表面等离子体及其在亚微米级测量中应用的数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体是纳米光子学重要的研究领域之一,也是纳米探测技术、生物传感技术、超分辨率聚焦与成像技术和纳米波导技术等众多前沿课题的重要基础理论之一。金属纳米结构在入射光作用下激发表面等离子体,其光学性质取决于金属色散介质的相对介电系数、纳米结构的尺寸和形状、金属结构周围介质的折射率以及入射光的偏振态等因素,因而表面等离子的产生、分布和传导特性相比普通光波更加复杂。在高数值孔径物镜聚焦区域电磁场存在三个方向的偏振分量,因而在聚焦区域内的金属纳米结构会受到不同偏振方向电场的作用而激发表面等离子体。
     本论文针对高数值孔径物镜聚焦区域三维电磁场分布的特点,提出了将计算聚焦区域光场分布的Debye理论与时域有限差分方法(FDTD)相结合的新的研究方法,仿真分析金属纳米结构在聚焦光束作用下激发表面等离子体的机理、特性和新的光学现象,并进行了利用表面等离子体的光学特性进行亚微米尺度精密测量研究的初步探讨。本论文主要工作如下:
     1、利用总场/散射场方法将用Debye理论计算的线偏振聚焦光束和径向偏振聚焦光束作为入射波源代入三维FDTD计算空间中,验证了用FDTD计算聚焦区域光场分布的有效性和精确性。
     2、介绍了表面等离子体的经典电磁理论和色散介质的相对介电系数模型,并用多种方法将这些模型实现于FDTD程序中.。用表面等离子体共振(SPR)模型仿真算例比较了各种方法的优缺点,其中PLRC方法在计算精度和速度上都是最优的。
     3、提出了用双平行纳米棒结构产生的局域表面等离子体(LSPs)调制焦点区域光场分布的新方法,在等离子体波导外侧得到了超分辨率的焦点。利用不同宽度的双纳米棒产生的LSPs的焦点分布不同,通过探测焦点可以反之推测双纳米棒的宽度,其测量分辨率达4.67nm。
     4、利用双纳米棒结构超长波导将焦点区域光场能量传导到1μm之外的远场区域,并且还可以传导到垂直于光轴方向的轴外区域,大大拓展了焦点区域光场分布范围。
The surface plasmons(SP) is one of the important research areas in nano-photonics. It is also one of the foundamental theories for the nano-detection, biosensor, super-resolution focusing and imaging, and nano-waveguide technologies. The metallic nano-structures excite the SP under the interaction with the incident light wave. The optical properties of SP are decided by the relative permittivity of metallic dispersive media, the size and shape of the nano-structure, the refractive index of the media surround the metallic nano-strucure, and the polarization of the incident light, so that its excitation, distribution and propagation properties are complicated compare to normal light wave. There are three polarization components in the focal region of high numerical aperture objective. The metallic nano-structures in the focal region would interact with different polarized electric fields and excite the SP.
     In this thesis, according to the properties of 3D distributions of the electromagnetic field in the focal region of high numerical aperture objective, we demonstrate the new aproach that combine the Debye theory for calculating the optical field distribution of focal region with the finite difference time domain(FDTD) method. This new method can be used to investigate the excitation machnism and new optical phenomenons of SP excited by the metallic nano-structures under the illumination of focal beams. Further more, the application of the optical properties of SP for the precision measurement in the submirometer scale will be investigated primarily.
     The main work of this project is listed as:
     1、The electrical field distributions of linearly polarized and radially polarized focal beams calculated by vectorial Debye theory are induced into 3D FDTD simulation space using the total field/scattering field method. The effect and precision of the FDTD simulation for the optical distribution of the focal region are testified.
     2、The classical electromagnetic theory of surface plasmons and the relative permittivity models of dispersive media are introduced. These relative permittivity models are implemented into FDTD program by several methods such as PLRC, ADE and SO. The simulation example of surface plasmons resonance model is applied to compare the simulation precision and speed of these methods are analyzed. The result shows the PLRC method is the best among them.
     3、The modulation of the focal region by the localized surface plasmons(LSPs) excited by the two parallel nanorods structure is demonstrated. A super-resolved focus can be obtained outside the nano-plasmonic waveguide. The optical fields of different distances between the two nanorods show different distributions. The precise detection of different LSPs patterns can be used to measure the different distances between the nanorods, which shows that the measurement resolution is less than 5nm.
     4、The optical field energy of the focal region can be transferred to the far field futher than 1μm by the super-long two nanorods waveguide structure. The“L”-shaped two nanorods waveguide transfer the electromagnetic field from the focal region to the direction perpendicular to the optical axis, which widely broaden the distribution region of the focal spot.
引文
[1] William L. Barnes, Alain Dereux and Thomas W. Ebbesen, Surface plasmon subwavelength optics, Nature, 2003, 424(6950): 824~830.
    [2] Seungchul Kim, Jonghan Jin, Young-Jin Kim, et al., High-harmonic generation by resonant plasmon field enhancement, Nature, 2008, 453(7196):757~760.
    [3] P. Andrew and W. L. Barnes, Energy Transfer Across a Metal Film Mediated by Surface Plasmon Polaritons, Science, 2004, 306(5698): 1002~1005
    [4] Ekmel Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions, Science, 2006, 311(5796): 189~193.
    [5] J. Parsons, E. Hendry, C. P. Burrows, et al., Localized surface-plasmon resonances in periodic nondiffracting metallic nanoparticle and nanohole arrays, Phy. Rev. B, 2009, 79(7): 073412.
    [6] H. J. Lezec, A. Degiron, E. Devaux, et al., Beaming Light from a Subwavelength Aperture, Science, 2002, 297(5582): 820~822.
    [7] Jason M. Montgomery, Tae-Woo Lee and Stephen K. Gray, Theory and modeling of light interactions with metallic nanostructures, J. Phy.: Condens. Matter, 2008, 20(32): 323201.
    [8] D. Ballester, M. S. Tame, C. Lee, et al., Long-range surface-plasmon-polariton excitation at the quantum level, Phy. Rev. A, 2009, 79(5): 053845.
    [9] Joseph R. Lakowicz, Plasmonics in Biology and Plasmon-Controllec Fluorescence, Plasmonics, 2006, 1(1): 5-33.
    [10] Hope T. Beier, Christopher B. Cowan, I-Hsien Chou, et al., Application of Surface- Enhanced RamanSpectroscopy for Detection of Beta Amyloid Using Nanoshells, Plasmonics, 2007, 2(2): 55-64.
    [11] Patrick Englebienne, Anne Van Hoonacker and Michel Verhas, Surface plasmon resonance: principles, methods and applications in biomedical sciences, Spectroscopy, 2003, 17: 255~273.
    [12] Paresh Chandra Ray, Gopala Krishna Darbha, et al., Gold Nanoparticle Based FRET for DNA Detection. Plasmonics, 2007, 2(4): 173~183.
    [13] Jér?me Hottin, Julien Moreau, Gisèle Roger, et al., Plasmonic DNA: Towards Genetic Diagnosis Chips, Plasmonics, 2007, 2(4):201~215.
    [14] X. D. Hoa, A. G. Kirk, and M. Tabrizian, Towards integrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosen. Bioelectron. 2007, 23(2): 151~160.
    [15] Jun SHibayama, Taichi Takeuchi, Naoki Goto, et al., Numerical Investigation of a Kretschmann-Type Surface Plasmon Resonance Waveguide Sensor, J. Lightw. Technol., 2007, 25(9): 2605~2611.
    [16] Young Sun, Nolan C. Harris and Ching-Hwa Kiang, Phase Transition and Optical Properties of DNA-Gold Nanoparticle Assemblies, Plasmonics, 2007, 2(4): 193~199.
    [17] Wing-Cheung Law, Ken-Tye Yong, Alexander Baev, et al., Nanoparticle enhanced surface plasmon resonance biosensing: Application of gold nanorods, Opt. Express, 2009, 17(21): 19041~19046.
    [18] Kaoru Tamada, Fumio Nakamura, Masateru Ito, et al., SPR-based DNA Detection with Metal Nanoparticles, Plasmonics, 2007, 2(4): 185~191.
    [19] Romain Quidant, Chiristian Girard, Surface-plasmon-based optical manipulation, Laser & Photon. Rev., 2008, 2(1-2): 47~57.
    [20] Maurizio Righini, Giovanni Volpe, Christian Girard, et al., Surface Plasmon Optical Tweezers: Tunable Optical Manipulation in the Femtonewton Range, Phy. Rew. Lett. 2008, 100(18): 186804.
    [21]Bradley S. Schmidt, Allen H. J. Yang, David Erichkson, et al., Optofluidic trapping and transport on solid core waveguides within a microfluidic device, Opt. Express, 2007, 15(22): 14322~14334.
    [22] Li Mao, Zhipeng Li, Biao Wu, et al., Effects of quantum tunneling in metal nanogap on surface-enhanced Raman scattering, Appl. Phy. Lett. 2009, 94(24): 243102.
    [23] Fu Min Huang, Nikolay Zheludev, Yifang Chen, et al., Focusing of light by a nanohole array, Appl. Phy. Lett. 2007, 90(9): 091119.
    [24] A. S. Grimault, A. Vial, J. Grand, et al., Modelling of the near-field of metallic nanoparticle gratings: localized surface plasmon resonance and SERS applications, J. Microscopy, 2007, 229(3): 428~432.
    [25] Baoshan Guo, Qiaoqiang Gan, Guofeng Song, et al., Numerical Study of High-Resolution Far-Field Scanning Optical Microscope via a Surface Plasmon-Modulated Light Source, J. Lighw, Technol. 2007, 25(3): 830~833.
    [26] Jian Ye, Chang Chen, Willem Ban Roy, et al., The fabrication and optical property of silver nanoplates with different thickness, Nanotechnol. 2008, 19(32): 325702.
    [27] H. Ditlbacher, N. Galler, D. M. Koller, et al., Coupling dielectric waveguide modes to surface plasmon polaritons, Opt, Express, 2008, 16(14): 10455~10464.
    [28] Ning-Ning Feng and Luca Dal Negro, Plasmon mode transformation in modulated-index metal-dielectric slot waveguides, Opt. Lett. 2007, 32(21): 3086~3088.
    [29] Arthur R. Davoyan, Ilya V. Shadrivov and Yuri S. Kivshar, Nonlinear plasmonic slot waveguides, Opt. Express, 2008, 16(26): 21209~21214.
    [30] Bo Zhang, and Shan Du, Circular arc plasmonic waveguide couplers between two-dimensional dielectric slab waveguides and plasmonic waveguides. Opt. Commun. 2008, 281(23): 5756~5759.
    [31] R. F. Oulton, V. J. Sorger, D. A. Genov, et al., A hybrid plasmonc waveguide for subwavelength confinement and long-range propagation, Nature Photonics, 2008, 2(8): 496~500.
    [32] Maziar P. Nezhad, Kevin Tetz, Yeshaiahu Fainman, Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides, Opt. Express, 2004, 12(17): 4072~4079.
    [33] Gabriela M. Slavcheva, John M. Arnold and Richard W. Ziolkowski, FDTD simulation of the Nonlinear Gain Dynamics in Active Optical Waveguides and Semiconductor Microcavities, IEEE J. Select. Topics Quantum Electron. 2004, 10(5): 1052~1062.
    [34] A. Manjavacas and F. J. Garcia de Abajo, Robust Plasmon Waveguides in Strongly Interacting Nanowire Arrays. Nano Lett. 2009, 9(4): 1285~1289.
    [35] K. Tanaka, G. W. Burr, T. Grosjean, et al., Superfocussing in a metal-coated tetrahedral tip by dimensional reduction of surface-to edge-plasmon modes, Appl. Phy. B, 2008, 93(1): 257~266.
    [36] Michael G. Somekh, Shugang Liu, Tzvetan S. Velinov, et al., High-resolution scanning surface-plasmon microscopy, Appl. Opt. 2000, 39(34): 6279~6287.
    [37] Gwenael Gaborit, Damien Armand, Jean-Louis Coutaz, et al., Excitation and focusing of terahertz surface plasmons using a grating coupler with elliptically curved grooves, Appl. Phy. Lett. 2009, 94(23): 231108.
    [38] Humeyra Caglayan, Irfan Bulu, and Ekmel Ozbay, Focusing surface plasmon via changing the incident angle, J. Appl. Phy. 2008, 103(5): 053105.
    [39] Zhaowei Liu, Jennifer M. Steele, Werayut Srituravanich, et al., Focusing Surface Plasmons with a Plasmonic Lens, Nano Lett. 2005, 5(9): 1726~1729.
    [40] Zhaowei Liu, Stéphane Durant, Hyesog Lee, et al., Far-Field Optical Superlens, Nano Lett. 2007, 7(2): 403~408.
    [41] Hwi Kim, Joonku Hahn, and Byoungho Lee, Focusing properties of surface plasmon polariton floating dielectric lenses, Opt. Express, 2008, 16(5): 3049~3057.
    [42] Igor I. Smolyaninov and Christopher C. Davis, Resolution enhancement of a surface immersion microscope near the plasmon resonance, Opt. Lett. 2005, 30(4): 382~384.
    [43] Peter Zijlstra, James W. M. Chon and Min Gu. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature, 2009, 459(7245): 410-413.
    [44] Jin Z. Zhang and Cecilia Noguez, Plasmonic Optical Properties and Applications of Metal Nanostructures, Plasmonics, 2008, 3(4): 127-150.
    [45]葛德彪,闫玉波.电磁波时域有限差分方法,第二版,西安:西安电子科技大学出版社, 2005.
    [46] R. H. Ritchie. Plasma Losses by Fast Electrons in Thin Films. Phy. Rev. 1957, 106(5): 874~881.
    [47] C. J. Powell and J. B. Swan, Origin of the Characteristic Electron Energy Losses in Aluminum, Phys. Rev. 1959, 115(4):869~875.
    [48] C. J. Powell and J. B. Swan, Origin of the Characteristic Electron Energy Losses in Magnesium, Phys. Rev. 1959, 116(1): 81~83.
    [49] E. A. Stern and R. A. Ferrell, Surface Plasma Oscillations of a Degenerate Electron Gas. Phys. Rev. 1960, 120(1): 130~136.
    [50] E. Kretschmann and H. Raether, Radiative decay of nonradiative surface plasmons excited by light, Z. Natureforsch. A, 1968, 23: 2135~2136.
    [51] J. E. Inglesfield and E. Wikborg, The Van der Waals interaction between metals, J. Phys. F: Metal Phys.1975, 5(8):1475~1489.
    [52] E. Zaremba and W. Kohn, Van der Waals interaction between an atom and a solid surface, Phys. Rev. B, 1976, 13(6): 2270~2285.
    [53] D. C. Langreth and J. P. Perdew, Exchange-correlation energy of a metallic surface: Wave-vector analysis, Phys. Rev. B, 1977, 15(6): 2884~2901.
    [54] J. W. Gadzuk and H. Metiu, Theory of electron-hole pair exictations in unimolecular processes at metal surfaces. I. X-ray edge effects, Phys. Rev. B, 1980, 22(6): 2603~2613.
    [55] B. Hecht, H. Bielefeldt, L. Novotny, et al., Local Excitation, Scattering and Interference of Surface Plasmons, Phy. Rev. Lett. 1996, 77(9): 1889~1892.
    [56] S. C. Kitson, W. L. Barnes, and J. R. Sambles, Full Photonic Band Gap for Surface Modes in the Visible, Phy. Rev. Lett. 1996, 77(13): 2670~2673.
    [57] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, et al., Extrordinary optical transmission through sub-wavelength hole arrays, Nature, 1998, 391(6668): 667~669.
    [58] O. Sqalli, M. P. Bernal, P. Hoffmann, et al., Improved tip performance for scanning near-field optical microscopy by the attachment of a single gold nanoparticle, Appl. Phys. Lett. 2000, 76(15): 2134~2136.
    [59] F. I. Baida, D. Van Labeke, Y. Pagani, Body-of-revolution FDTD simulations of improved tip performance for scanning near-field optical microscopes, Opt. Commun. 2003, 225(4): 241~252.
    [60] Haofei Shi, Changtao Wang, Chunlei Du, et al., Beam manipulating by metallic nano-slits with variant widths, Opt. Express, 2005, 13(18): 6815~6820.
    [61] B. Liedberg, C. Nylander, I. Lunstrom, Surface plasmons resonance for gas detection and biosensing, Sens. Actuators, 1983, 4: 299~304.
    [62] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method. 3rd ed, Norwood, MA: Artech House, 2005.
    [63] K.S.Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxiwell’s Equations in Isotropic Media. IEEE Trans. Antennas Propagat. 1966,14(3): 802~807.
    [64] A. Taflove. Application of the Finite-Difference Time-Domain Method to Sinusoidal Steady-State Electromagnetic-Penetration Problems. IEEE Trans. Electromagn. Compat. 1980, 22(3):191~202.
    [65] A. D. Raki?, Aleksandra B. Djuri?i?, Jovan M. Elazar, et al., Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 1998, 37(22): 5271~5283.
    [66] Kenneth S. Cole and Robert H. Cole. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9(4):341~351.
    [67]张玉强,葛德彪,基于半解析递归卷积的通用色散介质FDTD方法,物理学报, 2009, 58(7): 4573~4578.
    [68] S. R. Nagel and S. E. Schnatterly, Frequency dependence of the Drude relaxation time in metal films, Phy. Rev. B, 1974, 9(4): 1299~1303.
    [69] M. Okoniewski and E. Okoniewska, Drude dispersion in ADE FDTD revisited, Electron. Lett. 2006, 42(9): 503~504.
    [70] A. Yelon, K. N. Piyakis, E. Sacher, Surface plasmons in Drude metals, Surface Science, 2004, 569(1-3): 47~55.
    [71] Aleksandar D. Raki?, Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum, App. Opt. 1995, 34(22): 4755~4767.
    [72] F. Hao, P. Nordlander, Efficient dielectric function for FDTD simulation of the optical properties of silver and gold nanoparticles, Chem. Phy. Lett. 2007, 446(1-3): 115~118.
    [73] Reinterpretation of the Auxiliary Differential Equation Method for FDTD, IEEE Microw. Wireless Compon. Lett. 12(3): 102~104.
    [74] Alexandre Vial, Anne-Sophie Grimault, Demetrio Macías, et al., Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phy. Rev. B, 2005, 71(8): 085416.
    [75] Kyung-Young Jung and Fernando L. Teixeira, Multispecies ADI-FDTD Algorithm for Nanoscale Three-Dimensional Photonic Metallic Structures, IEEE Photon. Technol. Lett. 2007, 19(8): 586~588.
    [76] W. H. P. Pernice, F. P. Payne, and D. F. G. Gallagher, A General Framework for the Finite-Difference Time-Domain Simulation of Real Metals, IEEE Trans. Antennas Propag. 2007, 55(3): 916~923.
    [77] P. G. Etchegoin, E. C. Le Ru, and M. Meyer, An analytic model for the optical properties of gold, J. Chem. Phy. 2006, 125(16):164705.
    [78] Alexandre Vial, Implementation of the critical points model in the recursive convolution method for modeling dispersive media with the finite-difference time domain method. J. Opt. A: Pure Appl. Opt., 2007, 9(7): 745~748.
    [79] Alexandre Vial and Thierry Laroche, Discription of dispersion properties of metals by means of the critical points model and application to the study of resonant structures using the FDTD method, J. Phys. D: Appl. Phy. 2007, 40(22): 7152~7158.
    [80] Raymond J. Luebbers, Forrest P. Hunsberger, Karl S. Kunz, et al., A Frequency-Dependent Finite-Difference Time-Domain Formulation for Dispersive Materials, IEEE Trans. Electromag. Compat. 1990, 32(3): 222~227.
    [81] Raymond J. Luebbers, Forrest Hunsberger, and Karl S. Kunz, A Frequency-Dependent Finite-Difference Time-Domain Formulation for Transient Propagation in Plasma, IEEE Trans. Antennas Propag. 1991, 39(1): 29~34.
    [82] Raymond J. Luebbers and Forrest Hunsberger, FDTD for Nth-Order Dispersive Media, IEEE Trans. Antennas Propag. 1992, 40(11): 1297~1301.
    [83] David F. Kelley and Raymond J. Luebbers, Piecewise Linear Recursive Convolution for Dispersive Media Using FDTD, IEEE Trans. Antennas Propag. 1996, 44(6): 792~797.
    [84] Rose M. Joseph, Susan C. Hagness, and Allen Taflove, Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses, Opt. Lett. 1991, 16(8): 1412~1414.
    [85] Dennis M. Sullivan, Frequency-Dependent FDTD Methods Using Z Transforms, IEEE Trans. Antennas Propag. 1992, 40(10): 1223~1230.
    [86]葛德彪,吴跃丽,朱湘琴,等离子体散射FDTD分析的移位算子方法,电波科学学报. 2003, 18(4): 359~362.
    [87] Hongwei Yang, R. S. Chen, Yongchun Zhou, SO-FDTD Analysis on Magnetized Plasma, Int. J. Infrared Milli. Waves, 2007, 28(9): 751~758.
    [88] M.Gu, Advanced Optical Imaging Theory, Heidelberg:Springer, 1999.
    [89] K.S. Youngworth and T. G. Brown, Focusing of high numerical aperture cylinderical- vector beams, Opt. Express, 2000, 7(2): 77-87.
    [90] Qiwen Zhan and James R. Leger, Focus shaping using cylindrical vector beams, Opt. Express, 2002, 10(7):324~331.
    [91] D. P. Biss and T. G. Brown, Cylindrical vector beam focusing through a dielectric interface, Opt. Express, 2001, 9(10): 490- 497.
    [92] Gerrit Mur, Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain electromagnetic field equations, IEEE Trans. Electromagn. Compat., 1981, 23(4): 377~382.
    [93] J. P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 1994, 114(2): 185~200.
    [94] Stephen D. Gedney, An Anisotropic Perfectly Matched Layer-Absorbing Medium for the Truncation of FDTD Lattices, IEEE Trans. Antenn. Propag. 1996, 44(12): 1630~1639.
    [95] J. Alan Roden and Stephen D. Gedney, Convolution PML (CPML): An Efficient FDTD Implementation of the CFS-PML for Arbitrary Media, Mirowave Opt. Technol. Lett. 2000, 27(5): 334~339.
    [96] Allen Taflove and Morris E. ZBrodwin, Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell’s Equations, IEEE Trans. Mirowave Theory Tech. 1975, 23(8): 623~630.
    [97] William S. C. Chang, Principles of Lasers and Optics, New York: Cambridge University Press, 2005.
    [98]张粹伟.径向偏振辐射畸变整形问题,激光与光电子学进展, 2003, 40(2): 14~16.
    [99]崔祥霞,陈君,杨兆华,径向偏振光研究的最新进展,激光杂志, 2009, 30(2): 7~10.
    [100] Baohua Jia, Xiaosong Gan, and Min Gu, Direct measurement of a radially polarized focused evanescent field facilitated by a single LCD, Opt. Express, 2005, 13(18): 6821~6827.
    [101] Korada Umashankar, and Allen Taflove, A Novel method to Analyze Electromagnetic Scattering of Complex Objexts, IEEE Trans. Electromagn. Compat., 1982, 24(4): 397~405.
    [102] James W. M. Chon and Min Gu, Scanning total internal reflection fluorescence microscopy under one-photon and two-photon excitation: image formation, Appl. Opt. 2004, 43(5): 1063~1071.
    [103] Max Born and Emil Wolf, Principles of Optics, 6th ed., New York: Pergamon, 1980.
    [104] M. Savard, C. Tremblay-Darveau, and G. Gervais, Flow Conductance of a Sinlge Nanohole, Phy. Rev. Lett., 2009, 103(10): 104502.
    [105] Y. C. Chang, J. Y. Chu, T. J. Wang, et al., Fourier analysis of surface plasmon waves launched from single nanohole and nanohole arrays: unraveling tip-induced effects, Opt. Express, 2008, 16(2): 740~747.
    [106] Yakov M. Strelniker, Theory of optical transmission through elliptical nanohole arrays, Phy. Rev. B, 2007, 76(8): 085409.
    [107] J. M. Pitarke, V. M. Silkin, E. V. Chulkov, et al., Theory of surface plasmons and surface-plasmon polaritons, Rep. Prog. Phys. 2007, 70(1):1~87.
    [108] Stefan Alexander Maier, Plasmonics Fundamentals and Applications, New York: Springer, 2007.
    [109] N. W. Ashcroft and N. D. Mermin. Solid State Physics. Philadelphia: Saunders, 1976.
    [110] R. H. Ritchie and H. B. Eldridge. Optical Emission from Irradiated Foils.I, Phy. Rev. 1962, 126(6): 1935 ~1947
    [111] Shaoli Zhu and Yongqi Fu. Optical Biochip with Multichannels for Detecting Biotin-Streptavidin Based on Localized Surface Plasmon Resonance. Plasmoncis, 2009, 4:
    [112] Yuan-Fong Chao, Min Wei Chen and Din Ping Tsai, Three-dimensional analysis of surface plasmon resonance models on a gold nanorod, Appl. Opt. 2009, 48(3): 617~622.
    [113] W.H.P. Pernice, F.P. Payne and D.F.G. Gallagher, An FDTD method for the simulation of dispersive metallic structures, Opt. Quant. Electron. 2006, 38(9):843~856.
    [114] P.B. Johnson and R. W. Christy. Optical Constants of the Noble Metals. Phys. Rew. B, 1972, 6(12):4370~4397.
    [115] Yuan-Fong Chau, Din Ping Tsai, Guang-Wei Hu, et al., Subwavelength optical imaging throught a silver nanorod, Opt. Eng., 2007, 46(3): 039701.
    [116] Thierry Laroche and Christian Girard, Near-field optical properties of single plasmonic nanowire, Appl. Phy. Lett., 2006, 89(23): 233119.
    [117] Jun Shibayama, Ryo Takahashi, Junji Yamauchi, et al., Frequency-Dependent Locally One-Dimensional FDTD Implementation with a Combined Dispersion Model for the Analysis of Surface Plasmon Waveguides, IEEE Photon. Tech. Lett. 2008, 20(10): 824~826.
    [118] Jen-Yu Fang, Chung-Hao Tien, and Han-Ping D. Shieh. Hybrid-effect transmission enhancement induced by oblique illumination in nano-ridge waveguide, Opt. Express, 2007, 15(18):, 11741~11749.
    [119] Leilei Yin, Vitali K. Vlasko-Vlasov, et al., Subwavelength Focusing and Guiding of Surface Plasmons, Nano Lett., 2005, 5(7): 1399~1402.
    [120] W.M. Saj. Light focusing with tip formed array of plasmon-polariton waveguides, Proc. of SPIE, 2007, 6641: 664120.
    [121] Hiroshi Kano, Seiji Mizuguchi, and Satoshi Kawata, Excitation of surface-plasmon polaritons by a focused laser beam, J. Opt. Soc. Am. B, 1998, 15(4): 1381~1386.
    [122] Zimin Zhu, Michael G. Somekh, and Morgen P. Steven, Behavior of localized surface plasmon near focus, Opt. Commun. 2002, 207(): 113~119.
    [123] Baohua Jia, Xiaosong Gan, and Min Gu, Direct observation of a pure focused evanescent field of a high numerical aperture objective lens by scanning near-field optical microscopy, Appl. Phy. Lett., 2005, 86(13): 131110.
    [124] Baohua Jia,Xiaosong Gan and Min Gu, Height/width aspect ratio controllable two-dimensional sub-micron arrays fabricated with two-photon photopolymerization, Optik, 115(8): 358-362.
    [125] A. Husakou and J. Herrmann, Subdiffraction focusing of scanning beams by a negative-refraction layer combined with a nonlinear layer, Opt. Express, 2006, 14(23): 11194-11203.
    [126] A. Husakou and J. Herrmann, Focusing of Scanning Light Beams below the Diffraction Limit without Near-Field Spatial Control Using a Saturable Absorber and a Negative-Refraction Material, Phy. Rev. Lett., 2006, 96(1): 013902.
    [127] Zhongyue Zhang and Yiping Zhao, Optical properties of U-shaped Ag nanostructures, J. Phy: Condens. Matter, 2008, 20(): 345223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700