100℃下几种聚铝结晶的制备、表征及絮凝性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用湿渣法绘制了100℃下AlCl_3—Al_2O_3—H_2O三元体系的固液平衡相图,并在相图的指导下实现了对结晶水数目不同的两种五聚铝盐酸盐的制纯反应条件的有效控制,使其分别单独析出,制得产物一和二的纯度分别达到了84.58%和98.50%;通过化学分析、粉末XRD物相分析、红外光谱分析等分析及表征手段确定其主要物相分别为AlCl_3·Al(OH)_3·4H_2O和AlCl_3·Al(OH)_3·7.5H_2O。
     本文在制备聚合硫酸铝方面也取得了一定进展。在Al_2(SO_4)_3·18H_2O溶液中加Al粉调节碱化度,制成了一种六聚铝的硫酸盐—产物三,通过XRD分析,确定其主要物相为3Al_2O_3·4SO_3·15H_2O,经100℃下晶化,化学分析结果表明其纯度为93.7%。
     采用Al-Ferron法测定了三种产物的铝形态分布,测得产物一的Al_a、Al_b和Al_c含量分别为:29.68%、34.56%和35.76%,形态分布较均匀,其中Al_a含量较高是由于其含有15.42%的AlCl_3·6H_2O所致;产物二的三种形态含量分别为:0.77%、13.01%和86.22%,Al_c含量占主导;产物三为:2.27%、4.02%和93.71%,Al_c含量占绝对优势。产物二和三的Al_c含量均较高,尤其是产物三,有一个原因可能是,产物二和三溶解性较差,尤其是产物三,其主要物相是硫酸盐,在常温下进行溶解并测定铝形态时可能有一部分没有溶解,其形态就被测成Al_c,故其Al_c含量较高。采用高岭土配制的模拟水样做了絮凝实验,其结果表明,产物一只在弱酸性条件下具有一定絮凝性能,在中性或弱碱性条件下无明显絮凝性能;产物二和三在中性或弱碱性条件下较大投加量(10~(-3.5)mol/L)时具有较明显的絮凝性能。但在该投加量下出水样中残留铝含量过高,所以三种产物均不适合作絮凝剂。
     在100℃下结晶的聚铝品种的溶解度和Al_b含量均较低,这可能是其絮凝性能差的主要原因。该实验事实支持了Al_b是聚合氯化铝中关键絮凝成分的观点。
     虽然在100℃下结晶的聚铝产物的絮凝性能均不理想,但绘制出了该温度下AlCl_3—Al_2O_3—H_2O三元体系的固液平衡相图,找到了控制该温度下几种聚铝品种制纯反应的有效条件,为进一步纯化并培养这几种产物的单晶乃至解析其结构,从而深入揭示Al(Ⅲ)在100℃下水解聚合与形态转化规律,以及弄清聚阳离子的结构与其絮凝性能之间的联系打下了良好基础。
In this paper, the solid-liquid balanced phase diagram of the system of AlCl_3—Al_2O_3—H_2O at 100℃was drawn with the method of wet dregs. With the guidance of the phase diagram, we controlled effectively the condition of preparing two kinds of 5-nuclear Al with 4 and 7.5 crystalline water, respectively. Let the two substances separated out solely from the solution one by one, got product one and two, their purity were up to 84.58% and 98.50%, respectively. Through chemical analysis, XRD and IR, the main phase of the two were confirmed as AlCl_3·Al(OH)_3·4H_2O and AlCl_3·Al(OH)_3·7.5H_2O.
     Some progress was made on the preparation of poly-Aluminum sulfate. Through adding Al powder into the aqueous solution of Al_2(SO_4)_3·18H_2O to modify the basicity, we got a sulfate of 6-nuclear Al—produc three. XRD identified it as 3Al_2O_3·4SO_3·15H_2O, after crystalization at 100℃, it's purity improved to 93.7%, which was supported by chemical analysis.
     The aluminum species of the three products were studied using Al-Ferron time complex colorimetric method. The Al_a、Al_b、and Al_c content of the product one are 29.68%, 34.56% and 35.76%, respectively, the species are distributed evevly. The relatively high content of Al_a is duo to it's 15.42% content of AlCl_3·6H_2O; The species distribution of product two are 0.77%, 13.01% and 86.22%, the main species is Al_c; product three: 2.27%, 4.02% and 93.71%, Al_c is the absolutely main species.Product two and three have high content of Al_c, especially product three. These may because of the bad solubility of product two and three, especially, the main phase of product three is an aluminum sulfate, when be resolved at room temperature to measure the species distribution, one part was not resolved into water, it's species was diagnosed as Al_c, so their content of Al_c is high. Prepared Kaolin suspending solution as simulated water sample, and treated this water sample with the three products. The result showed that, product oneexhibits certain extent of flocculating ability on only slight acidic condition, on neutral or slight alkaline condition exhibits no conspicuous flocculating ability; product two and three exhibits good flocculating ability on neutral or slight alkaline condition under the dose of 10~(-3.5)mol/L, but the residue aluminum content in the post-treatment water sample was too high, so none of the three products can be used as flocculant.
     Those poly-aluminum species prepared at 100℃have low solubility and A_b content, which may can explain their bad flocculating ability. These facts can be a support to the viewpoint of A_b is the key flocculating component of the PAC.
     None of the aluminum species prepared under the temperature of 100℃has satisfactory flocculating ability, but drawn successfully the phase figure of the system of AlCl_3—Al_2O_3—H_2O at 100℃, found the effective condition of preparing several kinds of species at 100℃, which can be a solid basis for further purifying the products, get single crystals and analyse the structures to deeply reveal the rule of hydrolysis-polymerization, and species transformation of aluminum, clearify the relation between the structure of poly-cation and it's flocculating property at 100℃.
引文
[1] 万咸涛,浅析国内外水资源质量状况,水利发展研究,2005,第12期:50-52。
    [2] 李全寿,略论我国水处理技术的发展趋势,工业安全与环保,2005,31(3):1-3.
    [3] 金熙,项成林编,《工业水处理技术问答》,化学工业出版社,1989年3月第一版,36-39.
    [4] 韩秀山,我国应大力发展聚合氯化铝,化工科技市场,2002,25(11):27-30.
    [5] 汤鸿霄,无机高分子絮凝剂的基点新认识,工业水处理,1997,17(4).
    [8] 常青,《水处理絮凝学》,化学工业出版社、环境科学与工程出版中心,2003年第一版:69-71.
    [9] 汤鸿霄,无机高分子复合絮凝剂的研制趋势,中国给水排水,1999,15(2):1-4.
    [10] 卢建杭等,无机絮凝剂制备技术的进展,中国给水排水,1999,15(4):28.
    [11] Brosset C. Studies on the hydrolysis of metal ions, XI, The Aluminum ion Al~(3+). Acta Chem Scand, 1954, 8: 1917.
    [12] G. Johansson, et AI. Acta Chem. Scand., 1960, 14(3): 769-773.
    [13] 罗明标,王趁义等,聚合AL_(13)晶体的制备及表征,无机化学学报,2004,20(1):69-73.
    [14] J. Rowsell, L. F. Nazar, "Speciation and thermal transformation in Alumina sols: Structures of the polyhydroxyoxo Aluminum cluster [Al_(30)O_8(OH)_(56)(H_2O)_(26)]~(18+) and its σ-Keggin moiete", J. Am. Chem. Soc., 2000, 122(15): 3777-3778.
    [15] Lionel Allouche, et AI., Angew. Chem., 2000, 112(3): 521.
    [16] 赵华章,蔡固平,栾兆坤,高浓度聚合氯化铝的合成及其形态分布与转化规律,环境科学,2004,25(5):80-83.
    [17] 李谦一,聚和氯化铝的生产及市场,化学工业与工程技术,2001,22(1):28-30.
    [18] 贾志谦,何菲等,聚合氯化铝形态分布、分析和控制研究进展,化学研究与应用,2004,16(2):149-154.
    [19] 刘会娟,曲久辉等,电化学合成的聚合氯化铝的形态特征,环境科学学报,2003,23(2):201-204.
    [20] 曲久辉,刘会娟等,电解法制备PAC在水处理中的应用研究,中国给水排水,2001,17(5):16-19.
    [21] 初永宝,高宝玉等,聚合氯化铝中钠米Al_(13)形态的分离纯化及形态表征,环境科学,2004,25(5):75-79。
    [22] 孙忠,赵海东,佟红格尔等,[Al_(13)(μ_3-OH)_6(μ_2-OH)_6(μ_2-OH)_(12)(H_2O)_(24)]Cl_(15)·13H_2O的结构特征和形成历程.见:中国化学会第八届水处理化学大会暨学术研讨会论文集.内蒙古呼和浩特,2006,8.
    [23] 王东升,汤鸿霄,高琼等,Al_(13)形态分离纯化方法初步研究,环境化学,2000,19(5):389-394.
    [24] 李润生,李凯,聚氯化铝盐基度与混凝效果的关系,中国给水排水,2001,17(8):71-73.
    [25] Bertsch P M. Conditions for Al_(13) polymer formation in partially neutralized Aluminum soLutions[J]. SoiL Sci.A.J., 1987, 51: 825-829.
    [26] Bertsch P M, Parker DR. The Environmental Chemistry of Aluminumo。2nd ed。 Boca Raton: Lewis publishers, 1996.117-168.
    [27] 汤鸿霄,羟基聚合氯化铝的絮凝形态学,环境科学学报,1998,18(1):1-10.
    [28] Thomas F, Masion A, Bottero J Y, et Al. Aluminum(Ⅲ) speciation with hydroxy carboxylic acids. Al NMR study. Environ Sci Technol, 1993, 27: 2511.
    [29] 李润生,李凯,“聚氯化铝盐基度与混凝效果的关系”,中国给谁排水,2001,17(8):71-73.
    [30] 王东升,汤鸿霄,John Gregory。IPF-PACI混凝动力学研究:形态组成的重要性[J].环境科学学报, 2001,(增刊),17-22.
    [31] 冯利,栾兆坤,汤鸿霄。铝的水解聚合形态分析方法研究,环境化学,1993,12(5):373-379.
    [32] 汤鸿霄,栾兆坤,聚合氯化铝与传统混凝剂的凝聚—絮凝行为差异,环境化学,1997,18(6):497-504.
    [33] 高宝玉,岳钦艳等,Al-Ferron逐时络合比色法研究PACS中铝的水解聚合形态,环境化学,1996,15(3):234-238.
    [34] Akitt. W., et Al。 Water, Air, Soil pollute, 1982, 18; 289.
    [35] Smith, R. W, Adv. Chem. Ser., 106, 250 (1971).
    [36] P. M. Jardine, et Al。 Soil. Sci. Soc. Am. J., 1986, 50: 895-900.
    [37] Tumer, R. C., Can. J. Chem., 54, 1910 (1976).
    [38] Bertsch, P. M., L ayton, W. J., Barnh iseL, R. I., So il Sci. Soc. Am. J., 50, 1449 (1986)
    [39] T sai, P. P., H su, P. H., So il Sci. Soc. Am. J., 48, 59 (1984).
    [40] T sai, P. P., H su, P. H., So il Sci. Soc. Am. J., 49, 1060 (1985).
    [41] Parker, D. R., Bertsch, P. M., Environ. Sci. Techno L., 26, 908 (1992).
    [42] 徐天有,姚方,水处理剂聚合氯化铝的制备新研究.
    [43] 路光杰,曲久辉,汤鸿霄,高效聚合氯化铝的电化学合成研究,中国环境科学,1998,18(2):140-143.
    [44] 路光杰,曲久辉,汤鸿霄,电渗析法合成高效聚合氯化铝的研究,中国环境科学,2000,20(3):250-253.
    [45] 赵华章,栾兆坤等,Al_(13)形态的分离纯化与表征,高等学校化学学报,2002,23(5),75l-755.
    [46] BI, S. P.; WANG, C. Y.; CAO, Q.; ZHANG, C. H. Coordination Chemistry Reviews, 2004, 248(5-6), 441~455.
    [47] 赵海东,孙忠,结晶状铝十三的制备、表征及其絮凝特性研究,内蒙古大学硕士学位论文,2005年5月.
    [48] 杨秀双,孙忠,多羟基络铝固体柱撑剂和高效絮凝剂的合成及表征,内蒙古大学硕士学位论文,2004年5月.
    [49] 王瑞芬,孙忠,水合氯化五聚铝和水合氯化九聚铝的制备及初步表征,见:中国化学会第八届水处理化学大会暨学术研讨会论文集,内蒙古呼和浩特,2006,8.
    [50] 李杰,聚合硫酸铝的制备与表征,内蒙古大学本科毕业论文,2006,7.
    [51] 赵海东,结晶状铝十三的制备、表征及其絮凝特性研究,内蒙古大学硕士学位论文,2005,7.
    [52] 苏裕光,吕秉玲,王向荣,《无机化工生成相图分析(一)基础理论》,化学工业出版社,1985年6月第一版:136—141.
    [53] 国家环保局编,《水和废水监测分析方法》(第三版),北京:中国环境科学出版社,2002.
    [54] 日本工业用水协会编,《水质试验法》北京,中国环境科学出版社,1990.4.
    [55] 谢晖,喻海雅.铬天青S分光光度法测定饮用水中铝.中国卫生检验杂志,1998,8(2):98-100.
    [56] 王东生,汤鸿霄,栾兆坤,颗粒物悬浮体系中聚合铝凝聚絮凝形态表征(I):Al-Ferron法的应用研究,环境科学,1999,20(5):1-5.
    [57] Wang Wei-Zi, Hsu Pa Ho, CLays and CLay Miner Quantification of the "AL_(L3)" Tridecameric Polyeation Using Ferron, Environ. Sci. Tech. 1992, 26(5): 908-914.
    [59] 周风山,王世虎,苏金柱等,多核无机高分子絮凝剂PMC红外结构及其性能,精细化工,2003年10月,第20卷第10期,615~618.
    [60] 周风山,王世虎,苏金柱等,增效反应中聚合氯化铝红外结构特征的变化,光谱学与光谱分析,2004年5月,第24卷,第五期,532—535.
    [61] 李燕,铝对人体的潜在危害.环境科学,1992,12(2):91-92.
    [62] Crapper, D. R, Brain Aluminum Distribution in Alzheimer's Disease and Experimental Neurofibrillary Degeneration. Science, 1973, 180: 511-513.
    [63] Harris WR, Sheldon J. EquiLibrium constant for binding of Aluminum to human serum transferrin.lnorganic
    Chemistry, 1990, 29(L): 119-124.
    [64] 李凡修,陈武,聚合氯化铝制备技术的研究现状和进展,工业水处理,2003,23(3):5-8.
    [65] 刘文英,杨运泉等,聚和三氯化铝的合成研究,湘覃大学自然科学学报,2001,23(1):72-75.
    [66] 沈水发,陈耐生等,利用高岭土制备聚和氯化铝净水剂,无机盐工业,1999,31(5):33-35.
    [67] 宋恩玉,硬质高岭土生产聚合氯化铝和白炭黑,非金属矿,1999,22(3):28-30.
    [68] 杜建科,杨海涛等,聚和氯化铝的制备工艺研究,汉中师范学院学报(自然科学版)1995,第2期:39-43.
    [69] 王海波,王苏等,高岭土生产聚合氯化铝,江苏煤炭,2003,第3期:50-51.
    [70] 陈利成,曹菱,用高岭土制取聚合氯化铝,湖北化工,2003,第2期:37.
    [71] 卢兆忠,刘建林等,用高岭土制备聚合氯化铝和超细白碳黑的研究,福建化工,2003,第3期:41-43.
    [72] 宴永祥,我国聚合氯化铝工业现状、存在问题及发展建议,广西化工,2001,30(3):15-18.
    [73] 邬苇萧,杨玉章,以煤系高岭土生产固体聚合氯化铝新技术在淮北矿区的应用,煤炭加工与综合,2002,第5期:42-44.
    [74] 马艳然,于伯蕖等,从煤矸石中制备聚合氯化铝及应用研究,化学世界,2004,第2期:63-65.
    [75] 冯诗庆,煤矸石制备铝盐和白炭黑,无机盐工业,1995,第4期:22-24.
    [76] 朱石嶙,张霞等,从粉煤灰中提取硫酸铝和硫酸铁的微波试验,宁夏工程技术,2004,3(1):48-50.
    [77] 陆胜,赵宏,生态处理粉煤灰制备结晶氯化、聚合氯化铝的试验研究,粉煤灰2003第2期:10-11
    [78] 赵剑宇,田凯,氟铵助溶法从粉煤灰提取氧化铝新工艺的研究,无机盐工业,2003,35(4):40-41.
    [79] 李润生等,中国聚合氯化铝产品的技术进步与质量标准,水处理信息导报,1997,第4期:66-70.
    [80] 马国昌,孙志超等,聚合氯化铝的生产及发展,氯碱工业,2003,第8期:30-34.
    [81] 章兴华,周丽芸,汤敏.聚合氯化铝铁的红外光谱研究,光谱学与光谱分析,2002,22(1),39-42.
    [82] 史成武,朱云贵等,聚合硫酸铝合成新工艺的研究,化工进展,1996,第四期,69.
    [83] 韩秀山,我国应大力发展聚合氯化铝,化工科技市场,2002,25(11),27—30.
    [84] 尹爱君,刘肇华,邹胜前等,关于PAS生产工艺研究结果的报告,湖南化工,1995,25(4).
    [85] 黄存平,卢葛覃,净水剂的发展和展望,现代化工,1996,2
    [86] 费永利,孙忠,“用高岭土制备’类龟式’Al13盐酸盐”,中国化学会第八届水处理化学大会暨学术研讨会论文集.内蒙古呼和浩特,2006,275-277.
    [87] JCPDS编,《粉末衍射卡片集》(PDF),卡片15-731.
    [88] JCPDS编,《粉末衍射卡片集》(PDF),卡片27-11.
    [89] JCPDS编,《粉末衍射卡片集》(PDF),卡片12-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700