高光谱遥感土壤信息提取与挖掘研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精准农业的发展迫切要求遥感技术提供给其快速与准确的地表信息。对于土壤来说,土壤湿度、土壤的有机质含量、土壤粗糙度、土壤质地等特性是精准农业中所需要的重要信息。高光谱遥感技术作为国际遥感科学的研究前沿和热点,除具备常规遥感对农作物监测的大面积、适时、非破坏性等优点,它能够克服常规遥感的不足,通过其精细光谱优势提高农业分类的精度和准确性,动态地监测和分析作物的健康状况与影响作物产量的环境因素,具有定量反演地物特性的潜力。高光谱遥感正是凭借其极高的光谱分辨率在农业土壤和植被特性的研究中表现出非凡的研究潜力。
     本论文围绕高光谱土壤信息的提取为中心,着重研究了土壤的光谱特性以及土壤特性的实验室反演研究。在论文的第一章主要介绍了高光谱遥感的概况与精准农业对高光谱遥感的需求,及高光谱遥感在精准农业中的广泛前景。在论文的第二章,主要介绍了实验室土壤光谱数据的采集与相应土壤特性信息的实验室测试方法,对土壤光谱数据进行预处理,对土壤的光谱进行特征参数提取与特征分析。第三章是本论文的重点,主要探讨了土壤的光谱特性,包括土壤光谱特征与土壤矿物成分的关系;土壤颜色与土壤反射率的关系及其土壤颜色的反演;土壤表面湿度与土壤反射率的关系及其土壤表面湿度的几种反射率反演方法的评价;土壤有机质含量与土壤反射率的关系及其有机质含量的反演;氧化铁与土壤质地与土壤反射率的关系。论文的第四章主要对土壤的二向反射特性进行了研究,并且通过两个已有的模型对土壤的模型参数进行反演,探讨这些模型参数与土壤特性的关系。论文的第五章主要介绍了一些高光谱遥感图像的预处理的基本知识,并且对北京市精准农业示范基地的航空高光谱遥感图像进行了土壤的一些特性填图。论文的第六章,主要是对全文进行了概括总结,列举了作者的主要研究进展和在高光谱遥感图像中精确反演土壤特性参数的地难点及其改进之处。
     主要成果与结论如下:
     (1)通过对大量的土壤实验室光谱进行特征分析,除在明显的吸收峰外,发现波长在400、600、800、1350、1800、2100、2400nm位置的控制点的连线与土壤的光谱曲线吻合很好,这对于波段选择与土壤光谱数据压缩与波段选择都具有重要意义。
    
     摘 要
     (2)由土壤光谱反射率与土壤孟塞尔颜色属性的相关分析知,在可见光光
    、。,_。。;_、;.、。____、__、。、n。_。。___。。___;_。。nn__;.n1
    谱波段土壤光谱反射率与土壤色调和色度的相关不明显,而与土壤的明度值相
    关显著,能够通过土壤的反射率直接预测土壤的明度值。能够通过多元预测方
    程提高预测土壤明度值与土壤色度的精度,而多元方程对土壤的色调预测结果
    不好。通常,由于土壤的孟赛尔颜色属性是通过比对孟赛尔颜色卡获得,因此
    土壤孟赛尔颜色具有一定的主观性,而且盂赛尔颜色属性的量化比较粗略,这
    些都影晌了通过反射率预测土壤颜色属性的精度。
     (3)分析了土壤湿度与土壤光谱反射率的关系。在高土壤湿度水平时,土
    壤的光谱反射率随土壤湿度的增加而增加,在低上壤湿度水平时,土壤的光谱
    反射率随土壤湿度的增加而最小。这种增加或减小的幅度与土壤的类型有关,
    也与波长有关。通过分析土壤湿度与土壤相对反射率的关系,建立了利用相对
    反射率对土壤表面湿度的预测方法,我们发现土壤湿度水平不高时,使用近红
    外波段(如 1998urn)预测土壤水分含量的效果好于使用可见光波段(如 574urn)
    的效果,然而当土壤湿度水平较高时,使用可见光波段对土壤水分的预测效果
    好于使用近红外部分的。
     (4)通过使用相对反射率方法、一阶微分方法、差分方法对土壤表面湿度
    进行预测并且进行验证,结果表明,从总体卜看,反射率倒数的对数的一阶微
    分与差分方法对土壤水分的预测能力较强。
     (5)本文分析了土壤光谱反射率与土壤有机质含量的关系,建立了预测土
    壤有机质含量的模型,结果表明,由反射率倒数的对数的一阶微分建立的多元
    口归方程预测结果较好。
     (6)本文通过己有的几何光学模型与辐射传输模型,对土壤的光谱二向反
    射特性,进行了研究,分析了不同土壤质地土壤的二向反射特性,相同土壤不
    同湿度的二向反射特性。
     门)通过实验室光谱所建立的土壤特性参数的反演模型,尝试了对高光谱
    遥感图像进行了土壤部分特性的填图,建立了较为精细的土壤参数空间分布图。
The development of precision farming urgently requests that remote sensing technique offers to timely and accurate ground information. Soil water content, soil organic matter content, soil roughness and soil texture etc. are very important information in precision farming. As hot point and frontier in remote sensing, hyperspectral remote sensing technique not only has the advantages of traditional remote sensing that can timely and undisturbedly be used to detect large area crop, but also has special advantages. It has very high spectral resolution. More delicate spectral difference of crops can help us to precisely classify crops types and to monitor and analyze crops' vigor and the environment factors that affect crops' product. Hyperspectral remote sensing has great potential of quantitatively retrieving for objects' characteristics.
    This thesis focuses on extracting soil information from hyperspectral data, and puts great emphasis on the study of retrieving soil characteristics from laboratory spectra. The first chapter mainly introduced the background of hyperspectral remote sensing and precision farming, and then, introduced the applications and perspectives of hyperspectral remote sensing in precision farming. In the second chapter, we primarily introduced the measurement of soil characteristics and soil spectra in laboratory, and analyzed feature of soil spectra. The third chapter is the most important part of this thesis. We discussed soil spectral properties. It included: 1) The relationship between soil minerals and soil spectral reflectance; 2) The relationship between soil color and soil spectra as well as inversion of soil color from spectral reflectance; 3) The relationship between soil surface moisture and soil spectral reflectance as well as evaluation of several inversion method of soil surface moisture from reflectance; 4) The relationship between soil organic matter and soil spectral reflectance as well as inversion of soil organic matter and soil spectral reflectance; 5) The relationship between soil texture, soil ferric oxide and soil spectral reflectance. The fourth part studied the BRDF properties of soil and with two models inverse models' parameter of soils. The fifth part introduced the imaging mechanism of remote sensing and the spectra and radiance calibration methods for remote sensing images, as well as inversion of soil characteristics from airborne remote sensing image. The sixth chapter summarized the whole thesis and listed the achievement of this study, as same as, pointed out the difficulties in precise inversion of soil characteristics from hyperspectral image.
    
    
    
    Main development and conclusion as follows:
    (1) By analyzing a large number of soil spectra, we found except at the obvious absorption position, the line of these points' reflectance at the wavelengths 400, 600, 800, 1350, 1800, 2100 and 2400 nm are fitted well with spectral curve. This is useful for soil spectral data compressing and band selecting.
    (2) From the correlation between soil spectral reflectance and soil color, we utilized regression model to forecast soil Munsel properties.
    (3) The relationship between normalized soil reflectance and moisture was investigated.
    For all the wavelengths and all the soils, results show that for low soil moisture levels, the reflectance decreased when the moisture increased. Conversely, after a critical point, soil reflectance increased with soil moisture. For some soils, the reflectance of the wettest conditions can overpass that of the driest conditions. For both low and high soil moisture levels, and the seven wavelengths selected, the relative reflectance was strongly correlated with moisture. Adjustment of the relationships over individual soil types provides better soil moisture retrieval performances.
    (4) The normalization of reflectance approach, derivative approaches and the difference approaches were used to forecast soil surface moisture. And The best overall retrieval performances were achieved with the absorbance derivatives and
引文
1. Aber et al., Remote sensing of litter and soil organic matter decomposition in forest ecosystems, in: Remote sensing of biosphere functioning, Hobbs et al., New York, pp, 87-101
    2. Al-Abbas et al., Relating organic matter and clay content to mutispectral radiance of soils, Soils Sci.. 1972, 114,477-485
    3. Alfredo R. H., Extension of soil spectra to the satellite: Atmosphere, geometric, and sensor considerations, Photo-Interpretation, 1996, 2, 101-117
    4. Alfredo R. Huete, Extension of soil spectra to the satellite: Atmosphere, geometric, and sensor considerations, Photo-Interpre tation, 1996,2, 101-118
    5. Angstrom, A., The albedo of various surfaces of ground. 1925 , Geografiska Ann., 7, 323
    6. Ashburn V. and R. G. Weldon. Spectral diffuse reflectance of desert surfaces. J. Opt. Soc. Amer.. 1956. 46. 583-586
    7. Baret F., Contribution au suiviradiometrique de cultures de cereales. These de Doctorat. Universite Paris-Sud Orsay, France, 1986, 182.
    8. Baret, F., Jacquemoud, S. and Hanocq. J.F., 1993. The soil line concept in remote sensing. Remote Sensing Reviews, 7: 65-82.
    9. Baumgardner, M. F., S. Kristof, et al.. Effects of organic matter on the multispectral properties of soils. Proceedings of the Indiana Academy of Science, 1970, 79, 413-422.
    10. Baumgardner, M.F. L. F. Silva, L. L. Biehl, and E. R. Stoner, Reflectance properties of soils. Advances in. Agronomy, 1985, 38, 1-44
    11. Bedidi, A., Cervelle, B., Madeira, J. and Pouget, M., 1992. Moisture effects on spectral characteristics (visible) of lateritic soils. Soil Science. 153: 129-141.
    12. Ben-Dor et al.. The reflectance spectra of organic matter in the visible near infrared and short wave infrared region (400-2500nm)durina a controlled decomposition process. Remote Sensina of Environment. 1997. 61. 1-15
    13. Bernard P. et al.. A physical model for predicting bidirectional reflectances over bare soil, Remote Sensing of Environment. 1989/27, 273-288.
    14. Bovvers, S. A. and Smith S. J.. Spectrrophotometric determination of soil water content. Soil Science Society of America Proceedings. 1972. 36. 978-980
    15. Bovvers, S. A., and R.J.. Hanks, Reflection of radiant energy from soil, Soil Science. 1965, 100, 130-138
    16. Bowers, S.A. and Hanks. R.J.. 1965. Reflection of radiant energy from soils. Soil Science. 100(3) : 130. 138.
    17. Brad, H.M. and Ramona, E.P., 1988. Response to soil moisture of spectral indexes derived from birectional reflectance in thematic mapper wavebands. Remote Sensing of Environment. 25: 167-184.
    18. Buol et al.. Soil Genesis and Classification, 1973, Iowa State University Press. Ames. Iowa. 360
    19. Carder K. L. et al., AVIR1S calibration and application in coastal oceanic environments. Remote Sensing of Environment. 1993. 44. 205-216
    20. Chandrasekhar S.. Radiative transfer, 1950. Oxford: Clarendon Press
    21. Chen , Z. et al., 199, Derivative reflectance spectroscopy estimating suspended sediment concentration. Remote Sensing of Environment, 1992. 40. 67-77
    22. Collins,W., Remote sensing of crop type and maturity. Photogrammetric engineering and remote sensing,1978, 44, 43-55
    23. Coulson L., Effects of reflection properties of natural surfaces in aerial reconnaissance. Appl. Opt.. 1966, 5. 905-917
    
    
    24. Curcio and Petty. The infrared absorption of liquid water. J. Opt. Soc. Amer., 1951,41. 302-304
    25. Curcio, J.A. and Petty, C.C., 1951. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am.. 41(5) : 302-304.
    26. Curran, PJ, GM Foody, K, Ya. Kondratyev, VV Kozoderov, PP Fedchenko, Remote Sensing of Soils and Vegetation in the USSR, 1990, Taylor & Francis
    27. Da Costa L. M., Surface soil color and reflectance as related to physicochemical and mineralogical soil properties, Ph.D.. dissertation. University of Missouri, Columbia, Mo.. 1980 , 154
    28. Dalai, H., 1986. Simultaneous determination of moisture, organic carbon, and total nitrogen by infrared reflectance spectrometry. Soil Science Society of America, 50: 120-123.
    29. Danson, F.M., Red edge response to leaf area index. Int. J. Remote Sensing. 1995. 16. 183-188.
    30. Dcmctriadcs ct al.. High resolution derivative spectra in remote sensing. Remote Sensing of Environment. 1990, 33(1) , 55-64
    31. Donald F. Post, E. H. H., W.M.Lucas. S.A. White. M.J. Ehasz. and A.K Batchily. Relationship between soil color and Landsat Reflectance on semiarid rangelands. Soil Science Society of America journal, 1994. 58. 1809-1816
    32. Dozier J., Spectral signature of spline snow cover from the landsat thematic mapper Remote Sensing of Environment. 1989. 28. 9-22
    33. E. Ben-Dor and A. Banin, Near_Infrared Analysis as a Rapid Method to Simultaneously Evaluate Several Soil Properities, Soil Sci. Soc. Am. J.. 1995, 59. 364-372
    34. E. Ben-Dor. Y. Inbar, Y. Chen. The reflectance spectra of organic matter in the visible near-infrared and short wave infrared region (400-2500 nm). during a controlled decomposition process. Remote Sens. Environ., 1997. 61. 1-15.
    35. Enumal et al.. Spectral blue shift of red edge monitors damage class of beech trees. Remote Sens Envieon.. 1992,39,81-84
    36. Escadafal R., M. C. Oirard, D. Courault, La couleur des sols : appreciation, mesure et relations avec les proprietes spcctralcs. Agronomic. 1988. 8(2) : 147-1 54
    37. Escadafal R., Remote sensing of soil color: principles and applications. Remote Sensing Review. 1993. 7. 261-279
    38. Escadafal, A. R. H. a. R., Assessment of biophysical soil properties through speetral decomposition techniques. Remote Sensing of Environment, 1991, 35: 149-159.
    39. Escadafal. R. and A. R. Huele, Soil optical properties and environmental applications of remote sensing Int Arch. Photogramm. Rem. Sens. 1992b. XXVⅡ(B7: 709-715.
    40. Escadafal, R. Soil spectral properties and their relationship with pedological parameters Exemple tor arid regions. 1992a, Imaging spectrometry as a tool for environmental observations.. Kluwer.
    41. Feind R. E., Cloud fraction and cloud morphology for registration. IEEE Transactions on Geoscience and Remote Sensing, 1995. GE-33(1) . 172-184
    42. Fernandez R. N. et al.. Color, organic matter and pesticide adsorption relationships in a soil landscape. Soil Science Society of America journal. 1988. 52. 1023-1026.
    43. Fernandez, R. N.. and D.G. Schulze, Calculation of soil color from reflectance spectra. Soil Science Society of America journal. 1987,51. 1277-1282.
    44. Filclia, I. Et al.. The red edge position and shape as indicators of plant chlorophyll content, biomass and hydric status. Int. J. Remote Sensing, 1994, 15. 1459-1470
    45. Gaffey et al., Ultraviolet, visible and near-infrared reflectance spectroscopy : laboratory spectra of geologic materials. In Remote geochemical Analysis : elemental and mineralogical composition. Press syndicate of the university of Cambridge. New York. 1993. p 43-9S
    
    
    46. Gao B C et al.. Derivation of scaled surface reflectances from AVIRIS data. Remote Sensing of Environment, 1993,44, 165-178
    47. Gilabert,M.A. et al.. Analyses of spectral-biophysical relationships for a corn canopy. Remote Sens. Environ., 1996, 55,11-20
    48. Goetz Alexander F H ., Spectral remote sensing in geology, chapter 12. In: Theory application of of optical remote sensing. Ghasscm Asrar, John Wiley, Sons, 1989, 205-251
    49. Goctz Alexander F H ct al., Imaging spcctromctry for earth remote sensing. Science, 1985, 228, 1147-1153
    50. Gong Peng, Ruiliang Pu, and Bin Yu, Conifer species recognition: an exploratory analysis of in situ hyperspectral data. Remote Sens. Environ., 1997,62. 189-200
    51. Gong Peng, Ruiliang Pu, and Miller, J. R., Correlating leaf area index of ponderosa pine with hyperspeclral CASI data. Can. J. Remote Sens, 1992, 18 (4) , 275-292
    52. Hamilton M K, et al. Estimating chlorophyll content and bathymetry of Lake Tahoe using AVIRIS data. Remote sensing of environment. 1993. 44. 217-230
    53 Hapke B.. A theorical Photometric function for the lunar surface, J. Geophys. Res.. 1963. 68. 4571-4586
    54 Hapkc B.. Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res 1981. 86. 3039-3054.
    55 Hapkc B.. Bidirectional reflectance spcctroscopy. 3. Correction for macroscopic roughness. Icarus 1984. 59: 41-59.
    56. Hapke B., Bidirectional reflectance spectroscopy. 4. The extinction coefficient and the opposition effect, Icarus 1986,67,264-280.
    57. Hapke, B. and E. Wells, Bidirectional reflectance spectroscopy. 2. Experiments and observations. J. Geophys. Res. 1981, 86, 3055-3060.
    58. Hatanaka ct al, Estimation of available moisture holding capacity of upland soils using Landsat TM data. Soil sci. Plant Nutr.. 1995. 41,577-586
    59. Heieden. Uta. et al.. Potential of hyperspectral HyMap data for material oriented identification of urban surfaces. Proceedings of the 2nd International Symposium. Regensburg. Germany. June 22-23. 2001. 69-76
    60. Henderson T. L. ct al.. High dimensional Reflectance analysis of soil organic matter. Soil Sci. Soc. Am. J.. 1992,56,865-872
    61. Hoffer. R.M and Johannsen. C.J.. 1969. Ecological potential in spectral signatures analysis. Remote Sensing in Ecology. University of Georgia, Athens (Georgia), pp. 1-16.
    62 Huetc. A. R.. R. D. Jackson, and D. F. Post. Spectral Response of a Plant Canopy with Different Soil Backgrounds. Remote Sensing of Environment. 1985, 17. 37-53
    63 Huguenin R L. Jones J L. Intelligent information extraction from reflectance spectr: absorption band position. Journal of Geophysical Research, 1986, 91: 9585-9598
    64 Hunt et al.. Visible and near infrared spectra of minerals and rocks. Modern geology; 1971. 2. 195-205
    65 Hunt G R.. Electromagnetic radiation: The communication link in remote sensing In: Remote Sensing in Geology. Siegal B, Gillespia A Wiley New York, 1980. 702
    66 Irons J. R.. B. L. Johnson. Jr.. and G. H. Lincbaugh, Multiple-angle observations of reflectance anisotropy from an airborne linear array sensor, IEEE Trans. Geosci. Remote Sensing, 1987, Vol. GE-25. 372-383
    67. Irons J. R.. Weismillor R. A., Petersen G. W.. Soil reflectance. In Theory and applications of optical remote wensine, (eds.Gassen Asrar).Willey Interscience. 1989. 66-106
    68. Irons, J. R., R. A.Wcismillcr. et al.. Soil reflectance. Theory and Applications of Optical Remote Sensing G. Asrar. Wiley-Interscience, New York. 1989. 66-106
    69. Isakov V. Y. Et al.. Retrival of aerosol spectral optical thickness from AVIRIS data. International remote sensing, 17(11) , 2165-2184
    
    
    70. Jackson. R.D. et al.. Spectral response of colton to suddenly induced water stress. 1985. Int. J. Remote Sensing,6,177-185
    71. Jacquemoud S., F. Baret, et al.. Modeling spectral and directional soil reflectance. Remote Sensing of the Environment. 1992,41, 123-132.
    72. John, A. , Remote sensing and precision agriculture: ready for harvest or still maturing, Photogrammetric engineering & remote sensing, 1999(Octobcr), 1113-1119, 1121-1123
    73. Johnson L. F., Hlavka C. A., Peterson D. L., Multivariate analysis of AVR1S data for canopy biochemical estimation along the Oregon transect. Remote Sensing of Environment, 1994,47, 47, 216-230
    74. Jong S De M., The analysis of spectroscopical data to map soil types and soil crusts of Mediterranean eroded soils. Soil Technology, 1992. 5. 199-211
    75. Karmanov I., Study of soils from the spectral composition of reflected radiation. Soviet Journal Soil Sci..1970, 2. 226-238
    76. Kaufman Y J. et al.. The MODIS 2. 1 μm channel correlation with visible reflectance for use in remote sensing of aerosol. IEEE Transactions on Gcoscicncc and Remote Sensing. 1997,35(5) . 1286-1298
    77. Kimes et al.. Directional reflectance factor distributions for cover types of Northern Africa. Remote Sensing Environment. 1985, 18. 1-19
    78. Kondratyev K. Y. and P. P. Fedehenko. Investigation of humus in soil from their colors. Sov Soil Sci 15. 108-111
    79. Krishnan, P., J. D. Alexander ct al.. Reflectance technique for predicting soil organic matter. Soil Science Society of America Journal. 1980. 44. 1282-1285.
    80. Kruse, F.A. Kierein-Young K. S. and Boardman K. S, Mineral Mapping at Cuprite Nevada with 63 channel Imaging Spectrometer, Photo Eng. Rem Sens., 1990 56(1) , 83-92.
    81. Leger R. G. et al.. The effects of organic matter, iron oxides and moisture on the color of two agricultural soils of Quebec. Can. J. Soil Sci. 1979. 59. 191-202
    82. Leone, A. P. and Sommer, S., 2000. Multivariate Analysis of laboratory spectra for the assessment of soil development and soil degradation in the southern apcnnincs. Remote Sensing of Environment. 72: 346-359.
    83. Liang S. et al., A Modified Hapke Model for Soil Bidirectional Reflectance, Remote sensing of environment. 1996,55, 1-10
    84. Lindberg J. L., Snyder D. G., Diffuse reflectance spectra of several clay minerals. Am Min., 1972. 57, 485-493
    85. Liu Weidonn. F. Baret et al.. Relating soil surface moisture to reflectance, Remote Sens. Environ.. 2002. 81(2-3) .238-246
    86. Madeira N J. . Spectral reflectance properties of soils. Photo-Interpretation , 1996. 2, 59-76
    87. Madeira Netto. J.. Spectral reflectance properties of soils. Photo-interpretation, 1996. 2, 59-76.
    88. Mallhus.T.J. et al.. High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabea. Remote Sens. Environ.. 1993. 45. 107-116
    89. Marquardt D. W.. An algorithm for least square estimation of nonlinear parameters. J Soc. Ind. Appl. Math.. 1963. 1 1. 431-441
    90. Martin. ME and JD Aber. 1997. Estimation of forest canopy lignin and nitrogen concentration. Ecosystem Ecological Applications, 7. 441-443
    91. Martin, ME. SD Newman. JD Abcr and RG Congalton, Determining forest species composition using high spectral resolution remote sensing data. Remote Sens. Environ., 1998. 65. 249-254
    92. Mathews H. R.. Spectral reflectance of selected Pennsylvania soils. Soil Sci. Soc. Am. Proc. 1973. 37. 421-424
    93. Mathews H. R.. Spectral reflectance of selected Pennsylvania soils. Soil Sci. Soc. Am. Proc. 1973. 37.
    
    421-424
    94. Mckeague, J. A. et al.. Evaluation relationships among soil properties by computer analysis. Can. J. Soil Sci., 1971,51, 105-111
    95. Michio et al.. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relaiipn to LAI and above-ground dry phytomass. 1989, Remote Sens. Environ,27,119-127
    96. Miller J. R. Et al.. Quantitative characterization of the vegetation red edge reflectance. 1. An inverted Gaussian reflectance model. International journal of remote sensing, 1990, 11. 1775-1795
    97. Miller J. R. Et al., Season patterns in leaf reflectance red edge characteristics. International journal of remote sensing. 1991, 12, 1509-1523
    98. Minnaert M., The reciprocity principle in lunar photometry, Astrophys. J., 1941, 93, 403-410
    99 Montgomery. O. L.. An investigation of the relationship between spectral reflectance and the chemical, physical and genetic characteristics of soils, Purdue University, 1976
    100. Moran M. S. et al.. Opportunities and limitations for image-based remote sensing in precision crop management. Remote sensing of Environment, 1997, 61. 319-346
    101 Morra et al.. Carbon and nitrogen analysis of soil fractions using near-infrared reflectance spectroseopy. Soil Sci. Soc. Am. J., 1991. 55. 288-291
    102 Neema. D.L., Shah. A. and Patel, A.N., 1987. A statistical optical model for light reflection and penetration through sand. International Journal of Remote Sensing, 8(8) : 1209-121 7.
    103. Ncill P.E. ct al.. Observed effects of soil organic matter content on the microwave cmissiviry of soils. Remote Sensing of Environment. 1990,31, 175-182
    104 Nelder. J.A. and Mead. R.A.. 1965. A simplex method for function optimization. Computer Journal. 7: 308-313.
    105 Nilson T and Kuusk A.. A reflectance model for the homogeneous plant canopy and its inversion. Remote Sensing of Environment. 1989, 27. 157-167
    106 Nolin A. W. Et al.. Estimating snow grain size using AVIR1S data. Remote Sensing of Environment. 1993. 44. 231-238
    107 Oma M.V.. 197S. The chemical origins of color. J. Chem. Ed.. 1978. 55. 47S-484
    108. Palacios-Onieta. A. and S. Ustin. Remote sensing of soil properties in the santa monica mountains I Spectral analysis. Remote Sensing of Environment. 1998. 65. 170-183.
    109. Patel, A.N.. 1979. Studies on variation of spectral signatures in relation to certain geoteehnieal properties of soil samples. PhD Thesis Thesis. University of Indore, Indore (India).
    110 Penuelas, J. Et al.. Cell wall elasticity and water index(R970nm/R900nm) in wheat under different nitrogen availabilities. 1996. Int. J. Remote Sensing. I 7(2) ,373-382
    111 Philip J R. Plant water relations: some physical aspects. Annual Review of Plant Physiology. 1966. 17, 245-268
    112. Pieters C. M., Englert P. A. J.. Remote foechemical analysis: elemencal and mineralogical composition(C M. Piters and P A. J. ENGLERT.Eds). Press Syndieate of the Cniversity of Cambridge.New York.1993
    113. Pinar. A.. Grass chlorophyll and the reflectance red edge. Int. J. Remote Sensing. 1996 , 17. 35 1-357
    114. Pinty. B. and M. M. Verstracte, Extracting Information on Surface Properties Pram Bidirectional Reflectance Measurements , Journal of Geophysical Research. 1991 . 96 , 2865-2874
    115. Pinty. B.. M. M. Verstraetc. et al.. A physical model for predicting bidirectional reflectances over hare soils. Remote Sens. Environ.. 1989. 27. 273-288.
    116. Planet. W.G., 1970. Some comments on reflectance measurements of wet soils. Remote Sens. Environ.. 1: 127-129.
    
    
    117. Price, J.C., 1990. On the information content of soil reflectance spectra. Remote Sens. Environ.. 33: 113-121.
    118. Prost R., King C., Le fibre d'hellencoun, Proprieles de reflexion diffuse de pales de kaolinite en fonction de leur teneur en eau, Clayx minerals. 1983, 18, 193-204
    119. Q. Tong, Y. Zhao, et al., 2001, Hypersepctral remote sensing applied on precision agriculture in China, in: Promoting Global Innovation of Agricultural Science & Technology and Sustainable Agriculture Development, Session 6: Infromation Technology of Agriculture, 237-244
    120. Q. Tong, Y. Zhao, X. Zhang, B. Zhang, New progress in study on vegetation models for hyperspectral remote sensing, 2000, SPIE. 2000, vol. 4151. 14 3-15 2
    121. Quesney A. et al., Estimation of watershed soil moisture index from ERS/SAR data. Remote Sensing of Environment, 2000, 72, 290-303
    122. Quesney, A., Le Hegarat-Mascle. S.. Taconet. O.. Vidal-Madjar, D.. Wigneron, J. P., Loumagne. C., and M. Nonnand, 2000. Estimation of watershed soil moisture index from ERS SAR data,. Remote Sens. Environ.. 72: 290-303
    123. Railyan.V.Y. Red edge structure of canopy reflectance spectra of triticale. Remote Sens. Environ.,1993,46. 173-182
    124. Resmini R G, et al.. Mineral mapping with hyperspectral digital imagery collection experiment sensor data at Cuprite, Nevada. USA, Int. J. Remote Sensing, 1997. 18(7) .1553-1570
    125. Richard Escadafal, M.-C. G.. and Dominique Courault, Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sensing of Environment. 1989. 27, 37-46
    126. Richardson A. J. and Wiegand, C. L., Distinguishing Vegetation from Soil Background Information. Photograinmctric Engineering and Remote Sensing. 1977. 43. 1541 1552
    127. Richardson L. L. et al.. The detection of algal photosynthetic accessory pigments using airbone visible-infrared imaging spectrometer (AV1RIS) spectral data. Marine technology society journal. 1994. 28(3) . 10-21
    128. Rock, B.N. et al. High-spectral resolution reflectance measurements of red spruce and eastern hemlock foliage over a growing season. 1993. SPIE ,Vol. 1941 Ground Sensing
    129. Roush T. L. et al.. The surface composition of Mars as inferred from spcctroscopic observations. In Remote geochemical analysis : elemental and minerological composition (C. M Piters and P. A J ENGLERT, Edst. Press Syndicate of the University of Cambridge, New York. 1993. 367-393
    130. Salmon-Drexler B.C., Reducing data to parameters with physical significance and signature extension. A review of Landsat capabilities. Proc 11th symp. Remote Sens. Environ.. Ann Arbor. 1977. 1289-1299
    131. Sandidgc J. C.. Holyer R. J.. Coastal bathymetry from hyperspeciral observation of water radiance. Remote Sensing of Environment, 1998. 65. 341-352
    132. Schlesinger, W.H.. Raikes, J.A., Cross. A.K. and . Ecology. 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology. 77: 364-376
    133. Schreier H, Quantitative predictions of chemical soil conditions from multi-spectral airborne, ground and laboratory measurements, pp. 106-112 In:4th Canadian Symposium on Remote Sensing. Quebec City. Canada
    134. Shibayama et al. Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sens. Environ, 1991. 36. 45-53
    135. Shibayama ct al.. Seasonal visible, near-infrared and mid-infrared spectra of rice canopies in relation to LAI and above-ground dry photomass. Remote Sens. Environ, 1989, 27. 119-127
    136. Shibusawa et al.. On-line real-time nir soil sensor. Proceedings of 99 International conference on agricultural engineering. 1999. Beijing
    137. Skidmore, E.L., Dickerson, J.D. and Schimmelpfennig. H.. 1975. Evaluating surface soil water content by measuring reflectance. Soil science of America Proceedings. 39: 238-242.
    
    
    138. Soil Survey Staff, Soil conservation service. U. S. Dept. Agric. Soil Taxonomy. 1975. Agric. Handbook 436. U.S. Govt. Print Office. Washington, D.C.
    139. Sotnmer S., The potential of remote sensing for monitoring rural land use change and their effects on soil conditions, Agriculture, Ecosystem Environment. 1998, 67, 197-209
    140. Sommer, S., Hill, J., Megier. J. and conditions, Tporsfmrlucateos, 1998. The potential of remote sensing for monitoring rural land use changes and their effects on soil conditions. Agiculture Ecosystems and Environment, 67: 197-209.
    141. Stoner, E. R. and M. F. Baumgardner, Characteristic variations in reflectance of surface soils. Soil Sci. Soc. Am. J.. 1981. 45. 1161-1165.
    142. Stoner. E.R. and Baumgardner, M.F., 1980. Physiochcmical, site and bidirectional reflectance factor characteristics of uniformly moist soils. 111679, LARS, Purdue University. USA.
    143. Thompson. L. M.. Soil and soil fertility. 1957. McGraw-Hill. New York
    144. Todd. S. W., Hoffer. R. M.. Responses of spectral indices to variations in vegetation cover and soil background. Photogranimctric Engineering and Remote Sensing. 1998. 64(9) , 915-921
    145. Torrent J. et al.. Quantitative relationships between soil color and hematite content. Soil Sci.. 1983. 136. 354-358
    146 Vane Gregu, Goetz Alexander F H. Terrestrial imaging spectrometry. Remote sensing of Environment. 1988, 24, 1-29
    147. Vane Gregg, Goctz Alexander F H. Terrestrial imaging spectrometry : current status, future trends. Remote sensing of Environment, 1993. 44, 117-126
    148. Vincent R K, Fundamentals of geological and environmental remote sensing. Prentice Hall Series in Geographic Information Science, 1997, 1-366
    149. Walthall C. L. et al.. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surface. Appl. Opt.. 1985. 24. 383-387
    150. Wang. J. R. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE Journal of Geophysical Research., 1992, 97(D17) , 18955-18960.
    151. Wang. J.. Hsu, A.. Shi, J. C., O'Neil. P.. and Engman. T.. 1997. Estimating surface soil moisture from SIR-C measurements over the little Washita river watershed. Remote Sens. Environ.. 59: 308 320
    152. Wcssman C. A.. Abcr J. D., Peterson D. L.. An evaluation of imaging spectromctry for estimating forest canopy chemistry. International journal of remote sensing. 1989. 10. 1293-1316
    153. Wessman. C. A.. J. D. Aber. and D. L. Peterson. An evaluation of imaging spectrometry for estimating forest canopy chemistry. International Journal of Remote Sensing, 1989. 10,1293-1316
    154. Whallcy, W.R., Leeds-Harrison, P.B. and Bowman. G.E.. 1991. Estimation of soil moisture status using near infrared reflectance. Hydrological processes, 5: 321-327.
    155. Wyszecki G. et al., Color science: Concept and methods. Quantitative data and formulae. 1982. Wiley. New York. 950pp
    156. Y. Zhao, Q. Tong. L. Zheng. B. Zhang, A kernel adaptive filter(SRSSHF) and quality improvement method for hyperspcetral image on the vase of spectral dimension recognization antl spatial dimension smoothing according to CSAM. SPIE.. 2001. vol. 4552. 230-236
    157. Yasuoka Y et al. Detection of vegetation change from remotely sensed images using spectral signature similarity. Proceedings of the international geoscience and remote sensing symposium (IGARSS' 90) , College Park, Maryland. 20-24 May.1990 (Piscataway. NJ: 1 E.E.E.). 1909-1612
    158. Yueqin Xiang ct al.. Crop type with hypcrspcctral technique. SPIE Proceedings. 1998. Vol. 3502. 124-128
    159. 陈述彭、童庆禧、郭华东,遥感信息机理研究,1998,北京:科学出版社
    160. 程守洙等主编,普通物理学,北:高等教育出版社
    
    
    161.杜尔切尼科夫[苏]著《明世乾等译》,景观光学特性,北京,科学出版社
    162.宫鹏等,对地观测技术与地球系统科学,北京,科学出版社,1996
    163.胡克林,土壤养分的空间变异性特征,农业工程学报,1999,15(3),33-38
    164.华孟,王坚,土壤物理学,1993,北京:北京农业大学出版社
    165.黄昌主编,土壤学,2001,北京,中国农业出版社
    166.康绍忠,刘晓明,熊运章,土壤-植物-大气连续体水分传输理论及其应用,北京:水利电力出版社,1994
    167.雷志栋,杨诗秀,谢森传.土壤水动力学,北京:清华大学出版社,1988,205~219
    168.李小文,地物的二向性反射和方向谱特征,环境遥感,1989,1(1),67 71
    169.李小义等著,多角度与热红外对地遥感,2001,北京:科学出版社
    170.刘刚,邝继双,刘文菊,地理信息系统在生成田间肥力分布图上的应用,河北农业大学学报,1999,3,79-82
    171.刘建贵,高光谱城市地物及人工目标与提取,中国科学院遥感应用研究博士学位论文,1999年8月
    172.刘苏峡,李俊,莫兴国,刘伟东,土壤水分与SWAC系统中的水热传输。见:土壤-作物-大气系统水分运动实验研究,刘昌明,于沪宁主编,北京:气象出版社,1997,59~69
    173.卢珊等,论精准农业建设的地理信息技术关键,地球信息科学,2001,1,38 12
    174.陆登槐等编著,遥感技术在农业工程中的应用,北京:清华大学出版社,1997
    175.陆家驹等,应用遥感技术连续监测地表土壤含水量,水科学进展,1997,8(3),281-287
    176.骆世明等,农业生态学,长沙:湖南科学技术出版社,1987
    177.南京农业大学主编,土壤农化分析,1981,北京,农业出版社
    178.彭玉魁等,土壤水分、有机质和总氮含量的近红外光谱分析研究,土壤学报,1998,35(4),553 559
    179.浦瑞良,宫鹏,高光谱遥感及其应用,北京:高等教育出版社,2000
    180.浦瑞良,宫鹏,森林生物化学与CASI高光谱分辨率遥感数据的相关分析,遥感学报,1997,1(2),115 123
    181.浦瑞良等,美国西部黄松叶面积指数与高光谱分辨率CASI数据的相关分析,环境遥感,8(2),1993,112—124
    182.孙宇瑞,汪懋华,赵燕东,一种基于驻波比原理测量土壤介电常数的方法,农业工程学报,1999b,2(6),37-42
    183.孙宇瑞,赵燕东,王一鸣,一种基于传输线阻抗变换理论的土壤水分测量仪,中国农业大学学报,1999a,4,14—16
    184.童庆禧,成像光谱技术发展初探,成像光谱仪技术与应用,1993,19
    185.童庆禧,中国典型地物波谱及其特征分析,北京:科学出版社,1990
    186.童庆禧、郑兰芬,高光谱遥感发展现状,中科院遥感所遥感信息科学开放研究实验室年报,1999年,246 258
    187.童庆禧等,湿地植被成像光谱遥感研究,遥感学报,1997,1(1),50 57
    188.汪懋华,“精细农业”研究与工程科技创新,农工程学报,1999,15(1):1—8
    189.汪懋华,第二讲 “精细农作”的技术思想,精细农业系列讲座,2001,http://www.bjaeu.edu.cn/keji pac.xljz.xljz2.htm
    190.王晋年、郑兰芬、童庆禧,成像光谱图像光谱吸收,鉴别模型与矿物填图研究,环境遥感,1996,11(1)
    191.王志刚等,光谱角度填图方法及其在岩性识别中的应用,遥感学报,1993,3(1),60 65
    192.魏文秋等,热红外遥感监测土壤含水量模型及应用,遥感技术与应用,1993,(1),18-25
    193.熊帧,高光谱遥感图像分类技术研究,中国科学院遥感应用研究所博士学位论文,2000年6月
    
    
    194.徐彬彬,土壤剖面的反射光谱研究,土壤,2000,281—287
    195.徐彬彬等,土壤光谱反射特性与理化性状的相关分析,见:宁芜土壤遥感研究专集,北京:科学出版社,1987,66-76
    196.徐彬彬等,中国陆地背景和土壤光谱反射特性的地理分区的初步研究,环境遥感,1991,142-151
    197.徐彬彬等,中国陆地背景和土壤光谱反射特性的地理分区的初步研究,环境遥感,1991,6,142-151
    198.严泰来等,精准农业的由来与发展及其在我国的应用策略,计算机与农业,2000(1),3-5
    199.杨敏华,试谈遥感信息发展与农业信息获取,遥感信息,2000,4,44-46
    200.杨相恒等,氮、磷交互作用下小麦氮素营养丰缺的光谱诊断与估测,遥感信息,1992
    201.杨印生,冯传平等,精确农业的社会经济特征和经济分析问题初探,农业工程学报,2000,15(5):122-125
    202.张兵等,成像光谱技术应用于植被精细光谱分析,中国科学院遥感应用研究所年报,1997
    203.赵永超,光谱遥感中典型地物目标的光谱特征分析和信息提取模型,中科院遥感所博士后研究工作报告,2001
    204.郑兰芬、童庆禧、王晋年,高光谱分辨率遥感研究进展,中科院遥感所遥感信息科学开放研究实验室年报,1995,275-283
    205.郑兰芬、王晋年,成像光谱遥感技术及其图像光谱信息提取的分析研究,环境遥感,1992,7(1),49-58
    206.朱永豪等,不同湿度条件下黄棕壤光谱反射率的变化特征及其遥感意义,土壤学报,1984,21(2),194-201

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700