基于核理论的遥感图像分类方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对遥感图像分类中存在的非线性、计算复杂性、模糊性和少的标记数据等问题,以核理论为基础,结合半监督技术和近邻特性等,对广义判别分析(GDA)、模糊C-均值(FCM)和光谱角匹配(SAM)算法进行核扩展,构建了基于核理论的遥感图像分类框架,并应用于遥感图像的训练数据减少、非线性特征提取和分类,提高了遥感图像的分类精度和效率,降低了计算复杂度。论文的主要研究工作和成果:
     1.针对大数据集进行训练数据减少问题,提出用非线性支持向量机(NSVM)的支持向量来减少遥感图像分类中的训练数据。NSVM方法在保证分类器泛化能力的情况下,减少了训练分类器的数据,降低了计算复杂度。
     2.针对大数据集进行非线性特征提取的计算复杂度高问题,提出Greedy GDA(GGDA)的训练数据减少和非线性特征提取方法,并应用于遥感图像数据。实验结果表明:GGDA和GDA方法的特征提取性能优于其它对比方法;GGDA方法不仅较好地保持了GDA方法的特征提取性能,而且减少了大数据集进行非线性特征提取的计算复杂度。
     3.针对传统分类器缺乏考虑遥感图像分类中的非线性、模糊性和少的标记数据等问题,提出一种半监督核FCM(SSKFCM)算法的遥感图像分类方法。该算法使原来在低维空间非线性不可分模式在高维空间变成线性可分,同时,该算法通过半监督学习技术使用标记和未标记数据一起提高了遥感图像的分类精度。
     4.针对FCM和核FCM(KFCM)算法的最小化误差平方和目标函数具有对数据集进行等划分趋势的缺陷,提出近邻样本密度加权、近邻样本隶属度加权、近邻样本密度和隶属度加权的FCM和KFCM算法。即用近邻样本密度加权系数来影响最小化误差平方和的目标函数,使加权系数高的样本对误差的影响大;用近邻样本隶属度加权系数,使近邻样本有趋向近似相同的隶属度。实验结果表明:几种加权的FCM和KFCM算法都在一定程度克服了FCM和KFCM算法的分类性能,提高了遥感图像的无监督分类能力。
     5.为了更好处理分类中数据的非线性问题,将光谱角匹配(SAM)算法进行核扩展,形成核SAM(KSAM)算法,并应用于遥感图像分类。实验结果表明:基于KSAM方法的分类精度高于SAM方法。在KSAM方法中,核函数Poly和Sigmoid对核参数过于敏感,最佳分类的核参数值可选范围窄;而核函数ERBF和RBF,不仅分类精度更高,而且最佳分类的核参数值可选范围宽。
     6.为了进一步验证论文提出的SSKFCM、NSDM-WKFCM和KSAM等核模式分类算法的分类性能,进行了详细的综合分类实验对比。实验结果表明:SSKFCM、NSDM-WKFCM和KSAM算法在同类型对比算法中都显示出最强的分类能力。
These problems of nonlinearity, computational complexity, fuzziness and few labeled data exist in remote sensing image classification. In this thesis, several algorithms, such as generalized discriminant analysis (GDA), fuzzy C-means (FCM), and spectral angle match (SAM), are extended to their kernel patterns by introducing the kernel method, the semi-supervised learning technique, and the neighbor sample characteristic, et al. Kernel-based framework for remote sensing image classification is constructed. Those new kernel pattern related algorithms are applied in training data reduction, nonlinear feature extraction, and remote sensing image classification for improving the classification accuracy and efficiency, and reducing the computational complexity. The main work and results are as follows:
     1. A method is proposed to reduce training data of remote sensing image classification in large datasets with support vectors from nonlinear support vector machine (NSVM). The NSVM method reduces training data and computational complexity of training classifier while retaining the generalization of the classifier.
     2. Nonlinear feature extraction has high computational complexity in large datasets. A greedy GDA (GGDA) method is proposed to reduce training data and deal with the nonlinear feature extraction problem, and used in data of remote sensing image. The simulation results indicate that the feature extraction performance of both GGDA and GDA methods outperforms one of these compared methods. In addition of retaining the performance of the GDA method, the GGDA method reduces the computational complexity of the nonlinear feature extraction in large datasets.
     3. These problems of nonlinearity, fuzziness and few labeled data are rarely considered in traditional remote sensing image classification. A semi-supervised kernel fuzzy C-means (SSKFCM) algorithm is proposed to overcome these disadvantages of remote sensing image classification. On the one hand, with the kernel method, the input data is mapped implicitly into a high-dimensional feature space where the nonlinear pattern now appears linear in the SSKFCM algorithm. On the other hand, by the semi-supervised learning technique, the SSKFCM algorithm combines the labeled and unlabeled data together to improve the classification accuracy of remote sensing images.
     4. Both FCM and kernel FCM (KFCM) algorithms have a disadvantage of equal partition trend for data sets with minimizing the sum of error squares objective function. Several weighted FCM (WFCM) and weighted KFCM (WKFCM) algorithms are proposed to overcome the disadvantage of FCM and KFCM, by involving the neighbor sample density (NSD), the neighbor sample membership (NSM), and both the neighbor sample density and membership (NSDM) into the FCM and KFCM algorithms, respectively. The weighted coefficient of the NSD exerts an influence on the sum of error squares objective function, the higher the value, the larger the influence; on the other hand, the neighbor samples have the tendency of the approximately same membership value by the weighted coefficient of the NSM. Experimental results indicate that these weighted algorithms improve the classification performance to some extent, and significantly improve the unsupervised classification capacity of remote sensing images compared with FCM and KFCM.
     5. A kernel spectral angle match (KSAM) algorithm is proposed to deal better with the nonlinear classification problem of remote sensing image. The KSAM algorithm extends the spectral angle match (SAM) algorithm by introducing the kernel method. Experimental results indicate that the classification accuracy of the KSAM algorithm is superior to one of the SAM algorithm. Experimental results indicate still that kernel parameters of poly and sigmoid kernel are excessively sensitive, and a narrow bound of kernel parameters can be chosen for the optimal classification; the classification performance of ERBF and RBF kernel is superior to one of Poly and Sigmoid kernel, and a wide bound of kernel parameters in ERBF and RBF kernel can be chosen for the optimal classification in the KSAM algorithm.
     6. Comprehensive classification experiment is accomplished to validate further the classification performance of these proposed kernel pattern classification algorithms. The experiment results indicate that the classification performance of SSKFCM, NSDM-WKFCM and KSAM is superior to one of the same type compared algorithm.
引文
[1]赵英时.遥感应用分析原理与方法.北京:科学出版社, 2003, 36, 102, 203-208
    [2] G. M. Foody. Image classification with a neural network: from completely-crisp to fully-fuzzy situation. In: P. M. Atkinson, J. N. Tate, eds. Advances in remote sensing and GIS analysis. New York: John Wiley and Sons Inc, 1999, 17-37
    [3]李朝锋,曾生根,许磊.遥感图像智能处理.北京:电子工业出版社, 2007, 1-10
    [4]朱述龙,朱宝山,王红卫.遥感图像处理与应用.北京:科学出版社, 2006, 111
    [5]杜凤兰,田庆久,夏学齐.遥感图像分类方法评析与展望.遥感技术与应用, 2004, 521-525
    [6] G. Camps-Valls, L. Bruzzone. Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(6):1351-1362
    [7] G. Camps-Valls, L. Gómez-Chova, J. Mu?oz-Marí, et al. Kernel-based framework for multitemporal and multisource remote sensing data classification and change detection. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1822-1835
    [8] M. H. Banki, A. A. B. Shirazi. New kernel function for hyperspectral image classification. 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE2010), Vol.1:780-783
    [9] A. Bouchachia, W. Pedrycz. Enhancement of fuzzy clustering by mechanisms of partial supervision. Fuzzy Sets and Systems, 2006, 157(13):1733-1759
    [10] B. Xiong, W. Jiang, F. Zhang. Semi-supervised classification considering space and spectrum constraint for remote sensing imagery. 2010 the 18th International Conference on Geoinformatics (Geoinformatics 2010), Article number: 5567981
    [11] U. Maulik, D. Chakraborty. A self-trained ensemble with semisupervised SVM: An application to pixel classification of remote sensing imagery. Pattern Recognition, 2011, 44(3): 615-623
    [12] J. Chanussot, J. A. Benediktsson, M. Fauvel. Classification of remote sensing images from urban areas using a fuzzy possibilistic model. IEEE Transactions on Geoscience and Remote Sensing Lett, 2006, 3(1):40-44
    [13] K. Wang, Y. Wan, S. Shen. Classifications of remote sensing images using fuzzy multi-classifiers. 2009 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009), Vol.4:411-414
    [14]李石华,王金亮,毕艳,等.遥感图像分类方法研究综述.国土资源遥感, 2005, 64(2): 1-6
    [15]刘仁钊,廖文峰.遥感图像分类应用研究综述.地理空间信息, 2005, 3(5):11-13
    [16]王一达,沈熙玲,谢炯.遥感图像分类方法综述.遥感信息, 2006, 5:67-71
    [17] Y. Li, L. Yan, J. Liu. Remote sensing image classification development in the past decade. 2009 International Conference on Multispectral Image Acquisition and Processing (MIPPR 2009), Vol.7494:74941D1-74941D6
    [18] D. Lu, Q. Weng. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 2007, 28(5):823-870
    [19]张克军.遥感图像特征提取方法研究: [硕士学位论文].西北工业大学, 2007
    [20] G. F. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 1968, 14:55-63
    [21] K. P. Price, X. Guo, J. M. Stiles. Optimal Landsat TM band combinations and vegetation indices for discrimination of six grassland types in eastern Kansas. International Journal of Remote Sensing, 2002, 23:5031-5042
    [22] J. A. Richards. Remote sensing digital image analysis: An introduction. Berlin: Springer-Verlag, 1999, 240
    [23]田野,赵春晖,季亚新.主成分分析在高光谱遥感图像降维中的应用.哈尔滨师范大学自然科学学报, 2007, 23(5):58-60
    [24] X. P. Jia, J. A. Richards. Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1):538-542
    [25] D. G. Manolakis, D. Marden. Dimensionality reduction of hyperspectral imaging data using local principal components transforms. 2004 SPIE on Algorithms and Technologies for MultiSpectral, Hyperspectral, and Ultraspectral Imagery X, Vol.5425:393-401
    [26] J. W. Boardman, F. A. Kruse. Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains. 1994 Proceedings of ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Vol.1:407-418
    [27] A. A. Green, M. Berman, P. Switzer, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(1):65-74
    [28]李海涛,顾海燕,张兵.基于MNF和SVM的高光谱遥感影像分类研究.遥感信息, 2007, 5:12-15
    [29]杜博,张良培,李平湘,等.基于最小噪声分离的约束能量最小化亚像元目标探测方法.中国图象图形学报, 2009, 14(9):1850-1857
    [30] L. O. Jimenez, D. A. Landgrebe. Projection pursuit in high dimensional data reduction: initial conditions, feature selection and the assumption of normality. 1995 IEEE International Conference on Systems, Man, and Cybernetics, Vol.1: 401-406
    [31] L. O. Jimenez, D. A. Landgrebe. Supervised classification in high-dimensional space: geometrical, statistical, and asymptotical properties of multivariate data. IEEE Transactions on Systems, Man, and Cybernetics, 1998, 28C(1): 39-54
    [32]张连蓬.基于投影寻踪和非线性主曲线的高光谱遥感图像特征提取及分类研究: [博士学位论文].青岛:山东科技大学, 2003
    [33] C. Lee, D. A. Landgrebe. Feature selection based on decision boundaries. 1991 International Geoscience and Remote Sensing Symposium (IGARSS), Vol.3: 1471-1474
    [34] J. A. Benediktsson, M. Pesaresi, K. Arnason. Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(9), Part I: 1940-1949
    [35]安如,冯学智,王慧麟.基于数学形态学的道路遥感影像特征提取及网络分析.中国图象图形学报, 2003, 8A(7): 798-804
    [36] B. C. Kuo. A robust classification procedure based on mixture classifiers and nonparametric weighted feature extraction. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2486-2494
    [37] S. K. Meher, B. U. Shankar, A. Ghosh. Wavelet-feature-based classifiers for multispectral remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6): 1881-1886
    [38]刘慧婵,何国金.基于子带小波特征的高分辨率遥感图像特征提取方法.科学技术与工程, 2007, 7(7): 4353-4357
    [39] G. P. Asner, K. B. Heidebrecht. Spectral unmixing of vegetation, soil and dry carbon cover in arid regions: comparing multispectral and hyperspectral observations. International Journal of Remote Sensing, 2002, 23: 3939-3958
    [40] R. A. Neville, J. Lévesque, K. Staenz, et al. Spectral unmixing of hyperspectral imagery for mineral exploration: comparison of results from SFSI and AVIRIS. Canadian Journal of Remote Sensing, 2003, 29: 99-110
    [41] B. Tso, P. M. Mather. Classification methods for remotely sensed data. New York: Taylor and Francis Inc, 2001
    [42] D. A. Landgrebe. Signal theory methods in multispectral remote sensing. Hoboken, NJ: John Wiley and Sons, 2003
    [43] J. T. Tou, R. C. Gonzalez. Pattern recognition principles. Massachusetts: Addison-Wesley Publishing Company, 1974
    [44] M. K. Dhodhi, J. A. Saghri, I. Ahmad, et al. D-ISODATA: A distributed algorithm for unsupervised classification of remotely sensed data on network of workstations. Journal of Parallel and Distributed Computing, 1999, 59(2):280-301
    [45]沈照庆,舒宁,龚衍,等.基于改进模糊ISODATA算法的遥感影像非监督聚类研究.遥感信息, 2008, 5:28-32
    [46]尹淑玲,余敏.模糊ISODATA聚类分析在遥感图像分类中的应用研究.地理空间信息, 2009, 7(1):98-99
    [47]包健,厉小润. K均值算法实现遥感图像的非监督分类.机电工程, 2008, 25(3):77-80
    [48] Jian Zheng, Zhanzhong Cui, Anfei Liu, et al. A K-means remote sensing image classification method based on AdaBoost. 2008 Proceedings 4th International Conference on Natural Computation (ICNC 2008), Vol.4:27-32
    [49]钟燕飞,张良培.遥感影像K均值聚类中的初始化方法.系统工程与电子技术, 2010, 32(9):2009-2014
    [50]哈斯巴干,马建文,李启青,等.多波段遥感数据的自组织神经网络降维分类研究.武汉大学学报(信息科学版), 2004, 29(5):461-465
    [51] Yang Song, Youchuan Wan, Peng Chen, et al. Simulation model for classification of remote sensing images by SOM neural networks. Journal of Computational Information Systems, 2005, 1(4):827-833
    [52]刘力帆,王斌,张立明.基于自组织映射和模糊隶属度的混合像元分解.计算机辅助设计与图形学学报, 2008, 20(10):1307-1315
    [53]尹汪宏,李朝峰,张俊本,等.基于混合核函数的自组织神经网络遥感图像分类.计算机工程与设计, 2009,30(2):388-391
    [54]王振,李朝锋,吴小俊. GHSOM在遥感图像分割中的应用.计算机工程与应用, 2010, 46(16):188-190
    [55] M. K. Pakhira, S. Bandyopadhyay, U. Maulik. Fuzzy genetic clustering for pixel classification of satellite images. 2003 Conference on Convergent Technologies for Asia-Pacific Region (TENCON 2003), Vol.2:872-876
    [56]哈斯巴干,马建文,李启青,等.模糊c-均值算法改进及其对卫星遥感数据聚类的对比.计算机工程, 2004, 30(11):14-15, 91
    [57] XueJing Gong, Linlin Ci, Kangze Yao. A FCM algorithm for remote-sensing image classification considering spatial relationship and its parallel implementation. 2007 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR '07), Vol.3: 994-998
    [58] Xiaofang Liu, Xiaowen Li, Ying Zhang, et al. Remote sensing image classification based on dot density function weighted FCM clustering algorithm. 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), 2010-2013
    [59] Jie Yu, Peihuang Guo, Pinxiang Chen, et al. Remote sensing image classification based on improved fuzzy c-means. Geo-Spatial Information Science, 2008, 11(2):90-94
    [60]韩敏,范剑超.单点逼近型加权FCM算法的遥感图像聚类应用.中国图象图形学报, 2009, 14(11):2333-2340
    [61]曾志远.卫星遥感图像计算机分类与地学应用研究.北京:科学出版社, 2004, 5-15, 45-49
    [62] J. A. Richards. Remote sensing digital image analysis. Berlin: Springer-Verlag, 1994, 193-238, 249-263
    [63]朱建华,刘政凯,俞能海.一种多光谱遥感图象的自适应最小距离分类方法.中国图象图形学报, 2000, 5A(1):21-24
    [64] Y. C. Tzeng. Distance weighted multiple classifiers systems applied to remote sensing images classification/data fusion. Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, Series A/Chung-kuo Kung Ch'eng Hsuch K'an, 2008, 31(4):639-647
    [65] G. M. Foody. Directed ground survey for improved maximum likelihood classification of remotely sensed data. International Journal of Remote Sensing, 1990, 11(10):1935-1940
    [66] Xiuping Jia. Block-based maximum likelihood classification for hyperspectral remote sensing data. 1997 International Geoscience and Remote Sensing Symposium (IGARSS 1997), Vol.2:778-780
    [67]骆剑承,王钦敏,马江洪,等.遥感图像最大似然分类方法的EM改进算法.测绘学报, 2002, 31(3) :234-239
    [68]李庆亭,张连蓬,杨锋杰.高光谱遥感图像最大似然分类问题及解决方法.山东科技大学学报(自然科学版), 2005, 24(3):61-64
    [69]陈万海,赵春晖,刘春红.超谱遥感图像的模糊最大似然分类研究.哈尔滨工程大学学报, 2006, 27(5):772-776
    [70] C. Yonezawa. Maximum likelihood classification combined with spectral angle mapper algorithm for high resolution satellite imagery. International Journal of Remote Sensing, 2007, 28(16):3729-3737
    [71] F. A. Kruse, A. B. Lefkoff, J. B. Boardman, et al. The spectral image processing system (SIPS) - interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment, 1993, 44:145-163
    [72] Y. Sohn, N. S. Rebello. Supervised and unsupervised spectral angle classifiers. Photo- grammetric Engineering and Remote Sensing, 2002, 68(12):1271-1281
    [73]安斌,陈书海,严卫东. SAM方法在多光谱图像分类中的应用.中国体视学与图像分析, 2005, 10(1):55-59
    [74]刘晓云,康一梅,齐同军,等.遥感图像波谱角并行分类算法.计算机科学, 2009, 36(9): 267-270
    [75]王正海,张红军. SAM和决策树结合的Hyperion数据分类方法.武汉科技大学学报(自然科学版), 2006, 29(5):478-481
    [76] M. Hansen, R. Dubayah, R. Defries. Classification trees: an alternative to traditional land cover classifiers. International Journal of Remote Sensing, 1996, 17:1075-1081
    [77] M. A. Friedl, C. E. Brodley. Decision tree classification of land cover from remotely sensed data. Remote Sensing of Environment, 1997, 61:399-409
    [78] M. A. Friedl, C. E. Brodley, A. H. Strahler. Maximizing land cover classification accuracies produced by decision trees at continental to global scales. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2):969-977
    [79] M. Pal, P. M. Mather. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sensing of Environment, 2003, 86:554-565
    [80] R. Lawrence, A. Bunn, S. Powell, et al. Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sensing of Environment, 2004, 90:331-336
    [81]陈尔学,李增元,白黎娜,等.一种遥感影像决策树分类系统及方法.中国,发明专利, 2004.12,申请号: CN200410098953.2
    [82] Ping Rao, Shengbo Chen, Ke Sun. Improved classification of soil salinity by decision tree on remotely sensed images. 2006 Proceedings of SPIE-The International Society for Optical Engineering on Optical Information Processing (ICO20), Vol.6027 II:60273K
    [83]谢丽军,张友静,张子衡.结合KPCA和多尺度纹理的IKONOS遥感影像决策树分类.遥感信息, 2010, 3:88-93
    [84]潘琛,林怡,陈映鹰.基于多特征的遥感影像决策树分类.光电子?激光, 2010, 21(5): 731-736
    [85] F. Ince. Maximum likelihood classification, optimal or problematic? A comparison with the nearest neighbour classification. International Journal of Remote Sensing, 1987, 8(12): 1829-1838
    [86] M. J. Collins, C. Dymond, E. A. Johnson. Mapping subalpine forest types using networks of nearest neighbor classifiers. International Journal of Remote Sensing, 2004, 25:1701-1721
    [87] R. Haapanen, A. R. Ek, M. E. Bauer, et al. Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 2004, 89:265-271
    [88] S. Thessler, S. Sesnie, Z. S. Ramos Benda?a, et al. Using k-nn and discriminant analyses to classify rain forest types in a Landsat TM image over northern Costa Rica. Remote Sensing of Environment, 2008, 112(5):2485-2494
    [89] S. Derivaux, N. Durand, C. Wemmert. On the complementarity of an ontology and a nearest neighbour classifier for remotely sensed image interpretation. 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), 2008, 1501-1504
    [90]朱国龙,汪云甲,乔浩然,等.高分辨率遥感图像最近邻模糊分类器的研究及实现.测绘科学, 2010, 35(6):96-98
    [91] K. S. Chen, Y. C. Tzeng, C. F. Chen, et al. Land-cover classification of multispectral imagery using a dynamic learning neural network. Photogrammetric Engineering and Remote Sensing, 1995, 61:403-408
    [92] J. D. Paola, R. A. Schowengerdt. A review and analysis of back propagation neural networks for classification of remotely sensed multispectral imagery. International Journal of Remote Sensing, 1995, 16:3033-3058
    [93] J. D. Paola, R. A. Schowengerdt. The effect of neural-network structure on a multispectral land-use/land-cover classification. Photogrammetric Engineering and Remote Sensing, 1997, 63:535-544
    [94] B. Mannan, A. K. Ray. Crisp and fuzzy competitive learning networks for supervised classification of multispectral IRS scenes. International Journal of Remote Sensing, 2003, 24:3491-3502
    [95] T. Kavzoglu,P. M. Mather. The use of backpropagating artificial neural networks in land cover classification. International Journal of Remote Sensing, 2004, 24:4907-4938
    [96] F. S. Erbek, C. ?zkan, M. Taberner. Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities. International Journal of Remote Sensing, 2004, 25:1733-1748
    [97] L. P. C. Verbeke, F. M. B. Vabcoillie, R. R. De Wulf. Reusing back-propagating artificial neural network for land cover classification in tropical savannahs. International Journal of Remote Sensing, 2004, 25:2747-2771
    [98] Hang Xiao, Xiubin Zhang. A comparison of neural network, rough sets and support vector machine on remote sensing image classification. Journal of Computational Information Systems, 2008, 4(6):2555-2564
    [99]张东波,王耀南.基于粗糙集约简的神经网络集成及其遥感图像分类应用.中国图象图形学报, 2008, 13(3):480-487
    [100]段新成.基于BP人工神经网络的土地利用分类遥感研究: [硕士学位论文].北京:中国地质大学, 2008
    [101]童小华,张学,刘妙龙.遥感影像的神经网络分类及遗传算法优化.同济大学学报(自然科学版), 2008, 36(7):985-989
    [102]可华明,陈朝镇,张新合,等.遗传算法优化的BP神经网络遥感图像分类研究.西南大学学报(自然科学版), 2010, 32(7):128-132
    [103] Yuguo Wang,Huapeng Li. Remote sensing image classification based on artificial neural network: A case study of Honghe Wetlands National Nature Reserve. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering (CMCE 2010), Vol. 5:17-20
    [104] Liang Pei, Zhaoyang Xu, Jiguang Dai. Application of BP neural network in remote sensing image classification: A case study of Jinzhou. 2010 International Conference on Computer Application and System Modeling (ICCASM 2010), Vol.10:10212-10215
    [105] Y. Z. Xiong, Z. D. Zhang, F. Chen. Comparison of artificial neural network and support vector machine methods for urban land use/cover classifications from remote sensing images. 2010 International Conference on Computer Application and System Modeling, Vol.13:1352-1356
    [106] C. Huang, L. S. Davis, J. R. G. Townshend. An assessment of support vector machines for land cover classification. International Journal of Remote Sensing, 2002, 23:725-749
    [107] P. Mantero, G. Moser, S. B. Serpico. SVM-based density estimation for supervised classification of remotely sensed images with unknown classes. 2004 Proceedings of SPIE on Image and Signal Processing for Remote Sensing IX, Vol.5238:386-397
    [108]刘志刚.支撑向量机在光谱遥感影像分类中的若干问题研究: [博士学位论文].武汉:武汉大学, 2004
    [109]祁亨年,杨建刚,方陆明.基于多类支持向量机的遥感图像分类及其半监督式改进策略.复旦学报(自然科学版), 2004, 43(5):781-784
    [110] L. Bruzzone, M. Marconcini. A novel T2-SVM for partially supervised classification of multitemporal remote sensing images. 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2005), Vol. 4:2815-2818
    [111]许磊,李朝峰,杨蒙召. SVM结合模糊方法在遥感图像分类中的应用.计算机工程与应用, 2005, 36:79-82
    [112] Y. Bazi, F. Melgani. Toward an optimal SVM classification system for hyperspectral remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3374-3385
    [113] F. Bovolo, L. Bruzzone, M. Marconcini. A novel context-sensitive SVM for classification of remote sensing images. 2006 IEEE International Geoscience and Remote Sensing Symposium (IGARSS06), 2006, 2498-2501
    [114] B. Borasca, L. Bruzzone, L. Carlin, et al. A fuzzy-input fuzzy-output SVM technique for classification of hyperspectral remote sensing images. 2006 Proceedings of the 7th Nordic Signal Processing Symposium (NORSIG 2006), 2007, 2-5
    [115] J. Inglada. Automatic recognition of man-made objects in high resolution optical remote sensing images by SVM classification of geometric image features. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 62(3):236-248
    [116]郭春燕.基于支持向量机的高光谱遥感图像分类: [硕士学位论文].哈尔滨:哈尔滨工程大学, 2007
    [117] L. Gómez-Chova, G. Camps-Valls, J. Mu?oz-Marí, et al. Semisupervised image classification with Laplacian support vector machines. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3):336-340
    [118]谭琨,杜培军.基于支持向量机的高光谱遥感图像分类.红外与毫米波学报, 2008, 27(2):123-128
    [119]后斌.基于支撑向量机的遥感影像分类方法比较研究.测绘通报, 2008, 10:5-7
    [120]陈建杰,叶智宣.多分类SVM主动学习及其在遥感图像分类中的应用.测绘科学, 2009, 34(4):94-100
    [121] Jianing Zhao, Wanlin Gao, Zili Liu, et al. A classification of remote sensing image based on improved compound kernels of Svm. 2009 Advances in Information and Communication Technology on Computer and Computing Technologies in Agriculture (CCTA 2009), 2010, Vol.317:15-20
    [122] P. Du, K. Tan, X. sh. Xing. Wavelet SVM in Reproducing Kernel Hilbert Space for hyperspectral remote sensing image classification. Optics Communications, 2010, 283(24): 4978-4984
    [123] L. Gómez-Chova, J. Calpe, G. Camps-Valls, et al. Semi-Supervised Classification Method for Hyperspectral Remote Sensing Images. 2003 International Geoscience and Remote Sensing Symposium (IGARSS2003), Vol.3:1776-1778
    [124] Hengnian Qi, Jiangang Yang, Lixia Ding. Semi-supervised classification method for remote sensing images based on support vector machine. 2004 IEEE International Conference on Systems, Man and Cybernetics (SMC 2004), Vol.3:2357-2361
    [125] P. Mantero, G. Moser, S. B. Serpico. Partially supervised classification of remote sensing images through SVM-based probability density estimation. EEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):559-570
    [126] L. Bruzzone, M. M. Chi, M. Marconcini. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11):3363-3372
    [127]邱磊,李国辉,代科学.遥感图像的半监督的改进FCM算法.计算机应用研究, 2006, 6: 252-260
    [128] G. Camps-Valls, T. V. B. Marsheva, D. Y. Zhou. Semi-supervised graph-based hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(10): 3044-3054
    [129] M. Chi, L. Bruzzone. Semisupervised classification of hyperspectral images by SVMs optimized in the primal. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(6):1870-1880
    [130] N. Ghoggali, F. Melgani. Genetic SVM approach to semisupervised multitemporal classification. IEEE Geoscience and Remote Sensing Letters, 2008, 5(2):212-216
    [131] L. Gómez-Chova, L. Bruzzone, G. Camps-Valls, et al. Semi-supervised remote sensing image classification based on clustering and the mean map kernel. 2008 IEEE International Geoscience and Remote Sensing Symposium (IGARSS2008), 4(1):IV391-IV394
    [132] Xiaofang Liu, Binbin He, Xiaowen Li. Semi-supervised classification for hyperspectral remote sensing image based on PCA and kernel FCM algorithm. 2008 Proceedings of SPIE on Geoinformatics 2008 and Joint Conference on GIS and Built Environment: Classification of Remote Sensing Images, Vol. 147:71471I1-71471I10
    [133] D. Tuia, G. Camps-Valls. Semisupervised remote sensing image classification with cluster kernels. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2):224-228
    [134] S. Kiyasu, Y. Yamada, S. Miyahara. Semi-supervised land cover classification of remotely sensed data using two different types of classifiers. ICCAS-SICE 2009-ICROS-SICE International Joint Conference 2009, 4874-4877
    [135] L. Gómez-Chova, G. Camps-Valls, L. Bruzzone, et al. Mean map kernel methods for semisupervised cloud classification. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(1):207-220
    [136] A. N. Erkan, G. Camps-Valls, Y. Altun. Semi-supervised remote sensing image classification via maximum entropy. 2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP 2010), 313-318
    [137] J. M?noz-Marí, F. Bovolo, L.Gómez-Chova, et al. Semisupervised One-Class Support Vector Machines for Classification of Remote Sensing Data. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(8):3188-3197
    [138] F. Ratle, G. Camps-Valls, J. Weston. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5):2271-2282
    [139]张友静,黄浩,马雪梅.基于KPCA和SAM的城市植被遥感分类研究.地理与地理信息科学, 2006, 22(3):35-38
    [140] Y. F. Gu, Y. Liu, Y. Zhang. A selective KPCA algorithm based on high-order statistics for anomaly detection in hyperspectral imagery. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1):43-47
    [141]沈照庆,陶建斌.基于模糊核主成分分析的高光谱遥感影像特征提取研究.国土资源遥感, 2009, 18(3):40-44
    [142]常睿春.基于模糊遗传算法和核主成份分析的遥感图像处理研究: [硕士学位论文].成都:成都理工大学, 2008
    [143]沈照庆,陶建斌.基于模糊核主成分分析的高光谱遥感影像特征提取研究.国土资源遥感, 2009, 81(3):41-44
    [144] M. Fauvel, J. Chanussot, J. A. Benediktsson. Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. 2009 Eurasip Journal on Advances in Signal Processing, Vol.2009, Article ID 783194
    [145]杨国鹏,余旭初.高光谱遥感影像的广义判别分析特征提取.测绘科学技术学报, 2007, 24(2):130-132
    [146] B. C. Kuo, C. H. Li. Kernel nonparametric weighted feature extraction for classification. 2005 Advances in Artificial Intelligence-18th Australian Joint Conference on Artificial Intelligence, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (AI 2005), Vol.3809 LNAI: 567-576
    [147] B. C. Kuo, T. W. Sheu, C. H. Li, et al. Hyperspectral image classification using kernel-based Nonparametric weighted feature extraction. 2006 IEEE International Geoscience and Remote Sensing Symposium (IGARSS2006), 557-560
    [148] B. C. Kuo, C. H. Li, J. M. Yang. Kernel nonparametric weighted feature extraction for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(4):1139-1155
    [149] C. S. Huang, S. S. Lin, C. H. Li, et al. Applying composite kernel to kernel-based nonparametric weighted feature extraction. 2010 the 5th IEEE Conference on Industrial Electronics and Applications (ICIEA 2010), 1795-1800
    [150]刘伟强,胡静,夏德深.基于核空间的多光谱遥感图像分类方法.国土资源遥感, 2002, 53(3):44-47
    [151]刘志刚,秦前清,李德仁,等.基于混合核函数的支撑向量机及其在遥感影像土地利用分类中的应用.测绘信息与工程, 2003, 28(5):1-3
    [152]杨国鹏.基于核方法的高光谱影像分类与特征提取: [硕士学位论文].郑州:解放军信息工程大学, 2007
    [153]杨国鹏,余旭初,陈伟,等.基于核Fisher判别分析的高光谱遥感影像分类.遥感学报, 2008, 12(4):579-585
    [154]刘琳,杨为民,赖巧玲.利用核密度估计改进遥感图像贝叶斯分类法.东北林业大学学报, 2008, 36(10): 53-55
    [155]郭琳,孙卫东,王琼华,等.基于组合核非线性退化模型的遥感图像复合分类.农业工程学报, 2008, 24(10):145-150
    [156]张淼,沈毅,王强.基于非线性相关系数核方法的超谱数据分类.光学学报, 2009, 29(9):2607-2614
    [157]霍振国.基于半监督核自适应学习的遥感高光谱图像分类方法.中国,发明专利, 2010.8,申请号: CN201010160203.9
    [158] L. Bruzzone, D. F. Prieto. Technique for the selection of kernel-function parameters in RBF neural networks for classification of remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(2):1179-1184
    [159] F. Lafarge, X. Descombes, J. Zerubia.Textural kernel for SVM classification in remote sensing: Application to forest fire detection and Urban area extraction. 2005 IEEE International Conference on Image Processing 2005 (CIP 2005), Vol.3: 1096-1099
    [160] G. Camps-Valls, L. Gómez-Chova, J. Mu?oz-Marí, et al. Composite kernels for hyperspectral image classification. IEEE Geoscience and Remote Sensing Letters, 2006, 3(1):93-97
    [161] M. Fauvel, J. Chanussot, J. A. Benediktsson. Evaluation of kernels for multiclass classification of hyperspectral remote sensing data. 2006 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2006), Vol. 2:II813-II816
    [162] A. González, G. Rüssel, A. Márquez, et al. Supervised farm classification from remote sensing images based on kernel adatron algorithm. 2007 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2007), 3345-3348
    [163] Guopeng Yang, Hangye Liu, Xuchu Yu. Hyperspectral remote sensing image classification based on kernel fisher discriminant analysis. 2007 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR'07), Vol.3:1139-1143
    [164] J. Yu, Z. S. Zhang, H. X. Ke, et al. Classification of multispectral remote sensing image using kernel principal component analysis and neural network. 2009 Proceedings of SPIE on Multispectral Image Processing and Pattern Recognition (MIPPR 2009), Vol.7496: 74961N
    [165] G. Camps-Valls, N. Shervashidze, K. M. Borgwardt. Spatio-spectral remote sensing image classification with graph kernels. IEEE Geoscience and Remote Sensing Letters, 2010, 7(4): 741-745
    [166] J. Shawe-Taylor, N. Cristianini.模式分析的核方法(赵玲玲,翁苏明,曾华军,等译).北京:机械工业出版社, 2006, 27-52
    [167] J. Mercer. Functions of positive and negative type and their connection with the theory of integral equations. Philosophical Transactions of the Royal Society of London, 1909, 209: 415-446
    [168] N. Aronszajn. Theory of reproducing kernels. Transactions of the Americal Society, 1950, 68(3):337-404
    [169] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces and the randomized GACV. In B. Sch?lkopf, C. J. C. Burges, A. J. Smola, ediors, Advances in kernel methods——support vector learning. Cambridge, MA: MIT Press, 1999, 69-88
    [170] M. A. Aizerman, E. M. Braverman, L. I. Rozoner. Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control, 1964, 25: 821-837
    [171] B. E. Boser, I. M. Guyon, V. N. Vapnik. A training algorithm for optimal margin classifiers. 1992 Proceedings of the 5th Annual ACM Workshop on Computational Learning Theory. New York: ACM Press, 1992, 144-152
    [172] T. Poggio. On optimal nonlinear associative recall. Biological Cybernetics, 1975, 19: 201-209
    [173] T. Poggio, F. Girosi. Networks for approximation and learning. 1990 Proceedings of the IEEE, 78(9):1481-1497
    [174] V. Vapnik. The nature of statistieal leaming theory. NewYork: Springer Verlag Press, 1995
    [175] B. Sch?lkopf. Support vector learning. Munich: R. Oldenbourg Verlag, 1997
    [176] D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-CRL-99-10, University of California in Santa Cruz, Computer Science Department, 1999
    [177] C. Watkins. Dynamic alignment kernels. In A. J. Smola, P. Bartlett, B. Sch?lkopf, et al, ediors, Advances in large margin classifers. Cambridge, MA: MIT Press, 1999
    [178] B. Sch?lkopf, A. J. Smola. Learning with kernels. Cambridge, MA: MIT Press, 2002
    [179] B. Sch?lkopf, A. Smola, K. R. Muller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computations, 1998, 10: 1299-1319
    [180] S. Mika, G. Ratsch, J. Weston, et al. Fisher discriminant analysis with kernels. 1999 the 9th IEEE Workshop on Neural Networks for Signal Processing (NNSP'99), 41-48
    [181] G. Baudat, F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10):2385-2404
    [182] N. Cristianini, J. Shawe-Taylor.支持向量机导论(李国正,王猛,曾华军,译).北京:电子工业出版社, 2004, 25-45, 81-97
    [183] B. Sch?lkopf, A. J. Smola. Learning with Kernels. Cambridge, MA: MIT Press, 2002, 67-78
    [184] Jianling Qin, Jun Li. Theory of feature extraction and samples filtration based on KPCA. 2005 the 12th International Conference on Industrial Engineering and Engieering Management, 1577-1580
    [185] V. Franc. Optimization algorithms for kernel methods: [Ph.D. degree dissertation]. Czech: Czech Technical University. Department of Cybernetics Faculty of Electrical Engineering, Center for Machine Perception, 2005
    [186] T. Tangkuampien, D. Suter. Human motion de-noising via Greedy kernel principal component analysis filtering. 2006 IEEE-the 8th International Conference on Pattern Recognition, Vol.3:457-460
    [187] Xiaofang Liu, Chun Yang. Greedy kernel PCA for training data reduction and nonlinear feature extraction in classification. 2009 SPIE-the International Society for Optical Engineering on Automatic Target Recognition and Image Analysis (MIPPR 2009), Vol.7495: 749530-749538
    [188] G. Baudat, F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 2000, 12(10):2385-2404
    [189]赵峰,张军英.一种KPCA的快速算法.控制与决策, 2007, 22(9):1044-1057
    [190] C. W. Hsu, C. J. Lin. A comparison of methods for multiclass support vector machines. IEEE Transactions on Neural Networks, 2002, 13(2):415-440
    [191] G. M. Foody. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 2002, 80:185-201
    [192]梅安新,彭望琭,秦其明,等.遥感导论.北京:高等教育出版社, 2001, 487-489
    [193] J. T. Finn. Use of the average mutual information index in evaluating classification error and consistency. International Journal of Geographical Information Systems, 1993, 7:349-366
    [194] F. Maselli, C. Conese, L. Petkov. Use of probability entropy for the estimation and graphical representation of the accuracy of maximum likelihood classifications. ISPRS Journal of Photogrammetry and Remote Sensing, 1994, 49:13-20
    [195] C. E. Woodcock, S. Gopal. Fuzzy set theory and thematic maps: accuracy assessment and area estimation. International Journal of Geographic Information Science, 2000, 14: 153-172
    [196]北京星图环宇科技有限公司,首都师范大学三维信息获取与应用教育部重点实验室,首都师范大学资源环境与地理信息系统北京重点实验室. ENVI遥感影像处理实用手册.北京:北京星图环宇科技有限公司, 2005, 327-329
    [197] J. R. Landis, G. G. Koch. The measurement of observer agreement for categorical data. Biometrics, 1977, 33:159-174
    [198] J. C. Bezdek. Numerical taxonomy with fuzzy sets. Journal Mathemastical Biology, 1974, 14:57-71
    [199] J. C. Bezdek. Cluster validity with fuzzy sets. Journal Cybernet, 1974, 3:58-72
    [200] X. L. Xie, G. Beni. A validity measure for fuzzy clustering. IEEE PAMI, 1991, 13:841-847
    [201] V. Franc, V. Hlavá?. Greedy algorithm for a training set reduction in the kernel methods. Heidelberg: Springer-Verlag Berlin, 2003
    [202] N. Cristianini, J. Shawe-Taylor. An introduction to support vector machines and other kernel-based learning methods. Cambridge: Cambridge University Press, 2000, 90-96
    [203]张学工.关于统计学习理论与支持向量机.自动化学报, 2000, 26(1):32-42
    [204] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annual Eugenics, 1936, 7(2):179-188
    [205] A. Asuncion, D. J. Newman. UCI Machine learning repository. (2010-04-10). http://www. ics.uci.edu/~mlearn/MLRepository.html. Irvine, CA: University of California, School of Information and Computer Science, 2007
    [206] R. O. Duda, P. E. Hart, D. G. Stork.模式分类(李宏东,姚天翔,译).北京:机械工业出版社, 2006:150-153
    [207] S. Aeberhard, D. Coomans, O. Devel. Comparative analysis of statistical pattern recognition methods in high dimensional setting. Pattern recognition, 1994, 27(8):1065-1077
    [208]许建华,张学工.经典线性算法的非线性核形式.控制与决策, 2006, 21(1):1-12
    [209] G. Saporta. Probabilités, Analyses des données et statistiques. Paris: Editions Technip, 1990
    [210] A. R. Webb.统计模式识别(第二版)(王萍,杨培龙,罗颖昕,译).北京:电子工业出版社, 2004, 60-80
    [211] J. C. Bezdek, W. F. Ehrlich. FCM: The Fuzzy C-mean Clustering Algorithm. Computers and Geoscienc., 1984, 10:191-203
    [212] J. R. Jensen.遥感数字影像处理导论(第三版)(陈晓玲,龚威,李平湘,等,译).北京:科学出版社, 2007, 479, 487-489
    [213] N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE Transactions Fuzzy Systems, 1995, 3(3):370-379
    [214] J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York, 1981
    [215] M. Girolami. Mercer kernel-based clustering in feature space. IEEE Transactions Neural Networks, 2002, 13:780-784
    [216] A. M. Bensaid, J. C. Bezdek and L. O. Hall. Partially supervised fuzzy c-means algorithm for segmentation of MR images. 1992 SPIE 1710, Science of Artificial Neural Networks, 522-528
    [217]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社, 2004
    [218]刘小芳.基于模糊聚类理论的模式识别研究: [硕士论文].成都:电子科技大学, 2004
    [219] S. R. Kannan, S. Ramathilagam, R. Pandiyarajan, et al. Improved fuzzy clustering segmentation for medical images. Neural Network World, 2010, 20(3):417-426
    [220]刘小芳.点密度加权FCM算法的聚类有效性研究.计算机工程与应用, 2006, 42(15): 20-22, 55
    [221] Xiaofang Liu, Xiaowen Li, Chun Yang, et al. Performance research of Gaussian function weighted fuzzy C-means algorithm. 2007 SPIE Pattern Recognition and Computer Vision (MIPPR 2007), Vol.6788: 67881Q1
    [222] G. Mercier, M. Lennon. Support vector machines for hyperspectral image classification with spectral-based kernels. 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), Vol.1:288-290
    [223] M. N. M. Sap, M. Kohram. Spectral angle based kernels for the classification of hyperspectral images using support vector machines. 2008 Second Asia International Conference on Modelling and Simulation (AMS 2008), 559-563
    [224] R. A. Schowengerdt. Remote sensing models and methods for image processing (Second Edition). San Diego: Academic Press, 1997, 135-158, 179-227
    [225] O. Chapelle, M. Chi, A. Zien. A continuation method for semisupervised svms. 2006 the 23rd International Conference on Machine Learning (ICML 2006), Vol.2006:185-192
    [226] V. Sindhwani, S. Keerthi, O. Chapelle. Deterministic annealing for semi-supervised kernel machines. 2006 the 23rd International Conference on Machine Learning (ICML 2006), Vol.2006:841-848

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700