SPIE, 2006, vol.6302, 63020Z-1-8.
    [68]Clark G.A., Sengupta S.K., Aimonetti W.D., et al. Multispectral image feature selection for land mine detection, IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(1): 304-11.
    [69]Wei Wang, Huijie Zhao, Chao Dong. Anomalies detection approach using projection pursuit in hyperspectral image based on parallel genetic algorithm, In: Proceedings of Seventh International Symposium on Instrumentation and Control Technology, Beijing, China: SPIE, 2008, vol.7129, 71290L (7 pp.).
    [70]Lo E. Target detection algorithm in hyperspectral imaging using parametric model, In: Proceedings of Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI, Orlando, FL, USA: SPIE, 2005, vol.5806, 519-30.
    [71]Alam M.S., Elbakary M.I., Aslan M.S. Object detection in hyperspectral imagery by using K-means clustering algorithm with pre-processing, In: Proceedings of Optical Pattern Recognition XVIII, USA: SPIE, 2007, vol.6574, 65740M-1-9.
    [72]Ensafi Eskandar, Stocker Alan D. An adaptive CFAR algorithm for real-time hyperspectral target detection, In: Proceedings of Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV, Orlando, FL, United States: SPIE, 2008, vol.6966, p 696605.
    [73]Heesung Kwon, Nasrabadi N.M. Hyperspectral anomaly detection using kernel RX-algorithm, In: 2004 International Conference on Image Processing (ICIP), Piscataway, NJ, USA: IEEE, vol.5, 3331-4.
    [74]Cathcart J.M., Remesch B., Leon A. Characterization of terrain background in LWIR hyperspectral data to aid landmine detection, In: 2007 IEEE Antennas and Propagation Society International Symposium, Piscataway, NJ, USA: IEEE, 2008, 4953-6.
    [75]Manolakis D., Jairam L.G., Zhang, D. Statistical models for LWIR hyperspectral backgrounds and their applications in chemical agent detection, In: Proceedings of Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIII, USA: SPIE, 2007, vol.6565, 656525-1-12.
    [76]Kerekes J.P., Griffin M.K., Baum J.E. Modeling of LWIR hyperspectral system performance for surface object and effluent detection applications, In: Proceedings of Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VII, USA: SPIE, 2001, vol.4381, 348-59.
    [77]Love Rafael, Cathcart J. Michael. Statistical analysis of spectral data for vegetation detection, In: Proceedings of Detection and Remediation Technologies for Mines and Minelike Targets XI, USA: SPIE, 2006, vol.6217 II, p 62171R
    [78]Charles L. Bennett, Michael R. Carter, David J. Fields, et al. Imaging Fourier transform spectrometer, In: Proceedings of Imaging Spectrometry of the Terrestrial Environment, USA: SPIE, 1993, vol.1937, 191-200.
    [79]Ballangrud A., Jaeger T., Wang G. High resolution imaging interferometer, In: Proceedings of Image Understanding for Aerospace Applications, USA: SPIE, 1991, v1521, 89-96.
    [80]Smith W H, Philip D H. Digital array scanned interferometer: sensors and results, Applied Optics, 1996, 35(16): 2902-2909.
    [81]Padgett M.J., Harvey A.R. A static Fourier-transform spectrometer based on Wollaston prisms, Review of Scientific Instruments, 1995, 66(4): 2807-11.
    [82]Hashimoto M., Kawata S. Multichannel Fourier-transform infrared spectrometer, Applied Optics, 1992, 31(28): 6096-101.
    [83]相里斌,赵葆常,薛鸣球,空间调制干涉成像光谱技术,光学学报,1998,18(1):19-22
    [84]Gat N., Subramanian S., Ross S. Thermal Infrared Imaging Spectrometer (TIRIS) status report, In: Proceedings of Infrared Technology and Applications XXIII, USA: SPIE, 1997, vol.3061, 284-91.
    [85]Lucey P.G., Williams T.J., Winter M. Two years of operations of AHI: A LWIR hyperspectral imager, In: Proceedings of Infrared Imaging Systems: Design, Analysis, Modelling, and Testing XI, USA: SPIE, 2000, vol.4030, 31-40.
    [86]J. D. Spinhirne, V. S. Scott, R. S. Lancaster, et al. Performance and results from a space borne, uncooled microbolometer array spectral radiometric imager, In: IEEE Aerospace Conference, USA: IEEE, 2000, vol.3, 125-134.
    [87]D. Murphy, W. Radford, J. Finch, et al. Multi-spectral uncooled microbolometer sensor for the Mars 2001 orbiter THEMIS instrument, In: IEEE Aerospace Conference, USA:IEEE, 2000, vol.3, 151-163.
    [88]Peter Coppo, Enrico Battistelli, Marco Barilli, et al. Requirements and design of a thermal high-resolution Earth mapper (THEMA) based on uncooled detectors, In: Proceedings of Sensors, Systems, and Next-Generation Satellites VI, USA: SPIE, 2003, vol.4881, 531-542.
    [89]Lucey, Paul G. Uncooled long-wave infrared hyperspectral imaging, United States patent, patent number: 7135682, 2006.
    [90]刘景生,红外物理,北京:高等教育出版社,1992,28-39
    [91]吴北婴,大气辐射传输实用算法,北京:气象出版社,1998,66-73
    [92]http://speclib.jpl.nasa.gov/
    [93]白廷柱,金伟其,光电成像原理与技术,北京:北京理工大学出版社,2006,62-68
    [94]李全臣,蒋月娟,光谱仪器原理,北京:北京理工大学出版社,1999,98-118
    [95]王钦笙,毛京丽,朱彤,数字通信原理,北京:北京邮电大学出版社,1995,162-173
    [96]张河,探测与识别技术,北京:北京理工大学出版社,2005,93-101
    [97]安毓英,曾晓东,光电探测原理,西安:西安电子科技大学出版社,2004,27-38
    [98]常本康,蔡毅,红外成像阵列与系统,北京:科学出版社,2006,55-68
    [99]D. S. Tezcan, S. Eminoglu, T. Akin. A low-cost uncooled infrared microbolometer detector in standard CMOS technology, Electron Devices, 2003, 50(2): 494-502.
    [100]邢素霞,张俊举,常本康,非制冷红外热成像技术的发展与现状,红外与激光工程,2004,33(5):441-444
    [101]William J. Parrish, James T. Woolaway, Glen T. Kincaid, et al. Low-cost 160×128 uncooled infrared sensor array, In: Proceedings of Infrared Readout Electronics IV, USA: SPIE, 1998, vol.3360, 111-119.
    [102]Timothy. D. Pope, Christine Alain, Alain Bergeron. Microbolometer Detector Array for Satellite-Based Thermal Infrared Imaging, In: Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems, United States: IEEE, 2004, 310-314.
    [103]Murphy, D., Radford, W., Finch, J. Multi-spectral uncooled microbolometer sensor for the Mars 2001 orbiter THEMIS instrument, In: 2000 IEEE Aerospace Conference Proceedings, USA: IEEE, 2000, vol.3, 151-63.
    [104]P. A. M. Jacobs, Simulation of the thermal behaviour of object and its nearbys surroundings, TNO publication PHL-1980-08, 1980
    [105]N. Ben-Yosef, b. Rahat and G Feigin, Simulation of UR images of natural backgrounds, APPLIED OPTICS,Vol.22, No.1, 1983, 190-193.
    [106]G. Gerhart, G. Martin, T. Gonda. Thermal Image Modeling, Proc. SPIE, 1987, Vo1.782, 3-9.
    [107]Stets J., Conant J., Gruninger J., et al. Synthetic IR scene generation, Proc. SPIE, Vol.890, 1988, 130-146.
    [108]J. M. Cathcard, N. L. Faust, A. D. Sheffer, et al, Background clutter Models for scene simulation, Proc. SPIE, Vol.1938, 1993, 325-336.
    [109]John O. Curtis, Salvador Rivera, Jr. Diurnal and seasonal variation of structural element thermal signatures, Proc. SPIE, Vol.1311, 1990, 13 6-145.
    [110]L.S. Balfou and Yossi Bushlin, Semi-empirical model based approach for IR scene simulation, Proc. SPIE, Vol.3061, 1997, 616-623.
    [111]Albert D. Sheffer, Jr., J. Michael Cathcart, et al. High-fidelity infrared scene simulation at Georgia Tech, Proc. SPIE, Vol.2740, 1996, 142-152.
    [112]Yit-Tsi Kwan, Steven Sawtelle, Uri Bernstein, et al. A simulation for hyperspectral thermal IR imaging sensors, Proceedings of SPIE, 2008, 6966.
    [113]W. Pereira, D. Less, L. Rodriquez, et al. Hyperspectral extensions in the MuSES signature code, Proceedings of SPIE, 2008, 6965: 69650B-1-8.
    [114] http://www.tsc.com/as/_3HyperSpectral.htm
    [115]徐南荣,飞行器的红外特性,红外与激光技术,1999,28(1):8-14
    [116]朱文勇,高景,粟鹏义等,改进单元法在红外模拟热像中的应用,红外与毫米波学报,1996, 15(3):179-182
    [117]宣益民,刘俊才,韩玉阁,车辆特征分析及红外热像模拟,红外与毫米波学报,1998,17(6):441-445
    [118]韩玉阁,宣益民,坦克炮身管温度分布及红外辐射特性,应用光学,1998, 19(2):8-14
    [119]王福恒,李仲初,海天背景红外辐射模型的初步建立:晴空背景情况,红外与激光技术,1989,18(3):16-25
    [120]董雁冰,刘浩,林奇等,坦克红外辐射理论模型计算研究,目标与环境特性研究,1997,(1):36-43
    [121]焦立男,星空红外点源建模研究,航空机电集团二院207所硕士学位论文,北京,2001
    [122]杨尧,刘云飞,姚连兴等,海面温度的初步建模,目标与环境特性研究,1997, (4): 28-34
    [123]N. Ben-Yosef, B. Rahat, G. Feiqin. Simulation of IR images of natural backgrounds, Applied Optics, 1983, 22(1): 190-193.
    [124]谈和平,夏新林,刘林华等,红外辐射特性与传输的数值计算-计算热辐射学,哈尔滨:哈尔滨工业大学出版社,2006,22-39
    [125]韩玉阁,宣益民,天然地形的随机生成及其红外辐射特性研究,红外与毫米波学报,2000,19(2):129-133
    [126]P.B. Chapple, D.C. Bertilone. Stochastic simulation of infrared non-Gaussian natural terrain imagery, Optics Communications, 1998, 150: 71-76
    [127]Jerrell R. Ballard. Jr, James A. Smith. 3D scene simulation of natural backgrounds at TIR wavelengths, In: Proceedings of IGARSS '98, USA: IEEE, 1998, vol.3, 1505-1507.
    [128]韩玉阁,刘荣辉,宣益民,复杂地面背景红外热像模拟,南京理工大学学报, 2007, 31(4): 487-490
    [129]宣益民,李德沧,韩玉阁,复杂地面背景的红外热像合成,红外与毫米波学报, 2002, 21(2): 133-136
    [130]邵晓鹏,杨威,张建奇,自然地面背景红外图像生成方法研究,红外与激光工程, 2000, 29(3): 11-14
    [131]林开颜,吴军辉,徐立鸿,彩色图像分割方法综述,中国图象图形学报, 2005, 10(1): 1-10
    [132]邢强,任海刚,陈汉平等,经过大气传输的红外热像仿真,红外与激光工程, 2007, 36(1): 43-46
    [133]边肇祺,张学工,模式识别(第二版),北京:清华大学出版社,2000,78-86
    [134]袁旭沧,光学设计,北京:科学出版社,1983,119-191
    [135]袁旭沧,应用光学,北京:国防工业出版社,1987,36-68
    [136]郁道银,谈恒英,工程光学,北京:机械工业出版社,2000,97-118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700