多功能共焦表面测量系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展,在航天、航空、材料、光电子、生物医学和信息等产业中,研制和开发出了越来越多的高精密设备,各种各样的微小、精细的元器件得到了广泛的应用,而元件的表面质量恰恰是影响仪器设备精度的关键因素,这就对元件表面轮廓的三维测量提出了更高的要求。表面测量、分析与评价,是一个多学科交叉研究的课题,具有重要的科学意义和应用价值。
     现有的各种高精度光学表面测量仪器,往往是针对单参数测量的,大多不能很好地兼顾精度和量程之间的矛盾。虽然触针式轮廓仪可以在较大的测量范围内实现高分辨率,但存在着触针的机械压力和损伤对测量精度的影响,不适合测量软质和高精度表面,限制了其应用范围;含有丰富信息,不允许划伤的表面要求非接触测量,因此,开发和研制一种非接触的、高精度的、多功能的表面测量系统势在必行。
     基于此,本文提出了一种多功能的共焦表面测量系统,该系统兼顾了高精度和大量程,由共焦、显微和光学视觉位移测量三个子系统组成,采用显微系统进行粗瞄准,共焦系统进行精细瞄准和小量程、高分辨力的测量,再通过与聚焦物镜的移动相配合,用精密视觉位移测量系统实现大量程测量。应用深度信息和图像重构技术可以获得物体表面形貌图。这样系统不仅可以解决高精度、含有丰富信息和软质材料制品的形貌测量问题而且也适用于常规机械制品的表面形貌的测量,同时具有显微观察能力,可以更好地展现和分析表面特性,是一种应用范围十分广泛而且技术含量又很高的新型仪器。在微电子、微机械、光学加工、航空航天、生物医学和材料科学等领域有着广阔的应用前景和实用价值。
     本文首先阐明了共焦系统具有高的横向分辨力和轴向分辨力的原因,对影响轴向分辨力的相关因素进行了分析,为系统的优化设计奠定了理论基础。设计并研制了多功能的共焦表面测量系统,对系统的主要组成部分——共焦光学测头、显微视觉检测和精密视觉位移测量部分进行了设计,并对共焦光学测头的几个关键要素——光源、物镜、针孔和光电探测器等进行了详细的研究和分析。
     为了提高表面测量的精度,准确的分离和提取所需的特征信号,对表面评定的核心技术——评定基准的确定进行了研究,提出了基于双密度小波的表面形貌误差分离的实现方法,并用模拟信号和实测粗糙度样板信号进行了对比分析、计算,与用高斯滤波中线和DB小波中线计算的粗糙度参数Ra值相比,准确度提高了4%,而且能更好的从形貌误差信号中分离出粗糙度、波度和形状误差。
     为了更好的观察和分析表面的特性,对采集的序列显微图像进行了高精度的聚焦形貌重构。对影响聚焦评价函数曲线的各种干扰,本文给出了双密度小波软阈值去噪的方法,在消除干扰的同时,保持了数据点位置的不变,信噪比的提高。
     最后,对所研制系统进行了性能测试和实验研究:比较了不同特性的表面对轴向响应曲线的影响;用所研制的系统测量了表面粗糙度样板和台阶;对系统的误差源进行了分析,结果表明该系统具有较高的测量精度,而且功能多、体积小、使用方便。
With the development of technology, more and more high-precision equipments appear in many fields such as aerospace, material, photoelectron, biomedicine and IT, and miscellaneous minute and delicate components have been widely used. For surface quality of the element is exactly the key factor influencing on the precision of instrument, high requirement is proposed to satisfy the 3-D measurement of the unit surface profile. Surface measurement, analysis and evaluation come to be a multi-disciplinary subject, which has shown great theoretical significance and application value.
     The current high-accuracy optical surface instruments are mainly used for one-parameter measuring, and often can’t solve the contradiction between the procession and measuring range well. The stylus profile instrument can get high resolution in a rather large range, but simultaneously bringing about mechanical pressure and damage of stylus, which effected on the measuring accuracy. And it can’t be used for the soft and high precision surface measuring, with the limited application. Therefore, it’s necessary to develop a non-contact, high-accuracy, multifunctional instrumentation system for the surface measurement, which contains more rich information and scratches prohibition.
     According to this, a multi-functional confocal surface measurement system was presented, covering high-precision and large measurement range. The system was made up of confocal, microscope and optical visual displacement measurement. With microscope coarsely aligning, confocal system precise aiming, little-range and high-resolution measuring, and accompanying with the movement of the focused eye lens, the large-range measurement could be accomplished by accurate visual displacement system. Furthermore, the depth information and image reconstitution technology could be used to get the subject surface topography. Thus, the system could solve the problem of high-precision, rich information and soft material profile measurement, and at the same time, it could offer the ability of micro-examination, which was helpful to analyze the surface characteristics in detail. As a novel device with plenty of technology contents, the system could be used widely and had showed broad application prospect and utility value in the fields of microelectronic, micromechanics, optical fabrication, aerospace, biomedicine and materials science et al.
     Firstly, the cause of the confocal system having the ability of providing high lateral and axial direction resolution was clarified and the correlative factors affecting the resolution were analyzed, which had given the theoretical basis for further optimum design.
     A multi-functional confocal surface measurement system was developed and the main components of the system were represented, which were confocal detection head, micro optical observation and precise visual displacement measurement of lens. The investigation and analysis of the key factors of confocal optical detection were also given in detail, such as light source, object lens, pin holes and electro-photonic detectors.
     To increase the accuracy of surface measurement, exactly separate and extract the required characteristic signal, the determination of the criteria for evaluation was focused on, which was the core technology of the surface assessment. Based on double density wavelet transform (DDWT), a novel roughness separation method for engineering surface analysis was proposed. With individual analysis by simulating data and actual measurement of surface roughness comparator, the accuracy of roughness parameter Ra could be improved about 4% by DDWT line than that of Gaussian line or DB wavelet line. Furthermore, the roughness, waviness and shape inaccuracy could be easily separated from the surface topography error signal.
     To make further observation and analysis of the surface characteristics, the high-accuracy focusing reconstruction was accomplished based on microscopy serial images. A de-noising method of double-density wavelet with soft threshold was proposed to eliminate interference by focusing evaluation function. While eliminating the interference, the data location was kept and the signal-to-noise ratio was improved.
     Finally, performance test and experimental research were executed on this new system, and the comparison of axial response curves was obtained by characteristic-different surfaces.
     With this new system, surface roughness comparator and step measurement were accomplished and the analysis of the error sources was performed. Results showed that this new system had the superior properties of high precision, multi function, little size and convenience in application.
引文
1蒋剑峰,何永辉,赵万生.表面三维微观形貌检测及其发展.中国机械工程. 1999,10(12):1418~1420
    2徐德衍,林尊琪.光学表面粗糙度研究的进展与方向.光学仪器. 1996,18 (1):32~37
    3王文博,王晓慧,黄苒等. LCoS微显示驱动芯片表面形貌研究与改进.液晶与显示. 2008,23(5):630~632
    4王富生,谭久彬.表面微观轮廓的高分辨率光学测量方法.光学精密工程. 2000,8(4):309~314
    5杨春兰.基于差动像散技术的多功能光探针测量系统研究.哈尔滨工业大学博士论文. 2001:5~14
    6李喜德,施惠基.器件表面形貌及粗糙度检测.实验力学. 2006,21 (2):111~120
    7孟波,郭万林,姜燕.表面形貌对1Cr11Ni2W2MoV不锈钢耐腐蚀性能的影响.机械工程材料. 2008,32(8):8~11,15
    8惠梅.表面微观形貌测量中相移干涉术的算法与实验研究.中国科学院西安光学精密机械研究所博士学位论文. 2001:3~13
    9蒋建锋.表面微观形貌及其在毛化工艺中的应用.哈尔滨工业大学博士论文. 1999:1~6
    10冯斌,王建华.表面形貌光学法测量技术.计量与测试技术. 2005,32(6):4~6
    11王军,鲍海明等.光学形貌测量技术综述.光电子技术与信息. 2004,17(6):12~15
    12 H. C. Kandpal, D. S. Mehta, J. S. Vaishya. Simple Method for Measurement of Surface Roughness Using Spectral Interferometry. Optics and Lasers in Engineering. 2000,34(3):139~148
    13 L. Yuan, Y. Liu, W. Sun. Fiber Optic Moire Interferometric Profilometry. SPIE, 2005, 5633:55~65
    14高宏.表面形貌测量方法的研究.清华大学博士论文. 1991:1~3, 8~9
    15 S. Ryoo, Y. K. Seong, Choi, S. Tae. 3-D Profilometry Based on the White Light Interferometer for Rough Surfaces. SPIE, 1999, 3782: 619~626
    16 B. Holme. Studying Changes in Surface Topography by White Light Interferometry. TMS Annual Meeting. 2002, 205~210
    17 R. Windecker, H. J. Tiziani. Optical Roughness Measurements Using ExtendedWhite-light Interferometry. Optical Engineering. 1999,38(6): 1081~1087
    18 G. Kim, S. Kim. White Light Scanning Interferometry for Thickness Measurement of Thin Film Layers. SPIE, 1993,783:239~246
    19 P. Pavlicek. Height Profile Measurement by Means of White Light Interfero-metry. SPIE, 2003, 5259:139~144
    20 M. L. Dufour, B. Gauthier. Precise Surface Profilometry Based on Low Cohe-rence in Terferometry. SPIE, 2003, 5260:173~178
    21常素萍,谢铁邦,基于白光干涉的MEMS三维表面形貌测量.华中科技大学学报(自然科学版). 2007,35(9):9~11
    22郭彤,胡春光等.垂直扫描白光干涉技术用于微机电系统的尺寸表征.光学学报. 2007,27(4):668~672
    23 http://www.vertinfo.com/main/products
    24 http://zygo.com.cn/products
    25 G. E. Sommargren. Optical Heterodyne Profilometry. Appl. Opt.. 1981,20(4): 610~662
    26 G. E. Sommargren. An Optical Measurement of Surface Profile. Pre. Eng. 1981:
    131~136
    27 Tkaczyk, Tomasz, Jozwicki, Romuald. Experimental and Numerical Models of a Field Heterodyne Interferometer. Discussion on Optical Influences in Measurements. SPIE. 2000, 4076: 192~200
    28 C. C. Huang. Optical Heterodyne Profilometer. Opt. Eng.. 1984, 23(4): 365~ 370
    29 Dan Pantzer, et al. Heterodyne Profiling Instrument for the Angstrom Region. Appl. Opt.. 1986,25(22):4168~4172
    30梁嵘,李达成等.在线测量表面粗糙度的共光路激光外差干涉仪.光学学报. 1999, 19(7):958~961
    31梁嵘,李达成,曹芒等.表面微观形貌测量及其参数评定的发展趋势.光学技术. 1998, (6): 66~68
    32于瀛洁.激光外差干涉技术用于表面形貌检测的研究.哈尔滨工业大学博士论文. 1998: 1~5
    33尤政,李柱.一种非接触光外差轮廓仪.宇航计测技术. 1992, (4): 17~21
    34卓永模,杨甬英等.双焦干涉表面微观轮廓检测.仪器仪表学报. 1993, 14 (2):148~153
    35卓永模,杨甬英等.双焦干涉球面微观轮廓仪.仪器仪表学报. 1995, 16(3): 254~259
    36周肇飞,王世华等.同轴式高分辨率激光轮廓仪.仪器仪表学报.1994,15(3): 250~254
    37岳兆阳,林德教等.对称共路外差干涉法测量硬盘磁头飞行高度瞬态调制.中国激光. 2007, 34(6): 841~845
    38 http://zygo.com.cn/products
    39 R. Dandliker, et al.. Two-wavelength Laser Interferometry Using Super-Heterodyne Detection. Optics Letters. 1988, 13(5): 339~341
    40张存满,赵洋,李达成.超外差干涉绝对距离测量研究综述.光学技术. 1998, (1):7~10
    41 Preza, Chrysanthe, et al. Imaging Models for Three-dimensional Transmitted light DIC Microscopy. SPIE, 1996, 2655: 245~256
    42 F. Kagalwala, et al. Computational Model of DIC Microscopy for Reconst-ructing Specimens. Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology, 1999: 823~828
    43孙平,黄珍献等.电子散斑干涉载频调制形貌测量技术.光电子·激光. 2008, 19(4):525~527
    44马志芳,高秀梅等.基于迈克尔逊干涉的傅里叶变换散斑形貌测量技术.应用光学. 2008, 29(6):874~877
    45朱日宏,陈磊等.移相干涉测量技术及应用.应用光学. 2006, 27(2): 1288~ 1293
    46赖秀娟.双光栅正弦相位调制(SPM)干涉测量技术的发展与应用.江西科学. 2008, 26(5):741~744
    47 B. Q. Li, T. G. Liu, Y. Zhang. Dynamic Displacement Measurement of Low-E Membrane Reactor by PSD Based on Laser-Triangulation Method. Proc. Of SPIE. 2007,6829:1N1~1N8
    48 D. Post, P. Ifju. High Sensitivity Moire: Experimental Analysis for Mechanics and Materials. Springer, Berlin, Heidelberg, 1994
    49 M. Halioua, H. C. Liu. Optical Three-dimensional Sensing by Phase Measuring Profilometry. Opt Laser Eng. 1989,11(3):185~215
    50 T. Yoshizawa, T. Yamaguchi, H. Takahashi, et al. Structured Lighting Method Using Moire Pattern Projection. SPIE, 2001, 4567:40~47
    51林晓艳,吴美霞.用于物体三维测量的光纤投影器的设计与数值模拟.光学技术. 2007, 33(1):37~40
    52 Y. Fainman, Eh. Lenz, J. Shamir. Optical Profiler: A New Method for High Sensitivity and Wide Dynamic Range. Appl. Opt. 1982, 21(17):3200~3208
    53 K. C. Fan, C. Y. Lin, L. H. Shyu. The Development of a Low-cost Focusing Probe for Profile Measurement. Meas. Sci. Technol. 2000, 11:N1~N7
    54 L. De. Chiffre, H.N.Hansen. Metrological Limitations of Optical Probing Techniques for Dimensional Measurements. Annals of the CIRP. 1995,44(1): 501~504
    55 http://www.Keyence.com/products
    56张玉梅,左春柽,李春芳,等.基于激光三角法的圆度误差在线检测技术研究.工具技术. 2008,42(12):82~85
    57 A. Asundi, W. Zhou. Unified Calibration Technique and Its Application in Optical Triangular Profilometry. Appl. Opt. 1999, 38(16):3556~3561
    58赵敏,邱宗明等.跟踪式偏振光三角法测头.光电工程. 2007, 34(12):49~53
    59王玉田,刘辉等.基于光源扫描的三角法位移测量方法.传感器与微系统. 2007, 26(10):106~108
    60赵伟博.基于线激光扫描的三维测距系统.浙江大学硕士论文. 2008:1~34
    61 http://www.soif.com.cn/
    62 A. JC. Brown, U. Breitmeier. Industrial Application of an Optical Profilometer. SPIE. 1988, 954:200~207
    63 A. JC. Brown. Rapid Optical Measurement of Surfaces. Int. J. Mach. Tools Manufact. 1995, 35(2):135~139
    64 M. Minsky, Microscopy Apparatus, US Patent:3013467, 1961
    65 P. Davidovits, M. D. Egger, Scanning Lasering Microscopy for Biological Investigation, Appl Opt, 1971, 10: 1615~1619
    66 P. Davidovits, M. D. Egger, US Patent: 3643015, 1972
    67 C. J. R. Sheppard, T. Wilson. Depth of Field in the Scanning Microscopy. Opt. Lett. 1978, 3(3):11~117
    68 T. Wilson. Confocal Microscopy. London. Academic Press. 1990:123~156
    69高兴宇.线结构光共焦扫描显微系统的研究.桂林电子科技大学硕士论文. 2006:1~32
    70李智.基于时间差法的光学共焦式测头.天津大学硕士学位论文.2005:1~20
    71 C. H. Lee, J. P. Wang. Noninterferometric Differential Confocal Microscopy With 2-nm Depth Resolution. Optics Communications. 1997, 35, 233~237
    72 C. H. Lee, CH. L. Guo, J. P. Wang. Optical Measurement of the Viscoelastic and Biochemical Responses of Living Cells to Mechanical Perturbation. Opt. Lett. 1998, 23(4): 307~309
    73 http://www.Keyence.com/products
    74 http://www.micro-epsilon.com.cn
    75 Tim Dabbs, Monty Glass. Fiber-optic Confocal Microscope: FOCON. Appl.Opt. 1999, 31: 3030~3035
    76 M. D. Sharma, C. J. R. Sheppard. Efects of System Geometry on the AxialResponse of the Fibre-optical Confocal Microscope. Journal of Modern Optics. 1999, 46(4): 605~621
    77 M. Gu, C. J. R. Sheppard. Axial Resolution in the Fibre-optical Confocal Scanning Microscope Using Annular Lens. Optics Communications.1992, 88(1): 27~32
    78 Ilko K. Ilev, R. W. Waynant. A High-resolution Fiber-optic Confocal Micro- scope. Proc. Proceedings of SPIE. 2001, 4261: 7~13
    79 Ilko K. Ilev, R W. Waynant, Erik Gorman, et. al. Combined Fiber-optic Confocal Microscopy for Noninvasive Optical Sensing. Proceedings of SPIE 2003, 4957: 23~28
    80 L. S. Yang, G. Y. Wang, et al. Surface Profilometry with a Fibre Optical Confocal Scanning Microscope. Meas. Sci. Technol. 2000,11:1786~1791
    81葛华勇,任秋实等.内窥式共焦显微术.激光生物学报.2008,17(4): 535~538
    82 Robert Windecker, et al. Low-coherence Fiber-optic Sensor with a Large Numerical Aperture for Topographic Measurements. Appl. Opt.. 1998, 37(19): 4080~4083
    83 C. J. R. Sheppard, M. Gu. Optical Transfer Function Analysis for Two-photon
    4Pi Confocal Fluorescence Microscopy. Optics Communications, 1995, 114(1): 45~49
    84柳忠尧.用于掩模板表面形貌测量的外差干涉显微系统的研究.清华大学博士论文. 2004, 6
    85 H-J. Jordan, M. Wegner, H. Tiziani. Highly Accurate Non-contact Characte-rization of Engineering Surfaces Using Confocal Microscopy. Meas. Sci. Techn.1998, 9:1142~1151
    86 M.顾.共焦显微术的三维成像原理(王桂英,等).北京:新时代出版社.2000, l~13
    87 P. C. Lin, P. C. Sun, L. J. Zhu et al. Single-shot Depth-section Imaging through Chromatic Slit-scan Confocal Microscopy. Applied Optics, 1998, 37(10): 6764 ~6770
    88 H. J. Tiziani, R. Achi, R. N. Krmen, et al. Theoretical Analysis of Confocal Microscopy with Microlenses. Appl.Opt.1996, 35(1):120~125
    89 H. J. Tiziani. Chromatic Confocal Microscopy with Microlens. Journal of Modern Optics. 1996, (1), 155~163
    90孔兵,王昭,谭玉山.利用共焦成像原理实现微米级的三维轮廓仪.西安交通大学学报. 2001, 35(11):1151~1154
    91王永红,余晓芬,黄其圣等.基于差动共焦的并行三维形貌检测系统的研究.中国科学技术大学学报. 2003, 33(4):415~420
    92田维坚,陈波,郭履容等.并行共焦检测方法的理论分析.光学学报. 1999, 19(10):1381~1385
    93 M. Neil, R. Juskaitis, et al. Optimized Pupil-plane Filters for Confocal Microscope Point-spread Function Engineering. Opt.Lett.2000,25:245~47
    94 W. Q. Zhao, J. B. Tan, L. R. Qiu. SABCMS, A New Approach to Higher Lateral Resolution of Laser Probe Measurement. Sensors and Actors A .2005,120(1): 17~25
    95邱丽荣.超分辨光瞳滤波理论及其共焦传感技术研究.哈尔滨工业大学博士论文. 2005: 89~116
    96 http://www.chinde.com/product
    97游俊富,王虎,赵海上.扫描探针显微镜在粗糙度、纳米尺寸、表面形貌观测方面的应用.现在科学仪器. 2003,(2):9~12
    98杨旭东,王生怀,李家春,等.二维位移传感器及应用的大量程表面形貌测量装置.中国专利:CN101029817. 2007.9.5
    99潘兵,谢惠民,李艳杰.用于物体表面形貌和变形测量的三维数字图像相关方法.实验力学. 2007,22(6):556~567
    100郧建平,杨旭东,谢铁邦.一种接触式大量程表面形貌测量仪.中国机械工程. 2008,19(8):909~913
    101陈庆虎,谢峰等.小波滤波的频率结构分析及其在表面形貌分析中的应用.武汉交通科技大学学报. 1998, 22(3):231~233
    102许景波.高斯滤波器基本理论与应用研究.哈尔滨工业大学博士论文. 2007:3~10
    103林滨,黄新雁,魏莹,王岚.加工表面形貌测量理论、方法及评价.制造业自动化. 2006,(28)8:14~18
    104 D. J. Whitehouse. Survey of Reference Lines in the Assessment of Surface Texture. Ann CIRP. 1972,21(2):267~273
    105 ISO11562-1996, Geometrical Product Specifications (GPS)─Surface Texture: Profile Method─Metrological Characteristics of Phase Correct Filters. International organization for Standardization, Geneva.
    106袁怡宝.表面形貌测量若干基本理论的研究.哈尔滨工业大学工学博士学位论文. 1997
    107 Hara Seiichiro, Tsukada Tadao, Sasajima Kazuyuki. An In-line Digital Filtering Algorithm for Surface Roughness Profiles. Prec Eng. 1998, 22: 190~ 195
    108 S. Brinkmann, H. Bodschwinna, HW. Lemke. Development of a RobustGaussian Regression Filter for Three-dimensional Surface Analysis. Procee- dings of the Xth International Colloquium on Surface, Chemnitz. Chemnitz University of Technology, 2000:122~132
    109 S. Brinkmann, H. Bodschwinna, H.W. Lemke. Accessing Roughness in three-Dimensions Using Gaussian Regression Filtering. Machine Tools & Manu-facture. 2001, 41:2153~2161
    110 H. f. Li, X. Q. Jiang, L. Zhu. Robust Estimation in Gaussian Filtering for Engineering Surface Characterization. Prec Eng. 2004,28:186~193
    111李惠芬,蒋向前.三维表面功能评定技术发展综述.工具技术, 2002, 36(2): 8~11
    112 X. Chen, J. Raja, S. Simanapali. Multi-scale Analysis of Engineering Surface. Int. J. Mach. Tools Manufact. 1995, 35(2):231~38
    113 J. Raja, B. Muralikrishnan. Recent Advances in Separation of Roughness, Waviness and Form. Precision Engineering. 2002, 26(2):222~235
    114 J. Bruno, R. B. David, J. L. Michael. Frequency Normalized Wavelet Transform for Surface Roughness Analysis and Characterization. Wear. 2002, 252:491 ~500
    115 X. Q. Jiang, L. Blunt, K. J. Stout. Application of the Lifting Wavelet to Rough Surfaces. Precision Engineering. 2001, 25:83~89
    116 W. Zeng, X. Jiang, P. Scottt. Metrological characteristics of dual-tree complex wavelet transform for surface analysis. Measurement Science and Technology. 2005, 16:1410~1417
    117 X. Q. Jiang, L. Blunt, K. J. Stout. Lifting Wavelet for Three-dimensional Surface Analysis. Machine Tools and Manufacture. 2001, 41:2163~2169
    118 ISO 12085 Geometrical Product Specification (GPS)—Surfacetexture:Profile method—MOTIF parameters. 1996
    119 M. Dietzsch, K. Papenfuss, T. Hartmann. The MOTIF-method (ISO 12085)-a Suitable Description for Functional, Manufactural and Metrological Requirements. Int J of Mach Tools& Manufact. 1998, 38(5/6): 625~632
    120卢圣凤,李柱.分形表面特征信息的复合评定方法.机械工程学报. 2002, 38 (8):64~67
    121王富生.基于差动共焦显微探测原理的三维测量技术研究.哈尔滨工业大学博士论文. 2001:20~52
    122 D. J. Whitehouse. Stylus Contact Method for Surface Metrology in the Ascendancy. Measurement and Control. 1998, 31(2):48~50
    123刘国栋.惯性约束聚变靶场光电监测关键技术研究.哈尔滨工业大学博士论文. 2005: 25~26
    124 H. F. Li, C. F. Cheunga, X. Q. Jiang. A Novel Robust Gaussian Filtering Method for the Characterization of Surface Generation in Ultra-precision Machining. Precision Engineering. 2006, 30:421~430
    125曾文涵,谢铁邦,蒋向前,李柱.表面粗糙度的稳健提取方法研究.中国机械工程. 2004, (15)2:127~130
    126 X. Liu, J. Raja, H. Sannareddy. Assessment of Plateau Honed Surface Texture Using Wavelet Transform. Proc. of ASPE, 1995,14:672~675
    127 Q. H. Chen, S. N. Yang,Z. Li. Surface Roughness Evaluation by Using Wavelets Analysis. Precision Engineering. 1999, 23(3):55~59
    128 X. Q. Jiang, L. Blunt, K. J. Stout. Development of a Lifting Wavelet Repre-sentation for Characterization of Surface Topography. Proc. R. Soc. Lond. A, 2000,456:2283~2313
    129 I. W. Selesnick. The Double Density DWT in Wavelets in Signal and Image Analysis: From Theory to Practice. Eds. A. A. Petrosian and F. G. Meyer, ch. 2, Kluwer Academic Publishers, Boston, MA, 2001
    130 I. W. Selesnick and A. F. Abdelnour. Symmetric Wavelet Tight Frames with Two Generators. Applied and Computational Harmonic Analysis. 2004, 17(2):211~225
    131尚赵伟,张明新等.基于双密度小波变换的纹理图像检索.西安交通大学学报. 2005, 39(10):1081~1084
    132 J. R. Sveinsson, J. A. Benediktsson. Double Density Wavelet Transformation for Speckle Reduction of SAR Images. IEEE 2002:113~115
    133 Ashoka Jayuwardenu. Design of Double Density Wavelet Filter Banks. 2003 IEEE: 463~466
    134杨建国.小波分析及其工程应用.北京:机械工业出版社. 2005:161~167
    135刘涛,曾祥利,曾军.实用小波分析入门.北京:国防工业出版社. 2006:85~ 95
    136何晓昀.磨粒表面形貌分析与三维重构.武汉理工大学硕士论文. 2005:17~ 47
    137黄琳.激光共焦扫描显微镜系统中显微图像处理的研究.南京理工大学博士论文. 2007,7
    138 M. B. Ahmad, T. Choi. A Heuristic Approach for Finding Best Focused Shape. IEEE Trans. on Circuits and Systems for Video Technology. 2005, 15(4): 566~574
    139 M. B. Ahmad, T. Choi. Fast and Accurate 3D Shape from Focus Using Dynamic Programming Optimization Technique. . Proceedings of ICASSP'05,2005, 2: 969~97
    140 M. B. Ahmad, T. Choi. Shape from Focus Using Optimization Technique. Proceedings of 2006 IEEE International Conference on Speech and Signal Processing:493~496
    141 Paolo Favaro, Stefano Soatto. A Geometric Approach to Shape from Defocus. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2005, 27(3): 406~417
    142 Li Ma, R. C. Staunton. Integration of Multiresolution Image Segmentation and Neural Networks for Object Depth Recovery. Pattern Recognition. 2005, 38:985–996
    143 G. N. Desouza, A. C. Kak. Vision for Mobile Robot Navigation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002, 24(2): 179~185
    144 C. Zitnick, T. Kanade. A Cooperative Algorithm.for Stereo Matching and Occlusion Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 2000, 22(7):675~684
    145 D. A. Forsyth. Shape from Texture and Integrability. International Conference on Computer Vision, Vancouver, BC, 2001:447~453
    146袁成清,严新平等.基于激光共焦扫描显微镜方法的磨损表面三维数字化描述.润滑与密封. 2006, 12(12):33~36
    147 Y. J. Wei, Z. L. Dong, L. Miao, W. J. Li. Analysis of Depth from Defocus Measurements for Micro-Imaging and 3D Micro-Visual Reconstruction. Proceedings of the 2005 IEEE International Conference on Information Acquisition. 2005:223~229
    148 A. Yokota, T. Yoshida, H. Kashiyama et al. High-speed Sensing System for Depth Estimation Based on Depth-from-focus by Using Smart Imager. IEEE International Symposium on Circuits and Systems, ISCAS 2005, 1:564~567
    149黄琳,陶纯堪等.激光共焦扫描显微镜中的图像复原方法.光子学报. 2007, 36(4):642~644
    150章毓晋.图像工程:图像处理和分析.北京:清华大学出版社, 2000
    151 X. Y. Xu, E. L. Miller. Adaptive Two-pass Median Filter to Remove Impulsive Noise Image Processing. Proceedings of the First International Conference on Machine Learning and Cybernetics, Beijing, 2002:808~811
    152王正光,周忠英.数据采集与处理.国防工业出版社, 2001,9:169~182
    153胡涛.机器视觉中的自动调焦及形貌恢复技术研究.哈尔滨工业大学博士论文. 2007:21~29
    154 Z. M. Kang, L. Zhang, P. Xie. Implementation of an Automatic FocusingAlgorithm Based on Spatial High Frequency Energy and Entropy ACTA ELECTRONICA SINICA, 2003, 31(4): 552~555
    155 Z. T. Zhu, S. F. LI, H. P.Chen. Research on Auto-focused Function Based on the Image Entropy. Optics and Precision Engineering, 2004,12(5): 537~542
    156 G. T. Bao, H. Zhao, W. Tao. Algorithm’s Study on Automatic Focusing for Image Measurement Technology. Journal of Shang Hai Jiao Tong University. Vol. 39, No. 1 Jan, 2004:120~124
    157王义文,刘献礼等.基于小波变换的显微图像清晰度评价函数及3-D自动调焦技术.光学精密工程. 2006, 14(6):1063~1069
    158方勇华,孔超等.应用小波变换实现光谱的噪声去除和基线校正.光学精密工程. 2006, 14(6):1088~1092
    159陈国波.基于散焦显微图像的三维重构方法研究.浙江工业大学硕士论文. 2007, 5:13~45
    160刘立波,赵辉,张海波等.激光三角测距中光斑细分定位方法研究.计算机测量与控制. 2008, 16(10):1396~1398
    161浦昭邦,王宝光主编.测控仪器设计.第二版.机械工业出版社, 2007: 50~54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700