凹凸棒土处理含铅废水与高氟水的吸附热力学及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水体铅和氟污染会对水生生物以及人体造成严重危害,研究经济高效的含铅废水和高氟水的处理方法具有重要意义。吸附法具有操作简便、处理效果好等优点,在水处理中一直是研究的焦点,近年来集中于寻找低成本吸附剂以代替广泛应用的活性炭。凹凸棒石粘土系天然矿物原料,在我国主要产于苏皖一带,来源广泛,价格低廉,具有较强的吸附能力。本研究以江苏盱眙产凹凸棒原土和经过镁铝盐改性后的凹凸棒土为吸附剂,在表征其物理化学性质和形貌结构的基础上,研究其处理含铅废水和高氟水的吸附热力学和吸附机理。
     应用Excel规划求解和非线性拟合方法探寻吸附体系的等温线,结果发现,凹凸棒土吸附Pb~(2+)和F~-的吸附过程均遵循Langmuir和Redlich-Peterson方程,而不符合Freundlich等温线;吉布斯自由能、焓变和熵变的数据表明,其体系均为自发性的吸热反应;静态实验表明,温度为313K时,凹凸棒土吸附铅离子的理论q_m为114.0mg/g;改性凹凸棒土吸附氟离子的理论q_m为44.0mg/g。根据Langmuir单层吸附理论,计算出Pb~(2+)在凹凸棒土上的覆盖面积为17-19m~2/g。
     通过分析XPS材料表面测试结果和吸附前后溶液pH值的测试结果,初步推测凹凸棒原土吸附铅离子是基于静电吸附和与吸附剂表面的OH~-作用而沉积;改性质量比为attapulgite:MgCl_2·6H_2O:AlCl_3·2H_2O=2:1:2的凹凸棒土对氟离子吸附容量最大,主要是通过离子交换而被吸附。
     天然凹凸棒土和改性凹凸棒土对铅离子和氟离子具有很好的吸附效果,是合适的吸附剂,具有广泛的工程应用前景。
Since high lead and fluoride concentrations in water cause great damage to aquatic animals, plants and human body, it is essential that there are technologies for controlling the concentrations of lead and fluoride in aqueous emissions. One effective and economic approach is to use alternative adsorbents. Extensive investigations have been carried out to identify suitable adsorbents in recent years. For its low costs and great performance in the adsorption of many pollutants, attapulgite has been obtaining increasing scientific attention.
     The attapulgite used in this study is from Xuyi in Jiangsu province. Adsorption of lead ions by natural attapulgite and fluoride ions by three modified attapulgites with magnesium and aluminum salts are conducted by batch experiments. Based on the physical and chemistry properties of the attapulgite, the thermodynamics and mechanism of the adsorption processes have been mainly studied.
     With the software Microsoft Excel, two-parameter Langmuir and three-parameter Redlich-Peterson isotherms are examined as the best-fitting models for the experimental data by the non-linear method. An increase in temperature results in a higher lead or fluoride loading per unit weight of the adsorbent, suggesting that both the two adsorption processes are spontaneous and endothermic. Besides, the two are both favorable adsorption systems. The maximum adsorption capacities for attapulgite/lead and modified attapulgite/fluoride adsorption system are 114.0mg/g and 44.0mg/g in the temperature 313K respectively. According to the monolayer adsorption theory of the Langmuir isotherm, the specific surface area of attapulgite towards Pb~(2+) binding is 17-19m~2/g.
     The XPS test for the surface of the attapulgite and changes of the pH value in the aqueous solutions before and after the reaction prove that there exist electrostatic gravitations in the attapulgite/ lead system but also precipitation of the lead(II). Modified attapulgite with a mass ratio attapulgite:MgCl_2·6H_2O:AlCl_3·2H_2O = 2:1:2 has higher adsorption efficiency for fluoride ions. The agreement of the adsorption capacities and changes of the hydroxy ion concentration indicates that anion exchange reactions occurr in the adsorption process.
     The experimental results suggest that nature attapulgite is a suitable adsorbent for removing lead ions and the modified attapulgite suitable for fluoride ions, which can be widely applied in the water treatment projects.
引文
白滢,常青.高分子重金属絮凝剂 PEX 处理电镀废水研究.中国给水排水,2006,22(19):53-55
    宾晓蓓,曹宏,孙新有,王学华,申璞.活化处理中坡缕石结构变化与性能关系的研究.矿物岩石地球化学通报,2005(1),62-66
    蔡宏道,鲁生业主编.环境医学.北京:中国环境科学出版社,1990
    陈天虎,史晓莉,彭书传,黄川徽.水悬浮体系中凹凸棒石与 Gu2+作用机理.高校地质学报,2004,10(3):385-392
    陈天虎.苏皖凹凸棒土粘土纳米尺度矿物学及地球化学.合肥工业大学博士论文,2003.
    仇振琢,高氟水及其净化水处理技术,1987,2.13(1).
    代伟伟,刘义新.改性坡缕石黏土的全孔分布研究.岩石矿物学杂志,2005,24(6):526-530
    邓爱军.凹凸棒石吸附水中 Cr(Ⅵ)的研究.1999,(3):15-16
    古阶祥.沸石,北京:地质出版社,1984
    黄德英,温力,封文彬.用改性黏土的吸附混凝去除 Zn2+.南京化工大学学报,2001,23(4):62-65
    黄彦林,赵恒勤,吴东印,李英堂,赵连泽,周一民,杨宇.白云质凹凸棒石综合开发应用研究.非金属矿,2005,28(2):17-19
    惠天凯,裘祖楠,汪学才. 改性凹凸棒土对水溶液中苯的吸附研究.上海环境科学,2000,19 (7):317-319
    江苏省地质调查研究院,六合区国土资源分局.六合区矿产资源总体规划(2006-2015 年),2006
    江苏省地质调查研究院.盱眙县凹凸棒石黏土资源潜力调查.2006
    兰文艺,邵刚,实用环境工程手册,北京:化学工业出版社,2002
    李宝成,汤清家.铅蓄电池制造厂含铅废水处理技术[J].辽宁城乡环境科技,1999,(1):60-64
    廖自基编著.微量元素的环境化学及生物效应.中国环境科学出版社,1992
    刘裴文,王萍.天然含氟水的水质特征及其对人体和处理工艺的影响.中国给水排水,1990,6(6)
    刘瑞霞:负载镧纤维吸附剂对氟离子的吸附性能.环境科学,1999,21:34-37.
    刘淑云,李小明,曾光明.含铬(Ⅵ)废水处理研究进展.湖南城市学院学报(自然科学版),2006,15(2):66-68
    刘文质,张玉杰.饮用水沸石除氟.水处理技术,1995,21(3):166-170
    刘晓园.饮用水除氟技术的发展与应用.中国给水排水,1989.5(6)
    刘原,林少彬等.适宜、安全水氟浓度及总摄氟量的研究.卫生研究.1995,11(24)
    马刚平,刘振儒:镧氧化膜硅胶吸附除氟性能研究.中国环境科学,1999,19:345-348
    马玉恒,方卫民,马小杰,2006.凹凸棒土研究与应用进展.材料导报,(9):43-46
    彭书传,黄川徽,陈天虎,徐晓春,汪家权.盐酸活化凹凸棒石吸附 Cr3+工艺条件的优化研究.合肥工业大学学报(自然科学版),2003,26(3):332-335
    彭书传,魏凤玉,周元祥,等.有机凹凸棒粘土吸附水中苯酚的试验.城市环境与城市生态,1999,12(2):14-16
    钱庭宝,离子交换剂应用技术,天津:天津科学技术出版社,1984
    裘祖楠,沈祖勤,张谊,等.用凹凸棒石处理高浓含油废水的研究. 上海环境科学,1995,14(2):22-26
    申华,杨卫东,石中亮.凹凸棒石吸附剂处理含镍(Ⅱ)废水的研究.辽宁化工,2005,34(5):187-189
    宋金如,龚治湘,罗明标,肖恺.凹凸棒石吸附铀的性能研究及应用.华东地质学院学报,1998,21(3):265-272
    汤鸿霄.湘江重金属污染水化学.北京: 中国环境科学出版社,1992.53-97
    唐树和,徐芳,王京平.离子交换法处理含 Cr(Ⅵ)废水的研究.应用化工,2007,36(1):22-25
    陶勇.儿童铅中毒与人口素质.科技视线,2000,(10):18-19
    天津大学物理化学教研室,物理化学.北京:高等教育出版社,1992
    田煦,郑自立,易发成.中国坡缕石矿石特征及物化性能研究.矿产综合利用,1996,6,1-3
    王峰,张星,杨敏,崔建云.活性氧化铝对饮用水中氟离子的吸附行为.中国农业大学学报,2003,8(4):63-65
    王红艳,张艳,周守勇,张莉莉,赵宜江.硫酸改性凹凸棒石的性能表征及吸附Pb(Ⅱ)工艺研究.淮阴师范学院学报(自然科学版),2005,4(1):47-50
    王红艳,周守勇,张艳,赵宜江,张莉莉.改性凹凸棒石及其吸附 Cd2+工艺的研究.淮阴工学院学报,2005,14(1):80-82
    王金明,易发成.改性凹凸棒石表征及其对模拟核素 Cs+的吸附研究.非金属矿,2006,29(2):53-55
    王连方,张玲,王生玲.某些除氟方法除氟效能分析.地方病通报,1999,14(1):20-22
    王连军,黄中华,孙秀云.凹凸棒石土的改性研究.上海环境科学,1999,18(7):315-318
    王连军,黄中华,孙秀云.改性凹凸棒土处理染化废水研究.南京理工大学学报,1998,22(3):240-243
    王庆根,屠迈,王纬东,沈俭一.凹凸棒石表面酸碱性质的研究.高等学校化学学报,1997,18(4):625-627
    王绍文,姜凤有. 重金属废水治理技术.北京:冶金工业出版社,1993:1015
    王一中 ,董华 ,余鼎声,尼龙-凹凸棒土纳米复合材料的合成 ,合成树脂及塑料,1997,14(2),16-20
    王益庆,张立群,张慧峰.凹凸棒土橡胶纳米复合材料结构和性能研究,北京化工大学学报,1999,26(3),25-29
    温萍菌,杨文秀.慢性氟中毒对人体心肌的影响.中国地方病学杂质.1997,1.16(1)
    奚旦立,孙裕生,刘秀英.环境监测.北京:高等教育出版社,1996:13-14
    许保玖.给水处理理论与设计,北京:中国建工出版社,1992
    许文林,王雅琼.固定床电化学反应器处理含铜废水研究.环境科学,1993,15(1):46-47
    严煦世.给水工程(第三版).北京:中国建筑工业出版社,1995,377-379
    扬亚莉,张陶芸.坡缕石的开发利用,纸和造纸,1994,4,51-52
    杨利营,盛京.凹凸棒粘土的研究开发与应用,江苏化工,2001,29(6),33-37
    杨秀敏,胡桂娟.凹凸棒石修复镉污染的土壤.黑龙江科技学院学报,2004,14(4):80-82
    姚宝书,曹希洪.饮用水除氟.环境科学丛刊,1982,3(6):47-52
    尹奋平,何玉凤,王荣民,王云普.黏土矿物在废水处理中的应用.水处理技术,2005,31(5):1-6
    尹琳,陆现彩.一种对饮用水进行降氟矿化处理的新材料,岩石矿物学杂志,2001,20(4):536-538
    于德奎,刘凤贞,吕严.氧化镁饮水降氟效果及影响因素.中国地方杂志,1998,17(3):150-154
    詹庚申,郑茂松,高振如,朱士鹏.凹凸棒石开发利用现状、思考与前瞻——以江苏盱眙凹凸棒石开发为例.江苏地质,2003,27(1):41-47
    张超杰.含氟水治理研究进展,给水排水,2002,28(12):26-29
    张国生.凹凸棒石催化活性污泥法处理印染废水的研究.非金属矿,1995,1,42-46
    张国生.凹凸棒石净化矿化饮用水的研究.水处理技术,1997,2,23(1),55-59
    张华民.凹凸棒石的成矿地质条件及鉴定方法.非金属矿,1990,1:37-38
    张铨昌,天然沸石离子交换性能及其应用.北京:科学出版社,1986
    张士成,蒋军华.凹凸棒石的选矿深加工与新产品开发研究.矿产保护与利用,1997,5:27-30
    张寿凯,邱梅.沸石在水处理中的应用.净水技术,2000,18(2):41-44
    张树春.当议饮水氟化物处理.环境科学与技术,1992,2
    张威,杨胜科,费晓华.反渗透技术去除地下水中氟的方法.长安大学学报(自然科学版),2002,22(6):116-118
    G.L.瓦尔德博特著,胡汗升,洪传法等译.环境污染物对人体健康的影响.人民卫生出版社,1984
    J.W.帕特森.废水处理技术.北京:化学工业出版社,1981.122-135 US EPA.饮用水标准和健康建议.2004
    Aisa, C. et al. (2005), Combining DLS, XRD, SEM-EDAX and EXAFS in the study of Zn(II) retention on a palygorskitic clay. Clay Minerals, 40: 205-212
    Allen, S.J., Gan, Q., Matthews, R. and Johnson, P.A. (2003), Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresource Technology, 88(2): 143-152
    Allen, S., Brown, P., McKay, G. and Flynn, O. (1992), An evaluation of single resistance transfer models in the sorption of metal ions by peat. Journal of Chemical Technology and Biotechnology, 54, 271-276
    Alvarez, A.E. and Garcia, S.A. (2003), Palygorskite as a feasible amendment to stabilize heavy metal polluted soils. Environmental Pollution, 125: 337-344 álvarez-Ayuso, E. and Garc′ia-Sa′nchez, A. (2007), rway. Science of The Total Environment, 163 (1-3), 39-53
    Bradley, W.F. (1940), The structural scheme of attapulgite. American Mineralogist, 25(6): 405-410
    Brown, W.E., Gregry, J.M. and Chow, L.G. (1977), Effects of fluoride on emanal solubility and cariostasis. Caries Research, 11: 118-141
    Brunauer, S., Emmett, P.H. and Teller, E. (1938), Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309-319
    Capelo, S. (1993), Effect of lead on the uptake of nutrients by unicellular algae. Water Research, 27(10):1563-1568
    Chang, J.S., Law, R. and Chang, C.C. (1997), Biosorption of lead, copper and cadmium by biomass of Pesudomonas aeruginosa. Water Research, 31, 1651-1658
    Chisholm, J.E. (1992), Powder diffraction patterns and structural models for palygorskite, The Canadian Mineralogist, 30, 61-73
    Christ, C.L., Hathaway, J.C., Hostetler, P.B. and Shepard, A.O. (1969), Palygorskite:new X-ray data. American Mineralogist, 54,198-205
    Mohapatra, D.D., Mishra, G.R.C. et al. (2004), Use minerals to abate fluoride from water, Journal of Colloid and Interface Science, 275:355-399
    Dean, H.T. (1936), Action of fluorides upon human teeth. The Scientific Monthly, 43 (2), 91-192.
    Drits,V.A. and Sokolova, G.V. (1971), Structure of palygorskite. Soviet Physics and Crystallography, 16, 183-185
    Du H.B. et al.( 1997), Preparation by microwave irradiation of nanometresized AlPO4-5 molecular sieve. J Mater Chem, (7):551-556
    Farrah, H., Hatton, D. and Pickering, W.F. (1980), The affinity of metal ions for clay surfaces. Chemical Geology, 28, 55-68
    Freundlich, H.M.F. (1906), Over the adsorption in solution. Journal for Physical Chemistry, 57, 385-470
    Galan, E. (1996), Properties and applications of palygorskite-sepiolite clays. Clay Minerals, 31: 443-453
    Garcya, S.A. and Alastuey, A. (1999), Querol X.Heavy metal adsorption by different minerals: application to the remediation of polluted soils. The Science of the Total Environment, 242: 179-188
    Girgis, B.S., Yunis, S.S., Soliman, A.M. (2002), Characteristics of activated carbon from peanut hulls in relation to conditions of preparation. Materials Letters, 57(1): 164-172
    Gosselin, R.E. and Smith, R.O. (1976), Clinical toxicology of commercial products. 5thed. Baltimore, M.D: Williams and Wikins. 1976. 185-193
    Guanghui, Zhang., Yong, Gao., Ying, Zhang. et al. (2005), Removal of fluoride from drinking water by a membrane coagulation reactor, Desalination, (177):143-155
    Gupta, V.K. (1998), Equilibrium uptake, sorption dynamics, process development, and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent. India English Chemistry Research, 37(1):192-202
    Haydn, H.M. (2000), Traditional and new applications for kaolin, smectite, and palygorskite: a general overview. Applied Clay Science, 17, 207-221
    Lounici, H., Belhocine, D. Grib, H. et al.(2004), Fluoride removal with electro-activated alumina, Desalination, 161:287-293
    Haden, W.L. and Schwint, I.A. (1967), Attapulgite: its Properties and Applications. Industrial & Engineering Chemistry, 59(9): 59-69
    Hall, K.R., Eagleton, L.C., Acrivos. A. and Vermeulen, T. (1966), Pore-andsolid-diffuion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial and Engineering Chemistry Fundamentals, 5(2):212-223
    Hao, C. et al., (2007). Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. Journal of Colloid and Interface Science, 307: 309–316
    Harkins, W.D. and Jura, G. (1944), Surfaces of solids. XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area and the areas occupied by nitrogen and other molecules on the surface of a solid. Journal of the American Chemical Society, 66, 1366-1373
    Haron, M.J. and Yunus, W.M.Z.W. (2001), Removal of fluoride ion from aqueous solution by a cerium-poly (hydroxamic acid) resin complex. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 36 (5), 727-734
    Harter, R.D. and Baker, D.E. (1977), Applications and applications of the langmiur equation to soil adsorption phenomena. Soil Sci Soc Am J, 41(6): 1077-1080
    Hasany, S.M. and Chaudhary, M.H. (1996), Sorption potential of hare river sand for the removal of antimony from acidic aqueous solution. Applied Radiation and Isotopes, 47(4):467-471
    Ho, Y.S. (2004), Selection of optimum sorption isotherm. Carbon, 42, 2115
    Ho, Y.S. and Ofmaja, A.E. (2005), Kinetics and thermodynamics of lead ion sorption on palm kernel fibre from aqueous solution. Process Biochemistry, 40: 3455-3461.
    Ho, Y.S., Porter J.F. and McKay, G. (2002), Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air and Soil Pollution, 141(1-4): 1-33
    Ho, Y.S. (2003), Removal of metal ions from sodium arsenate solution using tree fern. Process Safety and Environmental Protection, 81 (B5), 352-356
    Ho, Y.S. (2004), Selection of optimum adsorption isotherm. Carbon, 42 (10), 2115-2116
    Ho, Y.S. (2005), Effect of pH on lead removal from water using tree fern as the sorbent. Bioresource Technology, 96 (11), 1292-1296
    Ho, Y.S. (2006), Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Polish Journal of Environmental Studies, 15 (1), 81-86
    Ho, Y.S. and McKay, G. (1999), Batch lead(II) removal from aqueous solution by peat: Equilibrium and kinetics. Process Safety and Environmental Protection, 77 (B3), 165-173
    Ho, Y.S. and Ofomaja, A.E. (2006), Biosorption thermodynamics of cadmium on coconut copra meal as biosorbent. Biochemical Engineering Journal, 30 (2), 117-123
    Ho, Y.S., Huang, C.T. and Huang, H.W. (2002), Equilibrium adsorption isotherm for metal ions on tree fern. Process Biochemistry, 37 (12), 1421-1430
    Ho, Y.S., Wase, D.A.J. and Forster, C.F. (1996), Removal of lead ions from aqueous solution using sphagnum moss peat as adsorbent. Water SA, 22, 219-224
    Hocine, G., Francoise, P., Jacqueline, S. et al. (2002), Defluoridation of groundwater by a hybrid process combining adsorption and Donnan dialysis, Desalination, 145:287-291
    Hodge, H.C. and Smith, F.A. (1965), Fluoride chemistry: V.4.Simons J. H.ed. New York, NY: Academic press.1965
    Holan, Z.R. and Volesky, B. (1994), Biosorption of lead and nickel by biomass of marine algae. Biotechnology and Bioengineering, 43, 1001-1009
    Holan, Z.R. and Volesky, B. (1995), Accumulation of cadmium, lead, and nickel by fungal and wood biosorbents. Applied Biochemistry and Biotechnology, 53, 133-146
    Ikuo A, Satoshi I, Toshimitsu T. et al. (2004), Adsorption of fluoride ions onto carbonaceous materials, Journal of Colloid and Interface Science, 275:35-39
    Jossens, L., Prausnitz, J.M. and Fritz, W. et al. (1978), Thermodynamics of multi-solute adsorption from dilute aqueous solutions. Chemical Engineerin Science, 33(8):1097-1106
    Jura, G. and Harkins, W.D. (1946), Surfaces of solids. XIV. A unitary thermodynamic theory of the adsorption of vapors on solids and of insoluble films on liquid subphases. Journal of the American Chemical Society, 68, 1941-1952
    Kangjoo, K. and Gi Young, J. (2005), Factors influencing natural occurrence of fluoride-rich ground waters: a case study in the southeastern part of the Korean Peninsula, Chemosphere, 58:1399-1408
    Karthikeyan, G., Muthulakshmi, A.N. and Sanavana,S.G. (1999), Defluridation property of burnt clay. J. Indian water works association, 1999, XXXI:291
    Kau, P.M.H., Smith, D.W. and Binning, P.J. (1998), Experimental analysis of fluoride diffusion and sorption in clays. Geoderma, 84:89-108
    Kau, P.M.H., Smith, D.W. and Binning, P.J. (1997), Fluoride retention by kaolin clay. J.Contain.Hydrol., 28:267-288
    Kettunen, R. and Keskital, P. (2000), Combination of membrane technology and limestone filtration to control drinking water quality, Desalination, 131(1-3), 271-283
    Kifer,R.P. and Payne, W.L. (1969), and Ambrrose, M..E.: Seleniurn contenl of fish meals.It Feedstuffs 41:24-25
    Langmuir, I. (1916), The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221-2295
    Langmuir, I. (1918), The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40 (9), 1361-1403
    Leifu, R. (1992), Clay and clay miners. China Geolugy
    Leusch, A., Holan, Z.R. and Volesky, B. (1995), Biosorpyion of heavy metals (Cd, Cu, Ni, Pb, Zn) by chemically-reinforced biomass of marine algae. Journal of Chemical Technology and Biotechnology, 62, 279-288
    Li, A., Wang, A.Q. and Chen, J.M. (2004), Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. Journal of Applied Polymer Science, 92 (3), 596-1603
    López, F.A., Perez, C., Sainz, E. and Alonso, M. (1995), Adsorption of Pb2+ on blast furnace sludge. Journal of Chemical Technology and Biotechnology, 62, 200-206
    Lyubchik, S.I, Lyubchik, A.I, Galushko, O.L. et al. (2004), Kinetics and thermodynamics of the Cr( Ⅲ ) adsorption on the activated carbon from co-mingled wastes. Colloids and Surfaces A: Physicochem Eng Aspects, 242: 151-158
    Agarwal, M., Rai, K., Shrivastav, R. et al. (2003), Deflouridation of water using amended clay,Journal of Cleaner Production, 11:439-444
    Arora, M., Maheshwari, R.C. and Jain, S.K. et al. (2004), Use of membrane technology for potable water production. Desalination, 170:105-112
    Mahramanlioglu, M., Kizilcikli, I. and Bicer., I.O. (2002), Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth, Journal of Fluorine Chemistry, 115:41-47
    Srimurali, M., Pragathi A. et al. (1998), A study on removal of fluoride from drinking water by adsorption onto low-cost materials, Environmental Pollution, 99:285-289
    Tahaikt, M., Achary, I., Menkouchi Sahli, M.A. et al. (2006), Defluoridation of Moroccan groundwater by electrodialysis: continuous operation, Desalination, 189:215-220
    Augsburger, M.S., Strasser, E., Perino, E., Mercader, R.C. and Pedregosa, J.C. (1998), FTIR and Mssbauer investigation of a substituted palygorskite: silicate with a channel structure,J.Phys.Chem Solids, l59(2), 175-180
    Majid, A., Toll, F., Boyko, V.J. and Sparks, B.D. (1996), Fixation of lead in contaminated soils by co-agglomeration with metal binding agents. Journal of Environmental Science and Health Part A-Environmental Science and Engineering and Toxic and Hazardous Substance Control, 31, 1469-1485.
    Majone, M., Papini, M.P. and Rolle, E. (1993), Clay adsorption of lead from landfill leachate. Environmental Technology, 14, 629-638
    Manju G.N., Raji C. and Anirudhan, T.S.(1998), Evaluation of coconut husk carbon for the removal of arsenic from water. Water Research, 32(10):3062-70
    Mansson, A.R., and Withford, G.M., Environmental and physiological factors affecting dental fluorosis. J. Dent. Res., 1990, 69: 706-713
    McKay, G., Ho, Y.S. and Ng, J.C.P. (1999), Biosorption of copper from waste waters: a review. Sep Purif Methods, 28(1): 87-125
    Mckee, R,H. and Jhonston, W.S. (1934), Removal of fluorides from drinking water. Industrial Engineering Chemistry, 26(8):849-850
    Mehran, S., Hosein S., Mahmoud K., Farshid N. and Bijan, Najafi. (2006), Sorption of Cadmium on Palygorskite,Sepiolite and Calcite:Equilibria and Organic Ligand Affected Kinetics. Colloids and Surfaces A:Physicochem.Eng.Aspects, 1-27
    Melo, D.M.A and Ruiz, J.A.C. (2002), Preparation and characterization of lanthanum palygorskite clays as acid catalyst. Alloys and Compounds, (344): 352-355
    Min, Y, Takayuki H., Nobuyuki, H., et al. (1999), Fluoride removal in a fixed bed with granular calcite. Water Research, 33:3395-3402
    Mustapha, H., Francoise, P., Jacqueline, S. et al. (2000), Fluoride removal from waters by Donnan dialysis, Separation and Purification Technology, 18:1-11
    Nigamananda, D., Pragyan, P. and Rita, D. (2005), Defluoridation of drinking water using activated titanium rich bauxite. Journal of Colloid and Interface Science, (292):1-10
    Okieimen, F.E., Okundia, E.U. and Ogbeifun, D.E. (1991), Sorption of cadmium and lead ions on modified groundnut (Arachis hypogea) husks. Journal of Chemical Technology and Biotechnology, 51, 97-103
    Orumwense, F.F.O. (1996), Removal of lead from water by adsorption on a kaolinitic clay. Journal of Chemical Technology and Biotechnology, 65, 363-369
    ?zer, D., Aksu, Z., Kutsal, T. and Caglar, A. (1994), Adsorption isotherms of lead(II) and chromium(VI) on Cladophora crispata. Environmental Technology, 15, 439-448
    Petrov, N., Budinova, T. and Khavesov, I. (1992), Adsorption of the ions of zinc, cadmium, copper, and lead on oxidized anthracite. Carbon, 30, 135-139
    Phillips, P.H. (1932), Plasma phosphatase in dairy cows suffering from fluorosis. Science, 76 (1967), 239-240
    Potgieter, J.H. et al. (2006), Heavy metals removal from solution by palygorskite clay. Minerals Engineering, 19: 463-470
    Qian, J., Susheela, A.K., Mudgal, A. and Keast, G. (1999), Fluoride in water: An overview, UNICEF Publication on Water. Environment Sanitation and Hygiene, 11-13
    Frost, R., Oliver, L., Locos, B., Huada R. and Kloprogge, J.T. (2001), Near-infrared and mid-infrared spectroscopic study of sepiolites and palygorskites. Vibrational Spectroscopy, 27,1-13
    Raichur, A.M. and Basu, M.J. (2001), Adsorption of fluoride onto mixed rare earth oxides, 24:121-127
    Ratkowsky, D.A. (1990), Handbook of Nonlinear Regression Models, Marcel Dekker, Inc. New York
    Ray, L.F., Greg, A.C. and Kloprogge, J.T. (1998), Rocky Mountain leather’,sepiolite and attapulgite-an infrared emission spectroscopic study. Vibrational Spectroscopy, 16,173-184
    Akyuz, S.T. and Davies, J.E.D. (1995), FT-IR and FT-Raman Spectral Investigations of Anatolian Attapulgite and its Interaction with 4,4’-Bipyridyl,Journal of Molecular Structure, 349,61-64
    Saether, O.M., Reimann, C., Hilmo, B.O. and Taushani, E. (1995), Chemical composition of hard- and softrock groundwaters from central Norway with special consideration of fluoride and Norwegian drinking water limits. Environmental Geology, 26 (3), 147-156
    Sag, Y. and Kutsal, T. (1995), Biosorption of heavy metals by Zoogloea ramigera: Use of adsorption-isotherms and a comparison of biosorption characteristics. Chemical Engineering Journal and the Biochemical Engineering Journal, 60, 181-188
    Sarma, D.R.R. and Rao, S.L.N. (1997), Fluoride concentrations in ground waters of Visakhapatnam, India. Bulletin of Environmental Contamination and Toxicology, 58 (2), 241-247
    Shirvani, M. et al. (2006), Sorption of cadmium on palygorskite, sepiolite and calcite equilibria and organic ligand affected kinetics.Colloids and Surfaces A: Physicochem. Eng. Aspects, 287: 182-190
    Shirvani, M. et al. (2006), Sorption–desorption of cadmium in aqueous palygorskite, sepiolite, and calcite suspensions Isotherm hysteresis. Chemosphere, 65: 2178-2184
    Shirvani M. et al. (2007), Kinetics of cadmium desorption from fibrous silicate clay minerals: Influence of organic ligands and aging. Appl. Clay Sci, doi:10.1016/j.clay.2006.12.010
    Singer, A. (1977), Dissolution of 2 Australian palygorskite in dilute acid. Clays and Clay Minerals, 25(2): 126-130
    Srimurali, M., Pragathi, A. and Karthikeyan, J. (1998), A study on removal of fluorides from drinking water by adsorption onto low-cost materials. Environmental Pollution, 99:285-289
    Srivastava, S.K., Tyagi, R. and Pant, N. (1989), Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local for tiliser plants. Water Research, 23, 1161-1165
    Suarez, M., Barrios, L.V. and Gonzalez, F. (1995), Acid activation of a palygorskite with HCl: development of physico —chemical, textural and surface properties. Applied Clay Science, (10):247-258
    Subhashini, G. and Pant, K.K. (2005), Equilibrium, kinetics and breakthrough for adsorption of fluoride on activated alumina, Separation and purification technology, 42:265-271
    Subhashini, G. and Pant, K.K. (2004), Investigations on the column performance of fluoride adsorption by activated alumina in a fixed-bed, Chemical Engineering Journal, 98:165-173
    Tan, W.T. and Abd. Rahman, M.K. (1988), Removal of lead, cadmium and zinc by waste tea leaves. Environmental Technology Letters, 9, 1223-1232
    Tóth, J. (1971), State equations of the solid-gas interface layers. Acta Chemica Academiae Scientiarum Hungarica, 69 (3), 311-328
    United States Patent and Trademark Office. (2007), Searching US Patent Collection Van der Zee, S.E.A.T.M and W.H. Van Riemsdijk. (1988), Model for long-term phosphate reaction kinetics. J. Environmental Quality, 17, 35-41
    Vivek, S. C., Pradeep, K.D. and Leela, L. (2006), Investigations on activated alumina based domestic defluoridation units. Journal of Hazard Material
    Wang, L.F. and Huang J.Z. (1995), Outline of control practice of endemic fluorosis in China, Social Science Medicine, 41 (8): 1191-1195
    WHO, (1993), Guidelines for Drinking Water Quality, World Health Organization, Geneva
    Wu, C.G. and Bein, T. (1996), Microwave sunthesis of molecular sieve MCM-41.Chem Commun, (1):925-926
    Wang, X.C. (1999), Flurodie contamination of groundwater and its impacts on human health in Inner Mongolia ares. J Water SRT-Aqua, 48(4):146-153
    Yadava, K.P., Tyagi, B.S. and Singh, V.N. (1991), Effect of temperature on the removal of lead(II) by adsorption on china clay and wollastonite. Journal of Chemical Technology and Biotechnology, 51, 47-60
    Yan-Hui, L., Shuguang, W., Xianfeng Z., et al. (2003), Adsorption of fluoride from water by aligned carbon nanotubes. Materials Research Bulletin, 38, 469-476
    Yanxin, W. and Eric, J. R. (2001), Activation and regeneration of a soil sorbent for defluoridation of drinking water, Applied Geochemistry, 16:531-539
    Ying-Ming, X., An-Rong, N., Jing, Z., et al. (2001), Preparation and defluoination performance of activated cerium(Ⅳ) oxide/SiMCM-41 adsorbent in water, Journal of Colloid and Interface Science, 235:66-69
    Zhu, C.S., Bai, G.L., Liu, X.L. and Li, Y. (2006), Screening high-fluoride and high-arsenic drinking waters and surveying endemic fluorosis and arsenism in Shaanxi province in western China. Water Research, 40 (16), 3015-3022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700