GLUT1在不同出生体重儿胎盘中的表达变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     异常出生体重的新生儿为高危儿,且异常出生体重儿易发生儿童、成年肥胖及某些成年疾病。导致异常出生体重的因素有很多,其中胎盘转运功能对于胎儿的生长发育起着十分重要的作用。葡萄糖是胎盘转运最多的营养物质,胎盘葡萄糖转运异常可影响胎儿生长发育。目前国内外对胎盘葡萄糖转运体(GLUTs)表达的研究报道较少。因此研究GLUT1、GLUTs在胎盘中的表达规律、调节机制具有重要意义。本文应用逆转录-聚合酶链反应(RT-PCR)及Western Blot方法检测孕晚期不同出生体重新生儿胎盘组织中GLUT1 mRNA及蛋白表达的差异性,探讨胎盘GLUT1在围产期对调控胎儿体重的影响。
     方法
     选择不同出生体重新生儿的新鲜胎盘组织标本120例。其中足月分娩80例,包括正常出生体重组、胎儿生长受限(FGR)组、高出生体重(LGA)组各20例(均无并发症及合并症),高出生体重且有糖尿病并发症(GDM/LGA)组20例;未足月(选择33周~35周)分娩40例:适于胎龄儿(AGA)组及小于胎龄儿(SGA)组各20例(均无其它并发症及合并症)。采用RT-PCR及Western Blot方法检测120例胎盘组织中GLUT1mRNA及蛋白的表达情况。统计学方法:应用SPSS13.0进行分析,计量资料实验数据结果采用均数±标准差((?)±s)表示,样本率的比较用卡方检验,以P<0.05为差异有统计学意义。
     结果
     1、孕妇的一般状况比较
     (1)孕妇年龄、孕周的比较
     FGR组、LGA组与GDM/LGA组与正常组间比较及SGA组与AGA组比较,孕妇的年龄、孕周经统计学分析均差异(均P>0.05)。
     (2)孕妇体重的比较
     FGR组孕妇体重(65.23±6.87 kg)与正常组孕妇体重(67.34±9.34 kg)比较,差异无显著性(P>0.05);LGA组孕妇体重(81.02±8.45 kg)及GDM/LGA组(80.67±6.59kg)与正常组比较差异有显著性(均P<0.05);LGA组及GDM/LGA组之间比较差异无显著性(P>0.05)。
     2、胎盘重量的比较
     FGR组的胎盘重量(418.24±60.55g)、LGA组胎盘重量(820.44±65.24g)及GDM/LGA组胎盘重量(830.32±54.66g)与正常组胎盘重量(580.71±76.31g)比较有明显差异(均P<0.05);GDM/LGA组与LGA组间比较无显著差异(P>0.05);SGA组胎盘重量(352.56±79.38g)与AGA组胎盘重量(445.44±68.54g)比较有显著差异(P<0.05)。
     3、胎盘GLUT1 mRNA相对含量的比较
     FGR组相对含量(0.593±0.142)、LGA组相对含量(0.815±0.155)及GDM/LGA组相对含量(0.859±0.201)与正常组相对含量(0.764±0.123)比较,有统计学意义(P<0.05);SGA组相对含量(0.504±0.086)与AGA组相对含量(0.681±0.112)比较有统计学意义(P<0.05);LGA组及GDM/LGA组比较无显著性差异,(P>0.05)。FGR组、LGA组、GDM/LGA组与正常组mRNA的阳性表达率分别为85%、90%、90%、80%,差异无统计学意义;SGA组与AGA组mRNA阳性率为85%、80%,差异无统计学意义。
     4、胎盘GLUT1蛋白相对含量的比较
     FGR组相对含量(53.13±7.78)、LGA组相对含量(84.22±12.65)及GDM/LGA组相对含量(87.68±17.23)与正常组(65.27±9.32)比较,有统计学意义(P<0.05);SGA组相对含量(48.36±6.71)与AGA组相对含量(61.45±7.63)比较,有统计学意义(P<0.05);LGA组与GDM/LGA组比较无显著性差异(P>0.05)。
     结论
     不同出生体重儿胎盘中GLUT1表达不同,FGR胎盘中的表达低于正常出生体重儿,而高出生体重儿表达更多,GLUT1可能是影响胎儿出生体重因素之一。
Objective
     Abnormal birth weight newborn baby is that the very dangerous baby, and the abnormal birth weight baby are easy to suffer children, adult adiposity and some adult diseases. There are many factors that can lead to abnormal birth weight, among which placenta's transport function plays very important role to embryo's growth. Glucose is the most nutrient substance that the placenta transports, therefore the abnormal placenta glucose transports will affect the embryo growth. At present, the research report about the placenta glucose transporting (GLUTs) at home and abroad is less. Therefore, study on the GLUT1, GLUTs' expression law and adjusting mechanism in placenta has important significance. The reverse transcription polymerase chain reaction (RT-PCR) and Western Blot method were used in this paper to detect the GLUT1 mRNA and protein expression in the different birth weight newborn placenta of the third term. Discussed the placenta GLUT1's influence on the newborn baby's birth weight in the perinatal period.
     Methods
     The collection of fresh placental tissue 120 cases of different birth weight .Term delivery cases have 80 cases including without complications 20 cases, FGR 20 cases, high birth weight infants without complications and high birth weight infants who were caused by gestational diabetes mellitus 20 cases. Premature delivery cases include normal birth weight infants 20 cases and FGR 20 cases. Reveres transcription polymerase chain reaction (RT-PCR) and Western Blot method were used to assess the expression of GLUT1 mRNA and quantitative analysis of proteins in placental tissues of abnormal and normal birth weight. Statistic analysis: the results were analyzed on by SPSS software (version 13.0), there is significance difference, P > 0.05.
     Result
     1. The pregnant women's general situation.
     (1) Pregnant women's age, pregnancy weeks' comparison
     Comparing with normal group, FGR, LGA and GDM/LGA groups have no significant difference (P>0.05). There are no significant difference between SGA and LGA group (P>0.05).
     (2) Groups of pregnant women's body weight comparison
     Comparing with normal group (67.34±9.34 kg), LGA (81.02±8.45 kg) and GDM/LGA (80.67±6.59 kg) groups have a significant difference except FGR group (65.23±6.87 kg) (P< 0.05). But there is no significant difference between LGA and GDM/LGA group (P > 0.05).
     2. Placenta weight comparison
     Comparing with normal group (580.71±76.31g), FGR (418.24±60.55g), LGA (820.44±65.24g) and GDM/LGA (830.32±54.66g) groups have significant difference (P<0.05). But there is no significant difference between LGA and GDM/LGA group (P> 0.05). There is a significant difference between SGA (352.56±79.38g) and AGA (445.44±68.54g) group (P< 0.05).
     3. The positive expression and relative content of GLUT1 mRNA in placenta
     Comparing with normal group (0.764±0.123), relative content of Glut1 mRNA was of FGR(0.593±0.142)、LGA(0.815±0.155) and GDM/LGA(0.859±0.201) , each group has a significant difference(P<0.05); SGA group (0.504±0.086) comparing with AGA group (0.681±0.112) has a significant difference (P<0.05); LGA and GDM/LGA group have no significant difference (P >0.05). The positive expression of Glut1 in FGR group、LGA group、GDM/LGA group and normal group was 85%, 90%, 90% and 80% respectively, having no significant difference; The positive expression of GLUT1 in SGA group and AGA group was 85%, 80% respectively, without significant difference.
     4. The relative content of GLUT1 in placenta
     Western blot analysis showed that the relative content of GLUT1 in different group was different. Comparing with normal group (65.27±9.32), the relative content of FGR group (53.13±7.78), LGA group (84.22±12.65) and GDM/LGA group (87.68±17.23) has a significant difference (P<0.05); SGA group (48.36±6.71) comparing with AGA group (61.45±7.63) has a significant difference (P<0.05); LGA group and GDM/LGA group have no significant difference (P > 0.05).
     Conclusions
     The placenta GLUT1 expressions of different birth weight are different. The expression of FGR group infra normal birth weigh group. The expression of high birth weight group is higher. The GLUT1 may be one of the causes that affect the fatal birth weight.
引文
1 L aviola L,Perrini S,B elsanti G,et al.Intrauterine growth restriction in humans is associated with abnormalities in placental insulin like growth factor signaling[J].Endocrinol,2004,146(3):1498-1505.
    2 Vuguin P,Raab E,Liu B,et al.Hepatic insulin resistance p recedes the development of diabetes in a model of intrauterine growth retardation[J].Diabe,2004,53(10):2617-2622.
    3 Ong KK,Dunger DB.Perinatal growth failure:the road to obesity,insulin sistance and cardiovascular disease in adults[J].Best Pract Res Clin Endocrinol Metab 2002,16(2):191-207
    4 ThamotharanM,Shin B C,Suddirikku D T,et al.GLU T 4 expression and subcellular localization in the uterine growth restricted adult rat female off sepring[J].Am J Physiol Endocrinol Metab,2004,29:288(5):E935-E947.
    5 Illsley NP.Glucose transporters in the human placenta.Placenta,2000,21:14-22.
    6 Wooding F B,Dantzer V B,Klisch K,et al.Glucose transporter 1 localisation throughout pregnancy in the carnivore placenta:Light and electron microscope studies[J].Placenta,2007,28(5-6):453-464.
    7 Ericsson A,Hamark B,Pow ell T L,et al.Glucose transporter isoform 4 is expressed in the syncytiotrophoblast of first trimester human placenta[J].Hum Rep rod,2005,20(2):521-530
    8 Wooding F B,Fowden A L,B ell A W,et al.Localisation of glucose transport in the rum inant placenta:Implications for sequential use of transporter isoforms[J].Placenta,2005,26(8-9):626-640
    9 赵峻,吴连方.胎儿生长受限病因研究进展[J].中国围产医学杂志,2003,6(3):187-189.
    10 Zamudio S,B aumannM U,Illsley N P.Effects of chronic hypoxia in vivo on the expression of human placental glucose transporters[J].Placenta,2006,27(1):49-55.
    11 陈刚,黄光英,陆付耳.胎盘葡萄糖转运蛋白基因在鼠胎中的表达与生长受限的关系[J].中华围产医学杂志,2003,Vol.6(3):160-163
    12 王海燕,苟文丽.胎盘葡萄糖转运蛋白与胎儿生长受限[J].中国妇幼健康研究,2008,Vol.19(No.1):52-54.
    13 Korgun E T,Celik O C,Seval Y,et al.D o glucose transporters have other roles in addition to placental glucose transport during early pregnancy[J].Histochem Cell Biol,2005,Vol.123(6):621-629.
    1 Flegal KM,Carroll MD,Ogden CL,et al.Prevalence and trends in obesity among US adults,1999-2000.J Am Med Assoc 2002,288:1723-1727.
    2 Ong KK,Dunger DB.Perinatal growth failure:the road to obesity,insulin sistance and cardiovascular disease in adults[J].Best Pract Res Clin Endocrinol Metab 2002,16(2):191-207
    3 Jaddoe VW,Witteman JC.Hypotheses on the fetal origins of adult disease:contributions of epidemiological placenta studies[J].Eur J Epidemiol.2006,21(2):91-102
    4 Miles HL,Hofman PL,Cutfield WS.Fetal origins of adult disease:a paediatric perspective [J].Rev Endocr Metab Dissord.2005,6(4):261-8
    5 Reik W,Constancia M,Fowden A,et al.Regulation of supply and demand for maternal nutrients in mammals by imprinted genes[J].J of Physiol 2003,547:35-44
    6 Domali E,Messinis IE.Leptin in pregnancy.J Matern Fetal Neonatal Med 2002,12(4):222-30
    7 Jansson N,Greenwood SL,Johansson BR,et al.Leptin Stimulates the Activity of the System AAmino Acid Transporter in Human Placental Villous Fragments[J].The Journal of Clinical Endocrinology and Metabolism 2003,88(3):1205-1211.
    8 Jansson T,Powell TL.Human Plcental Transport in Altered Fetal Growth:Does the Placenta Function as a Nutrient Sensor?- A Review[J].Placenta.2006 Jan 24,Epub ahead of print]Anette Ericesson,Bengt Hamark,Nina Jansson,et al.Hormonal of regulation of glucose and system A amino acid transport in first trimester placental villous fragments[J].Am J Physiol Regul Integr Comp Physiol 2005,288:R656-R662
    9 Champion EE,Mann SJ,Glazier JD,et al.System beta and system A amino acid transporters in the feline endotheliochorial placenta[J].Am J Physiol Regul Integr Comp Physiol.2004,287(6):R1369-79.Epub 2004,29
    10 I Lsloy NP.Gluose Eransportors in the human placenta[J].Placenta,2000,21:14-22
    11 王海燕,苟文丽,马军.胎儿生长受限孕妇的胎盘GLUT表达与血清皮质醇的关系[J].中华围产医学杂志,2005年7月,第8卷第4期:226-229
    12 Palii SS,Thiaville MM,Pan YX,Zhong C,Kilberg MS.Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2(SNAT2)System A transporter gene[J].Biochem.2006 May,395(3):517-27.
    13 Desforges M, Lacey HA, Glazier JD, et al. SNAT4 isoform of system A amino acid transporter is expressed in human placenta [J]. Anne Blais, Jean-Francois Huneau, Linda J. Magrum, et al. Threonine Deprivation Rapidly Activates the System A Amino Acid Transporter in Primary Cultures of Rat Neurons from the Essential Amino Acid Sensor in the Anterior Piriform Cortexl,2 [J]. Biochemical and Molecular Actions of Nutrients 2006 December 1,2158-64
    14 Stela S. PALII, Michelle M, THIAVILLE, et al. Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) System A transporter gene[J]. Biochem. J. 2006, Vol.395: 517-527
    15 Constancia M, Angiolini E, Sandovici I, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems [J]. Proc Natl Acad Sci USA. 2005 Dec, 102(52): 19219-24. Epub 2005 Dec 19.
    16 Miguel Constancia, Emily Angiolini, Ionel Sandovici, et al. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems [J]. PHPHYSIOLOG. 2005, Vol. 102(52): 19219-19224
    17 Dr. Thomas Jansson, Perinatal. Amino Acid Transporters in the Human Placenta [J]. Pediatric research. 2001,Vol. 49: 141-147
    18 Thomas Jansson, Ylva Ekstrand, Caroline Bjorn, Margareta Wennergren and Theresa L. Powell. Alterations in the Activity of Placental Amino Acid Transporters in Pregnancies Complicated by Diabetes [J]. Diabetes, July 2002, Vol. 51, 2214-2219
    19 Nagavedi S. Umapathy, Li Weiguo, Barbara A. Mysona, Sylvia B. Smith. Vadivel Ganapathy Expression and Function of Glutamine Transporters SN1 (SNAT3) and SN2 (SNAT5) in Retinal Muller Cells [J]. IOVS, 2005, Vol. 46: 2567-2569
    20 Umapathy NS, Li W, Mysona BA, Smith SB, Ganapathy V. Expression and function of glutamine transporters SN1 (SNAT3) and SN2 (SNAT5) in retinal Muller cells [J]. Invest Ophthalmol Vis Sci. 2005, Vol.46: 3980-3987
    21 Eppig JJ, Pendola FL, Wigglesworth K, Pendola JK. Mouse oocytes regulate metabolic cooperativity between granulosa cells and oocytes: amino acid transport [J]. Biol Reprod. 2005 Aug, 73(2):351-357
    22 Ruti Parvari, Irena Brodyansky, Orly Elpeleg, et al. A Recessive Contiguous Gene Deletion of Chromosome 2p16 Associated with Cystinuria and a Mitochondrial Disease [J]. Hum. Genet. 2001, Vol.69: 869-875
    23 Michael Boll, Hannelore Daniel, Bruno Gasnier. The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis [J]. Pflugers Arch - Eur J Physiol. 2004, Vol.447: 776-779
    24 Kamath SG, Furesz TC, Way BA, Smith CH. Identification of Three Cationic Amino Acid Transporters in Placental Trophoblast: Cloning, Expression, and Characterization of hCAT-1 [J]. Membrane Biol. 1999, Vol.171: 55-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700