电解制备的聚合铝的形态结构与絮凝特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电解法制备聚合铝的提出,开创了一条新的聚合铝生产途径,符合国内外的研究方向和发展趋势。电解法制备的聚合铝不仅具有高Al_(13)含量的优点,而且这种方法还有适于现场生产和批量制备的特点,因此具有重要的实用价值和广阔的应用前景。本研究的主要目的是为以电解法制备纳米级絮凝剂的研究开发与生产应用奠定理论与技术基础。
     为进一步优化电解参数,提高电解PAC的品质,给研究提供理想的样品,在实验室条件下制备了一批具有不同碱化度和铝浓度的PAC,在此过程中对电解液的理化特征参数进行在线监测,发现随电解时间的延长,总铝含量逐渐升高;温度、pH值、碱化度均是先逐渐升高,随后到达一稳定值;根据碱化度的变化,可将电解液中铝形态的变化过程分为三个阶段。
     采用Al-Ferron逐时络合比色法,~(27)Al NMR核磁共振法,并借助扫描电镜,对确定条件下电解PAC的形态分布、聚合结构、结晶形貌等形态结构特征进行了深入研究。结果表明:电解PAC中的大部分铝以Al_(13)或多个Al_(13)的聚集形态存在;制备过程中分别将总铝与碱化度控制在1mol/L与2.3左右,便可得到Al_b含量大于65%的PAC,与其它方法相比,电解法可制备出品质优良的PAC。采用Al-Ferron络合比色法测定的PAC中Al_b含量与~(27)Al NMR所测定的Al_(13)含量具有高度一致性,故在实际分析中,可用Al_b含量代表Al_(13)含量。
     以Al-Ferron络合比色法为基本方法着重对电解PAC中Al_b形态的稳定性进行了研究,发现Al_b含量可在一个月之内基本保持稳定,在两个月内其含量依然大于原Al_b含量的一半;碱化度和总铝浓度对Al_b的稳定性具有重要影响;电解PAC中Al_b含量与其pH值具有正相关关系。
     采用混凝烧杯试验方法,针对模拟水样和实际水样,对电解制备的高Al_(13)含量的PAC的絮凝效能及其作用机制进行了研究。絮凝试验表明:聚合铝的絮凝效能与其铝形态分布有关,Al_(13)含量与其絮凝效能成正比关系,在微碱性及中性条件下,相应的絮凝效能由强到弱次序为Al_(13)>Al_u>Al_m;随着pH值的增加,达到等电点所需的絮凝剂投药量逐渐增加,絮凝剂的混凝区域逐渐变宽;絮凝剂的絮凝效能与混凝后水样中的残留铝含量成反比关系;对于生活污水和含油废水,电解PAC的处理效果明显优于普通絮凝剂。
A novel method concerning an electrolysis process for preparation of PAC was developed. The PAC contains high content of Al 13 that was considered to be the most effective flocculating component, hi addition, the method is suitable for producing PAC on the spot and a batch production. It has a wide utilizing prospect and an important practical value. This paper aimed at providing basic theory and technique for Electrolysis-PAC's R&D and practical use.
    To optimize the quality of Electrolysis-PAC and provide ideal flocculants for next experiments, E-PACs, with different concentration of Al(III) and basicity, were prepared in lab. During the preparation, temperature, pH, and basicity of electrolyte were monitored. The results showed that, these parameters at first increased gradually and then tended towards a steady data with the extension of electrolysis process, and the transforming progress of aluminum species could be set apart three phases according to basicity.
    The species distribution of hydrolyzed Al(III), aggregation configuration, the characteristics of crystal of E-PAC were characterized by using Al-Ferron time complex colorimetric method, 27 Al NMR spectroscopy, and transmission electron micrograph (TEM). The results illuminated that the predominant aluminum species of E-PAC was Aln (Alb) or small aggregated Aln, and the quality of E-PAC was more outstanding than ordinary PACs. The content of Alb characterized by using Al-Ferron time complex colorimetric method and Al13 characterized by using 27 Al NMR spectroscopy was equivalent on the whole.
    The stability of Alb in E-PAC was studied. The results showed that the content of Alb could hold the line within a month, and the stability of Alb was significantly affected by concentration of aluminum and basicity. Along with the increase of deposit time there was a positive correlativity between the content of Alb and pH.
    The coagulation behavior of E-PAC was investigated. The results indicated that coagulation efficiency was enhanced by high content of Aln species because of its characteristics of higher positive charge (+7) and strong binding ability. E-PAC was more effective in removing SS, RT, and oil from water and wastewater than other coagulants. There was a negative correlativity between the content of residual aluminum in finished water and coagulation efficiency.
引文
【1】汤鸿霄,环境水质学的进展一颗粒物与表面络合,水体颗粒物和难降解有机物的特性及控制技术原理研究论文集,1994年,89.
    【2】汤鸿霄,中国大陆无机高分子絮凝剂的研究于生产,资源,发展于环境保护,中国环境科学出版社,1985,27-33.
    【3】日本国公开特许,昭 49-46598
    【4】冯敏编,工业水处理技术,100页
    【5】日本国公开特许,昭 49-24354
    【6】日本国公开特许,昭 49-24355
    【7】刘鸿志,电解絮凝法制备聚合氯化铝的工艺基础研究,中科院生态环境研究中心博士论文,1994年
    【8】路光杰,高效聚合氯化铝的电化学合成,中科院生态环境研究中心博士论文,1998年
    【9】汤鸿霄,无机高分子絮凝剂的基础研究,环境化学,1990,9(3):1-12
    【10】汤鸿霄,栾兆坤,聚合氯化铝与传统絮凝剂的凝聚—絮凝行为差异,环境化学,1997,16(6):497-505
    【11】汤鸿霄.无机高分子絮凝剂的几点新认识,工业水处理,1997,17(4):1-5.
    【12】冯利,栾兆坤,汤鸿霄.铝的水解聚合形态分析方法研究,环境化学,1993,12(5):373-379.
    【13】冯利,无机高分子絮凝剂的絮凝机理的对比研究,中国科学院生态环境研究中心硕士学位论文,1997
    【14】姚重华,聚合氯化铝的 ~(27)Al NMR 研究,环境科学学报,1989,9(1):116~119.
    【15】姚重华,水中稀释对聚合氯化铝形态分布的影响,环境化学,1991,10(2):1-6.
    【16】王先龙,邹公伟,毕树平,27Al 核磁共振波谱法测定环境生物样品中铝研究进展,无机化学学报,2000,16(4):548-559.
    【17】汤鸿霄,混凝积剂及其作用原理的发展趋势,中国建筑科学研究院情报所,1973
    【18】汤鸿霄,无机高分子絮凝剂的科学与技术进展,无机高分子絮凝剂技术发展研讨会论文集,中国化工学会工业水处理专业委员会,1997.
    【19】刘光文译,B.B.波采柯夫著,水文分析与计算,高等教育出版社,1956
    【20】汤鸿霄,环境水化学纲要,环境科学丛刊,1988,9(2)
    【21】傅献彩、沈文霞、姚天扬,物理化学(下册),高等教育出版社,1990,987-1076
    【22】邓彤、赵学范译,北京大学出版社,1992.
    【23】周祖康、顾惕人、马季明,胶体化学基础,北京大学出版社,1987
    【24】吉林大学、四川大学,物理化学与胶体化学,人民教育出版社,1980
    【25】汤鸿霄,无机高分子复合絮凝剂的研制趋向,中国给水排水,1999,15(2):1
    【26】汤鸿霄,羟基聚合氯化铝的絮凝形态学,环境科学学报,1998,18(1):1.
    【27】栾兆坤,混凝基础理论研究进展与发展趋势,环境科学学报,2001,21(增):1-9
    【28】王东生、汤鸿霄、栾兆坤,颗粒物悬浮体系中聚合铝凝聚絮凝形态表征(Ⅰ):Al-Ferron 法的应用研究,环境科学1999,20(5):1-5.
    【29】李润生,水处理新药剂-碱式氯化铝,中国建筑出版社,1981.
    【30】栾兆坤,无机高分子絮凝剂聚合氯化铝的基础理论与应用研究,中国科学院生态环
    
    境研究中心博士学位论文,1997
    【31】陈延禧 编,电解工程 高等教育出版社,1993
    【32】陆兆谔 编,电极过程原理与应用 高等教育出版社,1994
    【33】刘永辉 编,电化学测试技术,北京航空学院出版社,1987
    【34】曲久辉、路光杰、汤鸿霄,电解制备高效聚合铝的溶液化学因素,环境化学,1997,16(6):521-526
    【35】王东升、陈有军、孙伟、王震,混凝研究中的界面过程化学:IPF-颗粒物-水溶液的相互作用,2003,23(2):178-182
    【36】曲久辉、刘会娟、雷鹏举、汤鸿霄,电解法制备 PAC 在水处理中的应用研究,中国给水排水,2001(17):16-19
    【37】王东升,汤鸿霄,IPF-PACl 混凝动力学研究:形态组成的重要性,环境科学学报,2001,(增):17-22.
    【38】Akitt J. W., and A. Farthing, 1981, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 4. Hydrolysis using sodium carbonate. J. Chem. Soc. Dalton Trans. 1981: 1617-1623.
    【39】Akitt J. W., and A. Farthing, Aluminum-27 Nuclear Magnetic Resonance Studies of Heteropolyanions containing aluminum as Heteroatom, J. Chem. Soc. Dalton Trans. 1981: 1615-1616.
    【40】Akitt J. W., and A. Farthing, Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 5. Slow Hydrolysis using aluminum metal. J. Chem. Soc. Dalton Trans. 1981: 1624-1628.
    【41】Akitt J. W., and Elders J. M. Aluminum-27 Nuclear Magnetic Resonance Studies of the hydrolysis of aluminum (Ⅲ). Part 7. Spectroscopic Evidence for the cation [AlOH]~(2+) from Line-broadening studies at High dilution. J. Chem. Soc. Dalton Trans. 1985, 81: 1923-1930.
    【42】Akitt, J. W., et al., ~(27)Al NMR studies of the hydrolysis and polymerzation of the hexa-aquoaluminum (Ⅲ) cation. J. Chem. Soc. Dalton Trans. 1972: 604.
    【43】Akitt, J. W., Greenwood, W. N., and Lester, S. D., Aluminum-27 Nuclear Magnetic Resonance, Studies of Acidic Solutions of Aluminum Salts, J. Chem. Soc. Dalton Trans., 1969, 803.
    【44】Bache, D. H., Johnson, C., McGilligan, J. F., and Rasool, E., A Conceptual View of Floc Domain, Wat. Sci. Tech., 1997,36(4):49-56.
    【45】Baes, C. F. Jr. and Mesmer, R. E., The hydrolysis of cations. Wiley-Interscience, New York,1976.
    【46】Batchlor, et al. Kinetics of Aluminum Hysrolysis: Measurement and Characterization of Reaction Products, Environ. Sci. Tech., 1986,20:891.
    【47】Bersilon, J. L. and Hsu, P. H., et al. Characterization of Hydroxy-Aluminum Solution, Soil Sci. Am. J. 1980,44:630.
    【48】Bertsch P. M., Layton W. J., and Barnhisel R. I., Speciation of Hydroxy-Aluminum solutions by wet chemical and aluminum-27 NMR methods. Soil Sci. Soc. Am. J. 1986, 50, 1449-1454.
    【49】Bertsch P. M., Thomas G. W., and Barnhisel R. I., Characterization of hydroxy-aluminum solutions by aluminum-27 Nuclear Magnetic Resonance spectroscopy. Soil Sci. Soc. Am. J. 1986, 50, 825-830.
    
    
    [50] Bertsch, P. M. and Parker, D.R., The Environmental Chemistry of Aluminum, Chapter 4.
    [51] Bertsch, P.M. and Parker, D.R., Aqueous Polynuclear Aluminum Species, In: "The Enviromental Chemistry of Aluminum" 2nd ed., G. Sposito(Eds.), CRC Press, 1995,117-168.
    [52] Bertsch, P.M., Aqueous Polynuclear Aluminum Species, In: "The Enviromental Chemistry of Aluminum" G. Sposito(Eds.), CRC Press, 1989, 187-115.
    [53] Bertsch. P.M., Conditions for Al13 Polymer Formation in Partially Nutralized Aluminum Solutions. Soil Sci. Am. J. 1987,57:825-828.
    [54] Bottero, J.Y., Cases, J.M., and Fiessinger, F., Studies of Hydrolyzed Aluminum Chlorie Solutions-Nature of Aluminum Species and Composition of Aqueous Solutions. J. Physical Chemistry,1980,84:2933.
    [55] Bottero, J.Y., et al. Mechanism of Formation of Aluminum Trihydroxide from Keggin Al13 Polymers, J. Colloid Interface Sci., 1987,117(1) :47-57.
    [56] Buffle, J., Parthasarathy, N., and Haerdi, W., Importance of speciation methods in analytical control of water treatment processes with application to fluoride removal from wastewater. Wat. Res. 1985,19:7-23.
    [57] Burrows, M. D., Aquatic aluminum chemistry, Toxicology and Environmental Prevalence, CRC Critical Reviews in Environmental Control, 1977,7: 167.
    [58] Crapper, D.R, Brain Aluminum Distribution in Alzheimer's Disease and Experimental Neurofibrillary Degeneration.Science, 1973,180:511-513
    [59] Dempsey, B.A., Ganho, R.M., and O'Melia, C.R., The Coagulation of Humic Substances by means of Aluminmum Salts, J.AWWA, 1984,76(4) : 141
    [60] Dempsey, B.A., Removal of Naturally Occurring Compounds by Coagulation and Sedimentation, CRC Critical Review in Environmental Control, 1987
    [61] Dental, S.K. and Gssett, J.M., Mechanism of Coagulation with Aluminum Salts,J.AWWA.,1988,80(4) :187
    [62] Duffy, S.J. and VanLoon, G.W., Characterization of Amorphous Aluminum Hydroxide by the Ferron Method, Environ. Sci. Tech., 1994,28:1950.
    [63] Dymzczewski, Z., Kempa, E.S., and Socanski, M.M., Coagulation as a Structure Forming Separation Process in Water and Wastewater Treatment, Wat. Sci. Technol. 1997, 36(4) :25-34.
    [64] Edwald, J.K., Coagulation in Drinking Water Treatment: Particles, Organics and Coagulants,Wat.Sci.Technol.,1993,27(11) :21.
    [65] Edzwald, J.K., Organics Removal by Coagulation: A Review and Research Needs, J.AWWA., 1979,71(10) :558.
    [66] Ewards, G.A., Removing Color Caused by Humic Acids,J.AWWA.,1985,77(7) :50
    [67] Fu, G., Nazar, L. F., and Bain, A. D., Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by 27AI NMR spectroscopy, Chem. Mater., 1991, 3, 602.
    [68] Ganczarczyk, D.H.L.I.J., Fractal Geometry of Particle Aggregates Generated in Water and Wastewater Treatment Processes,Envir.Sci.Technol.1989,23(11) :1385
    [69] Gerasimenko, N.G., Solomentseva, I.M., and Bratunets, A.G., Study of Hydration of Hydrolysis Products of Basis Aluminum Chlorides Under Water Treatment Conditions Wat.Sci.Technol.,1996,18(7) :10-14.
    [70] Gorczyca, B. and Ganczarczyk, J., Image Analysis of Alum Coagulated Mineral
    
    Suspensions, Environ.Tech.,1996, 17(12) : 1361-169.
    [71] Grogry, J., Stability and Flocculation of Colloid Partice, J. Effluent & Water Treatment,1977, 17:10-12.
    [72] H.X., Tang and Z.K., Luan., Features and Mechanism for Coagulation-Flocculation Processes of Polyaluminum Chloride.Wat.Res.,1995,29(7) :204.
    [73] Hahn, H.H. and Stumm, W., Kinetics of Coagulation with Hydrolyzed Aluminum, J.Colloid Int.Sci.,1968,28:133.
    [74] Han, M., Lee, H., and Lawler, D.F., Collision Efficiency Factor in Brownian Coagulation Including Hydrodynamics and Interparticle Forces. Wat.Sci.Techno.,1997,36(4) :69-75.
    [75] Hohl, H. and Stumm, W.J., Colloid Interface Sci, 1976,55:281.
    [76] Hsu, P.H., and Cao, D., Effects of Acidity and Hydroxylamine on the Determination of Aluminum with Ferron, Soil Science, 1991,152(3) :210-219.
    [77] Istvan Licsko, Realistic Coagulation Mechanism in the Use of Aluminum and Iron(_)Salts, Wat.Sci.Tech.l997,36(4) :103-110.
    [78] Jardine, P.M. and Zelazny, L.W., Mononuclear and Polynuclear Aluminum Speciation through Differential Kinetic Reaction with Ferron, Soil Sci. Soc. Am. J., 1986,50:895-900.
    [79] Jiang, J.Q. and Graham, N.J.D., Pre-Polymerized Inorganic Coagulants for Treating Water and Wastewater, Chemistry & Indutry,1997,(10) :388-391.
    [80] Johasson,G.,The Crystal Structures of [Al2(OH)2(H2O)n](SO4) 2 · 2H2O and [Al2(OH)2(H2O)n](SeO4) 2 · 2H2O, Acta Chem. Scand., 1965,16:403.
    [81] Johasson.G, On the Crystal Structure of Some Basic Aluminum Salts, Acta Chem. Scand., 1960,14:771.
    [82] Kloprogge, J. T. Seykens, D. J. Ben H. Jansen and John W. Geus, Aluminum monoer line-broadening as evidence for the existence of [AlOH]2+ and [Al(OH)2] + during forced hydrolysis: a 27A1 nuclear magnetic resonance study. J. Non-Crystalline Solids. 1993, 152: 207-211.
    [83] Kloprogge, J. T., Don seykens, John W. Geus, and J. Ben H. Jansen, The effects of concentration and hydrolysis on the oligomerization and polymerization of Al(Ⅲ) as evident from the 27Al NMR chemical shifts and linevvidths. J. Non-Crystalline Solids. 1993, 160: 144-151.
    [84] Krasner, S.W. and Amy, G.L., Jar-Test Evaluations of Enhenced Coagulation ,J. AWWA., 1995,87(10) :93.
    [85] Kwak, J.W., Influences of Alumnium-Based Coagulants with Different Hydroxide/Aluminum Ratios on Drinking Water Treatability, Environ.Tech., 1997,18(3) :293-200.
    [86] LaMer, V.K. and Healy, T.W., Adsorption-Flocculation Reactions of Macromolecules at the Solid-Liuid Interface, Rev, Pure Appl. Chem., 1963,13:112.
    [87] LaMer, V.K., Coagulation Symposium Introduction, J. Colloid Science, 1964, 19:291.
    [88] Lawler, D.F., Wilkes, D.R., Flocculation Modei Testing: Particle Sizes in a Softening Plant,J.AWWA., 1984,76(7) :90
    [89] Letteman, R.D. and Iyer, D.R., Modeling the Effects of Hydrolyzed Aluminum and Solution Chemistry on Flocculation Kinetics, Environ.Sci.Technol.,1985,19(8) :673-681
    [90] Letterman, R.D. and Asolekar, S.R., Surface Ionization of Polynuclear Species in the Al(-) Hydrolysis-A Conditional Equilibrium Modei, Wat.Res., 1990,24:941.
    
    
    [91] Luan Zhaokun and Tang Hongxiao. Chemical Species Distribution and Transformation Chemical Solution, J. of Environ. Sci., 1990,2(2) :25-39.
    [92] McCooke, N.J. and West, J.R., The Coagulation of a Kaolinite Suspension with Aluminum Sulphate, Water Research, 1978, 12:793.
    [93] McNeill, L.S. and Edwards, M., Predicting as Removal During Metai Hydroxie Precipitation,J.AWWA.,1997,89(l):75.
    [94] Nordstrom, D. K. and May, H. M., Aqueous equilibrum data for mononuclear aluminum species. The environmental chemistry of aluminum, Sposito G., Eds., CRC press, Boca Raton, Fla., Chapter 1, 1989.
    [95] O'Melia, C.R., Coagulation in Wastewater Treatment, In the Scientific Basis of Alphnaan den Rijin,Netherland,1987.
    [96] Packham, R.F., Some Studies of the Coagulation of Dispersed Clays with Hydrolyzed Salts, J.Colloid Sci., 1965, 20:81
    [97] Parker, D. R. and Bertsch, P. M., Formation of the "Al13" tridecameric polycation under diverse synthesis conditions. Environ. Sci. Technol. 1992. 26, 914-921.
    [98] Parker, D. R., Zelazny, L. W. and Kinraide., T. B. Comparison of three spectrophotometric methods for differentiating mono-and polynuclear hydroxy-aluminum complexes. Soil. Sci. Soc. Am. J. 1988,52: 67-75.
    [99] Parker, D.R. and Bertsch P.M., Identification and Quantification of the "Al13" Tridecameric Polycation Using Ferron, Environ. Sci. Tech., 1992,26(5) : 908-914.
    [100] Rausch, M. V and Bale, H.D., Small-angle X-ray Scattering from Hydrolysed Al Nitrate Solutions, J.Chem.Phys.1964, 40:771.
    [101] Schindler, P.W. and Fuerst, B., et al J. Colloid Interface Sci, 1976,55:469.
    [102] Smith, R.W., Reactions among Equilibrium and Non-Equilibrium Aqueous Species of Aluminum Hydroxy Complexes, Adv. Chem. SER. 1971,106:250.
    [103] Stol, R.J., Van Helen, A.K., and De Bruyn, P.L., Hydrolysis-Precipitation Studies of Aluminum Solutions-A Kinetics Srudy and Modei, J.Colloid Int.Sci.,1976,57:115.
    [104] Stumm, W. and Morgan, J. J., Aqutic Chemistry, Wiley-Interscience, New York, 1981.
    [105] Stumm, W., Aquatic Surface Chemistry, John Wiley, 1987.
    [106] Tang Hong-Xiao and Werner Stumm. 1987. The coagulating behaviors of Fe(Ⅲ) polymeric species-I. Preformed polymers by base addition. Wat. Res. 21: 115-121.
    [107] Thomas, F., Masion, A., Bottero, J. Y., et al., Aluminum(Ⅲ) speciation with hydroxy carboxylic acids. 27Al NMR study, Environ. Sci. Technol., 1993, 27: 2511.
    [108] Tsai, P. P. and Hsu, P. H. Aging of Partially Neutralized aluminum solutions of sodium hydroxide/aluminum molar ratio=2. 2. Soil. Sci. Soc. Am. J. 1985, 49: 1060-1065.
    [109] Tsai, P. P. and Hsu, P. H. Studies of aged OH-Al solutions using kinetics of Al-Ferron reactions and sulfate precipitation. Soil. Sci. Soc. Am. J. 1984, 48: 59-65.
    [110] Turner, R.C. and Sulaiman, W., Kinetics of Reactions of 8-Quinolinolate Extrationmethod and Acetate with Aluminum Species in Aqueous Solution I. Polynuclear Hydroxyaluminum Cations, Can.J.Chem.1971 , 49:1683.
    [111] Turner, R.C., Three Forms of Aluminum in Aqueous Solution Determined by 8-Quinolinolate Extrationmethod, Anal. Chem. 1969,34:581.
    [112] Van Benschoten, J.E. and Edzwald, K.J., Chemical Aspects of Coagulation Using Aluminum Salts-Hydrlic Reactions of Alum and Polyaluminum
    
    Chloride, Wat.Res., 1990,24 : 1519.
    [113] Water, D.N. and Heely, M.S., Ramn Spectraorauous of Hydrolysed Aluminum(Ⅲ) Salts, J.Chem. Soc. Dalton. 1977,(3) :243.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700