高光谱遥感森林类型识别及其郁闭度定量估测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林类型的识别和森林的某些参数(如郁闭度、叶面积指数等)的估测在林业生产中非常重要,特别是在森林资源二类清查时,必须分树种统计其面积、蓄积量和郁闭度等参数。因此,林业上对森林类型的识别应该是越精细越好,对郁闭度的估测和反演越精确越好。常规的林分参数调查和识别主要是依赖人工外业调查或利用大比例尺航空像片来进行。这两种方法都有不足之处,前者劳动强度太大,后者成本太高。卫星遥感技术的发展,为林分参数的识别和估测提供了新的途径。我国过去近30年林业遥感中曾广泛应用遥感数据(如TM、SPOT),开展过大量的树种识别、郁闭度估测和生物量的反演研究,但是结果并不理想。主要原因是:一是多光谱遥感数据的光谱分辨率有限,而不同的森林类型常具有极为相似的光谱特性(通常成为“异物同谱”现象),它们细微的光谱差异用宽波段遥感数据是无法探测的;二是由于光学遥感所依赖的光照条件变化大,从而引起相同的森林类型具有显著不同的光谱特性(即所谓的“同物异谱”现象)。致使目前遥感在林业中的应用程度与林业对遥感的期望还有一定的差距。
     与传统遥感手段相比,高光谱分辨率遥感具有窄波段、多通道、图像与光谱合而为一的优点,它以纳米的超高光谱分辨率和几十或几百波段同时对地物成像,从而获得地物的连续光谱信息和更多的精细光谱信息。高光谱的这种特征非常有利于地物的精细识别和分类,能大大改善对植被类型的识别和分类精度,提高植被参数的估测和反演精度。
     高光谱遥感技术是本世纪初的遥感前沿技术。它已成功地应用在多种学科中,取得了一些研究结果,并展示了其应用潜力。在林业行业中,国外开展了高光谱遥感的森林叶面积指数、生物量、森林生化信息、森林树种识别等方面的研究工作。但在我国这方面的工作刚刚起步。
     本文以吉林省延边朝鲜族自治州汪清林业局为试验区,重点开展了应用高光谱遥感数据进行森林类型识别和森林郁闭度定量估测的研究,并对高光谱遥感的森林类型识别能力和森林郁闭度定量估测能力进行了分析评价。具体的研究内容包括:
     1.高光谱遥感在林业中的应用。简述了高光谱遥感的定义、特点以及发展历史和发展趋势。对国内外高光谱遥感数据在林业领域各个方面的应用研究现状进行了总结和阐述,包括森林生物物理参数(如森林树种、森林叶面积指数和森林郁闭度等)和森林生物化学参数(如叶绿素、氮、木质素和淀粉含量等)的信息提取、森林健康状况的高光谱监测等。在此基础上,明确了本论文所从事研究的目的和意义,确定了研究方向和研究内容。
Forest planning and management require information about forest resources. Some of the most important information are the spatial distribution of forest types and the forest crown closure. Both of them are an important parameter in ecological, hydrological and climate models. Their measurement in fields are difficult and time-consuming. This is particularly true over large areas. Therefore, the directly measures of forest parameters are only practical on experimental plots of limited site. Consequently, investigating forest parameter estimation over large area is problematic. Remote Sensing techniques, particularly the use of satellite imagery, may provide a practical means to measure forest parameters at the landscape scale or even global scale. With remote sensing techniques, scientists have made use of methods that correlate remotely sensed data with regional estimates of a number of forest ecosystem variables, including forest crown closure, canopy temperature, etc.
    However, most remote sensing systems in the past decades rely on measured reflectance data in a few broad wavelength bands. Current research is focused on the mapping of forest stands and determining their quantitative parameters using reflectance spectra recorded by airborne and spaceborne imaging spectrometery and its analysis methods such as spectral unmixing. The hyperspectral sensors have been developed to provide more than 220 spectral contiguous and very narrow bands across a full spectral range from 0.4 to 2.5 um, such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and EO-1 Hyperion, the first spaceborne hyperspectral imager in the world. So that much smaller spectral difference of objects can be detected by hyperspectral image. This is especially important for vegetation recognition because the spectral characteristics of different vegetation are similar and difficult to be classified. In contrast to traditional multispectral sensors, the hyperspectral sensors are expected to improve the ability of observing the earth surface, and it becomes one of the most important leading research fields of remote sensing.
    The recognition and classification of forest parameters is the basis of forestry remote sensing. In this dissertation, taking Wangqing Forestry Bureau, Jilin Province of China as a study area, focuses on the research on extraction of forest types information and estimation of forest crown closure using hyperspectral remote sensing data (EO-1 Hyperion data). The research contents and major conclusions of this paper can be summarized as following:
    1. Review of hyperspectral remote sensing application in forestry
引文
1. 陈述彭,遥感大辞典[M]。科学出版社,1990。
    2. 陈述彭,赵英时,遥感地学分析[M]。测绘出版社,1990。
    3. 陈述彭,童庆禧,郭华东,遥感信息机理研究[M]。科学出版社,1998。
    4. 陈桂红,高光谱遥感图像纹理分析研究,中国科学院研究生院硕士学位论文,2003。
    5. 杜文峰,王凤臻,李庆,提高郁闭度调查精度的几点建议[J]。林业资源管理,1999, 第3期,62~64。
    6. 方洪亮、田庆久,高光谱遥感在植被监测中的研究综述[J]。遥感技术与应用,1998, 13(1):62~69.
    7. 宫鹏,浦瑞良,郁彬,不同季相针叶树种高光谱数据识别分析[J]。遥感学报,1998, 2(3):211~217。
    8. 郭华东,遥感新进展与发展战略[M]。北京,中国科学技术出版社,1996。
    9. 姜小光,成像光谱遥感农作物信息提取与挖掘研究—以北京顺义区为例[D]。中国科学院遥感应用研究所博士论文,2000年7月。
    10. 刘春红,赵春晖,张凌雁。一种新的高光谱遥感图像降维方法[J]。中国图象图形学报,2005,Vol.10,No,2,218~222。
    11. 刘建贵,高光谱城市地物及人工目标识别与提取[D]。中国科学院遥感应用研究所博士论文,1999年8月。
    12. 刘建贵,吴长山,张兵,郑兰芬,童庆禧,2003。PHI成像光谱图像反射率转换。
    13. 浦瑞良,宫鹏,高光谱遥感及其应用[M]。高等教育出版社,2000。
    14. 浦瑞良,宫鹏,森林生物化学与CASI高光谱分辨率遥感数据的相关分析。遥感学报,1997,1(2):115~123。
    15. 申广荣,王人潮,植被高光谱遥感的应用研究综述[J]。上海交通大学学报(农业科学版)。200l,19(4):315~321。
    16. 谭炳香,高光谱遥感森林应用研究探讨[J]。世界林业研究,2003,Vol.16,N0.2, p33~37。
    17. 谭炳香,李增元,陈尔学,庞勇, EO~1 Hyperion高光谱数据的预处理[J]。遥感信息,2005,第6期,38~43。
    18. 唐延林,黄敬峰,农业高光谱遥感研究的现状与发展趋势[J]。遥感技术与应用, 2001,Vol.16,No.4,248~251。
    19. 唐世浩,朱启疆,周宇宇,白香花。一种简单的估算植被覆盖度和恢复背景信息的方法[J]。中国图象图形学报,2003,Vol.8(A),NO.11:1304~1308。20. 童庆禧,中国典型地物波谱及其特征分析[M]。科学出版社,1990。
    21. 童庆禧,郑兰芬、王晋年,湿地植被成像光谱遥感研究[J]。遥感学报,1997,1(1): 50~57。
    22. 王臻,卫星超光谱成像技术的发展与应用[J]。2001,卫星应用。
    23. 王晋年,郑兰芬,童庆禧,成像光谱图像吸收鉴别模型与矿物填图研究[J]。环境遥感,1996,11(1):20~30。
    24. 郑兰芬,王晋年,成像光谱遥感技术及其图象光谱信息提取分析研究[J]。环境遥感,1992,7(1):49~58。
    25. 周成虎,骆剑承,杨晓梅等,遥感影响地学理解与分析[M]。北京:科学出版社, 2001。
    26. 吴培中,星载高光谱成像光谱仪的特性与应用[J]。国土资源遥感,1999,第3期, pp31~29。
    27. 吴培中,从地球观测EO-1卫星看21世纪卫星新技术[J]。 国际太空,2001年8月号(总第272期)。
    28. 王荣,“高光谱遥感植被生化参数提取和数学建模示范性研究”[D]。中科院硕士学位研究生学位论文,2003。
    29. 熊桢,“高光谱遥感图像分类技术研究”[D]。中科院遥感应用研究所博士学位论文,2000。
    30. 杨敏华,“面向精准农业的高光谱遥感农作物信息获取”[D]。中国农业大学博士学位论文,2002。
    31. 张良培,郑兰芬,童庆禧,利用高光谱对生物变量进行估计[J]。遥感学报,1997, 1(2):111~114。
    32. 张良培,张立福,高光谱遥感[M]。武汉大学出版社,2005。
    33. 张宗贵,王润生,基于谱学的成像光谱遥感技术发展与应用[J]。国土资源遥感, 2000,第3期,pp16~24。
    34. 张兵,“高光谱遥感课程”讲义,北京大学遥感精品课讲座,2004。
    35. 赵彤堂,李凤鸣等,几种测定郁闭度方法的比较[J]。中南林业调查规划,1995年, 第2期,42~43。
    36. 赵英时,遥感应用分析原理与方法[M]。 北京,科学出版社,2003。
    37. 《ERDAS遥感图像处理教程》, 1998, 中科院资源与环境信息重点实验室。
    38. AEROSPACE REPORT(NO. TOR~2001(8511)~1): "Hyperspectral Imagery Market Forecast: 2000~2005". http://www.losangeles.af.mil/smc/xr/CPO。
    39. A. Dyk, D. G. Goodenough, A. S. Bhogal, J. Pearlman, and J. Love,, 2002. Geometric Correction and Validation of Hyperion and ALI Data for EVEOSD, presented at IGARSS 2002, Toronto, ON, Canada, vol. Ⅰ, pp. 579~583.
    40. Ahern F. J., Goodenough D. G, Jian S. C, et al, 1997. Use of clear lakes as standard reflectors for atmospheric measurement. In Proceedings of the 11~(th) Intenational symposium on Remote Sensing of Environment. AN Arbor, MI,731-775.
    
    41. Anuta, P. E., "Spatial Registration of Multispectral and Multitemporal Imagery Using Fast Fourier Transform Techniques," IEEE Trans. Geoscience Electronics, Vol. GE~8, No. 4, pp. 353-368, Oct. 1970.
    
    42. Barry, 2001. Introduction to the Hyperion Instrument and Data Processing, NASA and USGS, Washington, DC November 28-29.
    
    43. Baugh W. M., Kruse F. A, Atkinson W.W., 1998. Quantitative geochemical mapping of ammonium minerals in the southern Ceder Mountains, Nevada, using airborne visible/infrared imaging spectrometer(AVIRIS),Remote Sensing of Environment, 65,292-308.
    
    44. BING XU, PENG GONG and RUILIANG PU, 2003. Crown closure estimation of oak savannah in a dry season with Landsat TM imagery: comparison of various indices through correlation analysis. Int. J. of Remote Sensing, Vol. 24, No. 9,1811~1822.
    
    45. Boardman, J.W., 1993, Automated spectral unmixing of AVIRIS data using convex geometry concepts: in Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, Vol.1, PP11-14.
    
    46. Boardman, J. W., and Kruse, F. A., 1994, Automated spectral analysis: a geological example using AVIRIS data, north Grapevine Mountains, Nevada: in Proceedings, ERIM Tenth Thematic Conference on Geologic Remote Sensing, Environmental Research Institute of Michigan, Ann Arbor, MI, p. 1-407 -1-418.
    
    47. Bachmann C. M. T. F. D., K. Dubois, R. A. Fusina, M. Bettenhausen, J. H. Porter, B. R. Truitt, 2001. "Automatic detection of an invasive plant species on a barrier island in the Virginia," presented at IGARSS '01, Toronto.
    
    48. Bisun Datt & David Jupp, 2004. Hyperion Data Processing Workshop: Hands-on Processing Instruction, CSERO Earth Observation Centre.
    
    49. Bisun Datt, 1999, Visible/Near Infrared Reflectance and Chlorophyll Content in Eucalyputs Leaves [J], Int. Remote Sensing, Vol.20, No. 14, 2741-2759.
    
    50. Carter, G.A., Cibula, W.G. and Miller, R.L. 1996. Narrow-band reflectance imagery compared with thermal imagery for early detection of plant stress. J. Plant Physiol. 148: 515-522.
    
    51. Chavez P. s., Jr. 1988. An improved dark-objetc subtraction technique for atmospheric scattering correction of mutlispectral data. Remote Sensing of Environment, 24 :459~479.
    
    52. Chavez P. s., Jr. 1989. Radiometric calibration of Landsat Thematic Mapper mutlispectral images. Photogrammetric Engineering and Remote Sensing, 55:1285-1294.
    
    53. COCHRANE M. A. 2000. Using vegetation reflectance variability for species level classification of hyperspectral data, int. J. remote sensing, vol. 21, no. 10,2075-2087
    
    54. Dart, B., McVicar, T.R., Van Niel, T.G, Jupp, D.L.B. and Pearlman, J.S., 2003. Pre-processing EO-1 Hyperion hyperspectral data to support the application of agricultural indices. IEEE Transactions on Geoscience and Remote Sensing, 41(6): 1246-1259.
    
    55. Dendron Resource Surveys Inc. 1997a. Bioindicators of forest health: Review report. Report prepared for the Ontario Forest Research Institute, Ontario Ministry of Natural Resources, Sault Ste. Marie, ON.
    
    56. Dennison P. E., and D. A. Roberts, "Examining Seasonal Changes in Canopy Moisture Using AVIRIS Time Series Data," 2004.
    
    57. David Jupp, Bisun Datt, et al, 2002. Improving the analysis of Hyperion red-edge index, In 'Proceedings of the SPIE's Third International Asia-Pacific Symposium on Remote Sensing of the Atmosphere, Ocean, Environment, and Space'. Hangzhou, China.
    
    58. Davison D, Achal S, Mah S, etc., 1999. Determination of Tree Species and Tree Stem Densities in Nborthern Ontario Forest using Airborne CASI data. Proc. of Fouth International Airborne Remote Sensing Conference and Exhibition, Ottario, Canada, 2:187-196.
    
    59. Darvishsefat A. A, 2001. Application of Hyperion Data for Forest Stand Mapping. Proceedings of ISPRS
    
    60. D. G Goodenough, A. Dyk, K. O. Niemann, J. Pearlman, A. S. P. Bhogal, H. Chen, T. Han, M. Murdoch, and C. West, 2002. Monitoring Coastal Forests with Hyperion and ALI, IEEE Transactions on Geoscience and Remote Sensing, 579-583,
    
    61. D. G Goodenough, A. S. Bhogal, A. Dyk, O. Niemann, T. Han, H. Chen, C. West, and C. Schmidt, 2001. Calibration of Forest Chemistry for Hyperspectral Analysis, presented at IGARSS 2001, Sydney, Australia, vol. 1, pp. 52-56.
    
    62. ENVI Tutorials, Tutorial 12-19, Research Systems Inc, 2003.
    
    63. ENVI User's Guide, Chapter 10, Research Systems Inc, 2003.
    
    64. EO - 1Hyperion Science Data User's Guide - TRW http://www.eoc.csiro.au/hswww/oz pi/docs/EO1HSDataUsersGuide.pdf.
    
    65. Franklin S E, McDermid G J. Empirical relation between digital SPOT HRV and CASI spectral response and lodgepole pine forest stand parameters. Int. J. Remote sensing,
    1993,14(12):2331-2348.
    
    66. Fraser, R. S., R. A. Ferrare et. al., , 1992 . Algorithm for atmospheric correction of aircraft and satellite imagery. Int. J. Remote Sensing, 13(3):541-557.
    
    67. F. Boochs, G Kupfer, Shape of the Red Edges as Vitality Indicator for Plants[J], Int. J. Remote Sensing, 1990,Vol.11,No.10, 1741-1753.
    
    68. Green Robert O,et al. Imaging spectroscopy and airborne visible/infrared imaging spectrometer(AVIRIS). Remote Sens. Environ., 1998, 65:227-248.
    
    69. Green, A. A., Berman, M., Switzer, P, and Craig, M. D., 1998, A transformation for ordering multispectral data in terms of image quality with implication for noise removal. IEEE Transactions on Geoscience and remote sensing, Vol. 26, No.l, pp65~74.
    
    70. Goetz Alexander F H., et al. 1985. Image spectrometry for earth remote sensing. Science, 228(4 704): 1147-1153.
    
    71. Gong P, et al. Ecological land systems classification using multisource data and neural networks. GIS'94, Vancouver B C Canada, February 1994,659-664.
    
    72. Gong P., Greg Biging, and R. Pu,2004. Retrieval of Surface Reflectance and Estimation of Forest Leaf Area Index (LAI) Using Hyperion, ALI, and AVIRIS. From Intenet.
    
    73. Goodenough D. G, A. S. Bhogall, 2002. Monitoring Forests with Hyperion and ALI", In Proc. IGARSS, Vol. III, Tporonto, ON, Canada, pp. 882-885.
    
    74. Goodenough, D. G, Andrew D, K. Olaf Niemann, 2003. Processing Hyperion and ALI for Forest Classification, IEEE Tran. on Geoscience and Remote Sensing, Vol.41, No. 6, 1321-1331.
    
    75. Goodenough D.G, H. Chen, A Dyk, T. Han, S. McDonald, M. Murdoch, K. O. Niemann, J. Pearlman, C. West, 2003. "Forest Information Products from AVIRIS and Hyperion," presented at 2003 AVIRIS Workshop, Sheraton Hotel, Pasadena, USA.
    
    76. Goodenough D.G, Jay Pearlman, Hao Chen, 2004. Forest Information from Hyperspectral Sensing, Proc. IGARSS.04, Vol. IV, pp. 2585-2589, Anchorage, Alaska, USA.
    
    77. Goodenough, D. G, Bhogal, A. S., Dyk, A., and Hudson, D. 1999, "Data Fusion Of Remote Sensing Data For Forest Parameter Estimation," Proc. Fourth International Airborne Remote Sensing Conference and Exhibition /21st Canadian Symposium on Remote Sensing, Ottawa, Ontario, Canada, pp. 801-808 .
    
    78. Gordon H. R. 1978. Removal of atmosperic effects from satellite imagery of the ocean. Applied Optics,17:1631~1636.
    
    79. Huang, C, L. Yang, B. Wylie and C. Homer. 2001. A Strategy for Estimating Tree Canopy Density Using Landsat & ETM+ and High Resolution Images over Large Areas. Proceedings of the Third International Conference on Geospatial Information in
    Agriculture and Forestry, November, 2001, Denver, Colorado.
    
    80. http://eo1 .usgs. gov/products.php.
    
    81. Huete, A.. X. Gao. GP. Asner. HJ. Kim, and T. Miura. 2001. Characterization of vegetation conditions at the Nacunan and Chancani Reserves in Argentina with ground-, air- and EO~1 Hyperion data. Proceedings of the International Geoscience and Remote Sensing Symposium, Sydney, Australia.
    
    82. Hunt G. R., Jones J. L.,1986. Intelligent information extraction form reflectance spectra: absorption band positions. J. of Geophysical Research, 91:9585-9598.
    
    83. Jia, X. and J. A. Richards, 1994. Efficient Maximum Likelihood Classification for ImagingSpectraometer Data Sets, IEEE Trans. On Geoscience and Remote Sensing, 32, 274-281.
    
    84. Johnson L F, et al. 1994. Multivariate analysis of AVIRIS data for canopy biochemical estimation along the Oregon transect. Remote Sen. Environ., 47:216-230.
    
    85. Joseph P. Hoffbeck, David A. Landgrebe, Covariance matrix estimation and classification with limited training data, IEEE transaction on pattern analysis and machine intelligence. Vol. 18, No. 7, JULY 1996.
    
    86. Kaufman Y. J., 1989. The atmospheric effect on remote sensing and its correction. In Theory and Application of Optical Remote Sensing(G Asar, Ed.), New York, pp.341 ff.
    
    87. Kaufman Y. J., 1993. Aerosal optical thickness and atmospheric path radiance. Journal of Geophysical Research, 98:2677-2692.
    
    88. Kruse F. A., et al.,1993a. The spectral image processing system(SIPS) interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment,44,145-163.
    
    89. K. S. Lee, Y. I. Park, S. H. Kim, REMOTE SENSING ESTIMATION OF FOREST LAI IN CLOSE CANOPY SITUATION. Proceedings of the XXth ISPRS Congress, 12-23 July 2004 Istanbul, Turkey, 400-404.
    
    90. K. Staenz, and D.J. Williams, "Retrieval of Surface Reflectance from Hyperspectral Data Using a Look-Up Table Approach," Canadian Journal of Remote Sensing, 23(4):354~368,1997.
    
    91. Liang Shunlin, F. Hummerich, C. Walthall, C. Daughtry, and J. Morisette, Quantitative Estimation of Land Surface Variables from EO-1 Data- The Proceedings of EO-1 Science Validation Team Meeting Hilo, Hawaii, Nov. 18-22, 2002.
    
    92. Liang S, Fang H, Kaul,M, Van Niel TG, McVicar TR, Campbell SK, Walthall C, Daughtry C, Pearlman J.,2001. Land Surface Bio/Geophysical Variable Estimation for EO-1 Data and Validation. Proceedings of the International Geoscience and Remote
    Sensing Symposium, Sydney, July 2001 .
    
    93. L. W. Lass, D. C. Thill, B. Shafii, and T. S. Prather, "Detecting Spotted Knapweed (Centaurea maculosa) with Hyperspectral Remote Sensing Technology," Weed Technology, vol. 16, pp. 426 - 432,2002.
    
    94. Martin M E, et al. 1998. Determining forest species composition using high spectral resolution remote sensing data, Remote sens. Environ., 65:249-254.
    
    95. Matson P A, et al. 1994. Seasonal changes in canopy chemistry across the Oregon transect: patterns and spectral measurement with remote sensing, Ecol. Appl, ,4(2):280~298.
    
    96. Mc Vicar TR, Van Niel TG, Jupp DLB., 2001 .Geometric Validation of Hyperion Data acquired by Earth Observing 1 Satellite at Coleambally Irrigation Area. CSIRO Land and Water Technical Report 46/01, Canberra, Australia, pp. 70
    
    97. Miller J R, et al. 1991.Season patterns in leaf reflectance red edge characteristics, Int J. Remote Sens, 12(7): 1509-1523.
    
    98. Muchoney, D. M. & Haack, B. N. 1994. Change Detection for Monitoring Forest Defoliation. Photogrammetric Engineering and Remote Sensing 60(10):1243~1251.
    
    
    99. Murtha P.A, Ballard T.M.,1994. Foliar nutrients and photo interpretation of Douglas fir stress, Canadian Journal of Remote Sensing, No.9,99-110.
    
    100. Peterson, D.L., Aber, J.D., Matson, P.A., Card, D.H., Swanberg, N., Wessman, C.A. and Spanner, M. 1988. Remote sensing of forest canopy and leaf biochemical contents. Remote Sens. Environ. 24: 85-108.
    
    101. Pinzon J.E., et al, 1998. Investigation of leaf biochemistry by hierarchical foreground/background analysis, IEEE Transaction on Geoscience and Remote Sensing, 36(3), 1913-1927.
    
    102. Price, J.C., 1993. Estimating leaf area index from satellite data, IEEE Trans. Geosci. Remote Sensing, 31,727-734.
    
    103. Pu Ruiliang, Peng Gong. 2004. Wavelet transform applied to EO-1 hyperspectral data for forest LAI and crown closure mapping. Remote Sensing of Environment ,91, 212-224.
    
    104. P. Barry, EO~1/Hyperion Science Data User's Guide. Redondo Beach, CA: TRW Space, Defense & Inform. Syst., 2001.
    
    105. Richard Beck, EO-1 User Guide v.2.3, 2003. http://eol.usgs.gov & http://eol.gsfs.nasa.gov.
    
    106. Rodd, E. M., "Closed Boundary Field Selection in Multispectral Digital Images," IBM Publication No. 320.2420, Jan. 1972.
    
    107. Ruiliang Pu, Bing Xu,Peng Gong. Oakwood crown closure estimation by unmixing
    Landsat TM data. Int. J. Remote Sensing, 2003, VOL. 24, NO. 22: 4433-4445.
    
    108. Rock, B.N., Hoshizaki, T. and Miller, J.R. 1988. Comparison of in situ and airborne spectral measurements of the blue shift associated with for est decline. Remote Sens. Environ. 24: 109-127.
    
    109. Royle, D. D. & Lathrop, R. G 1997. Monitoring Hemlock Forest Health in New Jersey Using Landsat TM Data and Change Detection Techniques. Forest Science, 43(3):327~335.
    
    110. Report on the Evaluation and Validation of EO-1 for Sustainable Development (EVEOSD) Project: http://www.eoc.csiro.au/hs www/oz_pi/svt_hilo/goodenough.pdf. 2002.
    
    111. Satoshi Tsuchida, Takayuki Odajima et al, 1994. Spectral pattern analysis for geobotanical discrimination of rock types. The Tenth Thematic Conference on Geologic Remote Sensing, San Antonio, Texas, May 1,9-12.
    
    112. Section 3: Introduction to the Hyperion Instrument & Data Processing, Hyperion & ALI Data Users Workshop, Nov. 28-29,2001.
    
    113. Swain P.H. and Davis S.M., 1978. Terrestrial Imaging Spectrometer:Current Status, Future Trends, Remote Sensing of Environment, 44,117-126.
    
    114. Sokal R.R, Rohlf FJ, 1981, Biometry. WH Freman, New York.
    
    115. S. E. FRANKLIN, R. J. HALL, L. SMITH and G. R. GERYLO, 2003. Discrimination of conifer height, age and crown closure classes using Landsat~5 TM imagery in the Canadian orthwest Territories, Int. J. of Remote Sensing, Vol. 24, No.9,1823-1834.
    
    116. S.K. Jensen and F. A. Walta, 1979. Principal Components Analysis and Canonical Analysis in Remote Sensing, Proc. Of American Soc. Of Photogrammetry 45~(th) Ann. meeting.
    
    117. Treuhaft, R.N., GP. Asner, and B.E. Law, 2000. Vegetation structure from the quantitative fusion of radar interferometric and hyperspectral optical remote sensing, Progress in Electromagnetics Research Symposium, Cambridge.
    
    118. T.Han, D.G. Gondenough, A.Dyk, and J. Love, 2002. Detection and correction of abnormal pixels in Hyperion images. Proceedings of IGARSS, Vol. III, Toronto, ON, Canada, 1327-1330.
    
    119. Vane Gregg, Goetz Alexander F H. Terrestrial imaging spectrometry: current status, future trends, Remote Sens. Environ, 1993,44:117-126.
    
    120. Vogelmann, J. E. 1988. Detection of Forest Change in the Green Mountains of Vermont Using Multispectral Scanner Data. International Journal of Remote Sensing 9(7): 1187-1200.
    
    121. Vogelmann, J. E. 1990. Comparison between Two Vegetation Indices for Measuring Different Types of Forest Damage in the North-Eastern United States. International Journal of Remote Sensing 11(12):2281~2297.
    
    122. Wessman, C.A., Aber, J.D. and Peterson, D.L. 1989. An evaluation of imaging spectrometry for estimating forest canopy chemistry. Int. J. Remote Sens. 10: 1293~ 1316.
    
    123. Wessman, C.A., G.P. Asner, and N. Buchmann. 2001. Remote sensing of forest structure and biophysical properties indicating forest response to chronic N deposition. Ecological Society of America Annual Meeting, Madison, WI.
    
    124. Yoram J. Kaufman , Claudia Sendra, 1988.Algorithm for Automatic Atmospheric Corrections to Visible and Near-IR Satellite Imagery. Int. J. Remote Sensing, 9(8): 1357-1381.
    
    125. Zagolski F, et al, 1996. Forest canopy chemistry with high spectral resolution remote sensing. International Journal of Remote Sensing, 17(6): 111 07~ 1128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700