淀粉接枝聚脒的合成方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单纯的单体共聚所得的聚脒存在分子量小、成本高的缺点,使其在应用中受到很大程度的限制。淀粉分子带多个羟基,易于实现酯化、醚化、氧化、交联、接枝等反应,而且淀粉接枝共聚物在高分子絮凝剂、高吸水材料、造纸工业助剂、油田化学材料、可降解地膜和塑料等多方面的实际应用中具有优异的性能。因此本课题开展淀粉接枝聚脒方法的研究,以合成出分子量大、成本低的阳离子絮凝剂。
     以天然多羟基高分子物质——淀粉为原料,首次通过交替接枝丙烯腈、N-乙烯基甲酰胺双乙烯基单体制备淀粉接枝聚脒。本研究主要采用水溶液接枝聚合生成中间体,再在酸性介质中直接脒化的工艺,优化了各项反应条件,具体为:(1)中间体接枝聚合的条件为:淀粉11.1%(wt),采用双引发剂用量为0.440%(wt),单体AN与NVF质量比1:1,反应温度50℃,反应时间5h。(2)脒化条件为:盐酸用量11.1%(wt),脒化温度95℃,脒化时间1.5h。
     用FT-IR分别对可溶性淀粉、接枝中间体、接枝聚脒的结构组成进行了表征,对产品的性质——电荷密度和特性粘度进行了研究和评价。结果表明两种单体AN和NVF成功地接枝在了淀粉上,成功合成出了淀粉接枝聚脒;所得到的接枝聚脒的特性粘度为1.94dL·g-1,电荷密度为2.29mmol·g-1。此外,对产物的絮凝性能进行了评价——对处理城市生活污水的研究发现,接枝聚脒的添加量为25.0mg·L-1时,其处理污水的浊度为4.2NTU;对采油含聚污水的油水分离的研究表明,接枝聚脒的加入量达50.0mg·L-1时,含油量从原来的1043.16mg·L-1降低到20.0mg·L-1,均表现出优异的处理效果。
     此外还做了单引发剂接枝聚合,尝试了种子聚合等其它聚合方法,取得了一定的效果。在此基础上研究了淀粉接枝共聚反应中引发剂、淀粉、单体浓度的变化对接枝效率和接枝共聚反应速率的影响,确定了接枝反应速率及表观活化能。
     从目前查阅的资料来看,淀粉接枝聚脒的研究在国内、外均未见文献报道,有重要创新。但是由于脒化在酸性条件下进行,因此存在淀粉的水解、收率低等问题。由于实验时间的限制暂时未能找到更好的解决办法,以后有待于进一步研究。
The polyamidine being made by direct co-polymerization of N-vinyl formamide(NVF) and acrylonitrile(AN) was in low-molecule and high cost, so it’s appling was restricted. Because starch with many hydroxy groups is abundant, it’s easy to esterificatien and graft. In order to descend the cost and ascend the molecule, this paper was studied on polyamidine grafted with starch.
     Starch grafted polyamidine was made from starch grafting NVF and AN. In this paper, aqueous solution polymerization and the direct acetamiprid in acid medium were studied. (1)The optimized reaction conditions of intermediate were: the starch percent of 11.1%(wt); the initiator percent of 0.30%(wt); m(NVF):m(AN)=1:1; the polymerization temperature of 50℃; the polymerization time of 5h. (2)The optimized reaction conditions of acetamiprid were: the HCl percent of 11.1%(wt); the formamidine temperature of 95℃; formamidine time of 1.5h.
     The co-polymer and graft polyamidine were characterized by FT-IR. The properties of the graft polyamidine such as reduced viscosity and charge density were determined. It was found that the reduced viscosity of graft polyamidine was 1.94dL·g-1, it’s charge density was 2.29mmol·g-1. The applied properties of the graft polyamidine such as the turbidity, COD and the percent of oil in the oil water seperation were determined. The results were satified that when grafted polyamidine for 25.0mg·L-1, the turbidity was 4.2; when grafted polyamidine for 50.0mg·L-1, the percent of oil in the oil water was 20.0mg·L-1.
     Additional, seed polymerization and other polymerization methods were also tried, which had yielded certain results. Furthermore, the influence of changes of concentrations of initiator, starch, monomer on graft efficiency and co-polymerization rate was studied during the co-polymerization reaction. Also the apparent activation energy was obtained.
     At present, this research is absolutely new. It’s experement method and results are not recorded within national and international documents. But the formamidine is experemented in acid medium, so the decomposition of starch is serious. In order to solve this problem, the further research will be studied in future.
引文
[1]曹亚峰,杨锦宗,刘兆丽.反相乳液中淀粉接枝共聚物的合成及其絮凝性能的研究[D].大连:大连理工大学,2003
    [2]姚献平,邓丽平.造纸用变性淀粉[J].造纸化学品,1994,6:1-3
    [3]葛学武,徐相凌,张志成,等.淀粉接枝丙烯酞胺制备絮凝剂的研究方法[J].高分子材料科学与工程,1999,15(4):130-132
    [4]孙载坚,周普,刘启澄.接枝共聚和[M].北京:化学工业出版社,1992:255-258
    [5] Khalil M.I.,Aly A.A..Preparation and evaluation of some anionic starch derivatives as flocculants[J].Egypt Starch,2002,54(3):132-139
    [6] Zhang L.M.,Chen D.Q..Water soluble grafted starches for hydration suppression of swell able clay[J].USAstarch,2002,54(7):285-289
    [7]赵华,王佩璋.淀粉-丙烯酸-丙烯酰胺共聚物合成新工艺[J].北京轻工业学院学报,1999,17(1):14-17
    [8]许东颖,李秋颖,杨益欢,等.淀粉-丙烯酸-醋酸乙烯酯接枝共聚反应研究[J].云南化工,2005,32(1): 4-6
    [9]李登好,赵登山.淀粉接枝丙烯酸/丙烯酰胺类超强吸水性树脂的合成与性能研究[J].化学工程师,2001,(3):12-14
    [10]梁仁闻,朱斌.淀粉接枝共聚合成吸水树脂工艺研究[J].化工生产与技术,2005,12(3):12-14
    [11]龙剑英,宋湛谦.淀粉三元接枝复合型高吸水性树脂的合成及性能研究[J].林产化学与工业,2002,22(4):1-4
    [12]修娇,马涛,韩立宏,等.微波合成淀粉-丙烯酸-聚乙烯醇三元共聚高吸水树脂的研究[J].农产品加工,2006,(3):20-23
    [13]唐星华,李静.焦磷酸锰引发丙烯酸-丙烯酰胺-淀粉接枝共聚反应研究[J].南昌航空工业学院学报,2001,15(1):191-95
    [14]王志玉.淀粉与丙烯酸/丙烯酰胺共聚物的合成及表征[J].兰州大学学报,2004,40(6):64-68
    [15] Suda.The synthesis and the property characterization of cassava starch grafted poly[acrylamide-co-(maleic acid)]superabsorbent viay-irradiation[J].Polymer , 2002 ,(43):3915-924
    [16]朱常英,由英才,焦京亮.淀粉-甲基丙烯酸甲酯-醋酸乙烯酯接枝共聚反应研究[J].南开大学学报(自然科学),1999,32(2):18-21
    [17]牟立,刘孝波.聚酯酰胺/淀粉接枝ε-己内酯/淀粉三元共混物的制备及相容性研究[J].合成化学,2001,9(2):127-130
    [18]张可喜,符新,汪志芬.木薯淀粉/VAc-MA接枝共聚物的合成研究[J].化学工程师,2005,(9):11-13
    [19]刘颖春,陆冲,程树军,等.淀粉-醋酸乙烯酯-丙烯酸乙酯接枝共聚物[J].功能高分子学报,2003,16(4):483-488
    [20]陈苏,唐果东.淀粉与苯乙烯/甲基丙烯酸甲酯二元接枝共聚合研究[J].精细石油化工进展,2000,1(3):23-25
    [21] Fanta G.F.,Trimnell D.,Salch J.H..Graft Polymeriztion of Methyl Acrylate- Vinyl Acetate Mixtures onto Starch[J].J.Appl.Polym.Sci,1993,(49):1679-16821
    [22]曹文仲,钟宏,田伟威,等.淀粉接枝丙烯酰胺-丙烯酸(盐)三元共聚反应研究[J].现代化工,2006,26(2):181-183
    [23]刘兆丽,曹亚峰,马希晨.淀粉接枝两性离子絮凝剂的制备[J].大连轻工业学院学报, 2003,22(1):50-53
    [24]宋辉,马希晨.两性淀粉基天然高分子聚合物的合成及其速溶性的影响因素[J].大连轻工业学院学报,2006,25(3):193-196
    [25]马希晨,曹亚峰,邰玉蕾.以淀粉为基材的两性天然高分子絮凝剂的合成[J].大连轻工业学院学报,2002,21(3):157-160
    [26]卢绍杰,孙希明,刘瑞贤,等.淀粉与DADMAC-AM接枝共聚反相胶乳[J].高分子材料科学与工程,1999,15(5):52-55
    [27]宋荣钊,潘松汉,陈玉放,等.两性淀粉接枝共聚物的就地制备和性质[J].广州化学,2002,27(2):27-29
    [28]王百军,谢晖,周永红.淀粉与苯乙烯/丙烯酸丁酯接枝共聚的研究[J].精细石油化工,2005,(2):34-36
    [29]杨锦宗.超高分子量淀粉接枝丙烯酰胺-丙烯酸共聚物的合成[J].高分子材料科学与工程,2004,20(5):89-92
    [30]荣元帅,蒲万芬.淀粉接枝共聚丙烯酰胺/2-丙烯酰胺基-2-甲基丙磺酸预交联凝胶调剖剂ROS性能评价[J].精细石油化工进展,2004,5(3):5-7
    [31]胡子恒,张黎明.水溶性接枝聚多糖的研究[J].中山大学学报,2001,40(1):51-53
    [32] Hui Song.Synthesis and application of statch-graft-poly(AM-co-AMPS)by using a complex initiation system of CS-APS[J].Carbohydrate Polymers,2007,(69):189-193
    [33]李和平,戚俊清,闫春绵.淀粉/MMA-EA自交联型接枝共聚物的合成与结构表征[J].中国粮油学报,2000,15(4):1-4
    [34]吕生华,马建中,吕庆强,等.降解淀粉/AA-AN接枝共聚物复鞣剂的合成及应用[J].精细化工,2003,20(9):561-563
    [35]刘祥义.疏水缔合淀粉的制备及其对含油污水絮凝研究[J].(昆明理工大学环境科学与工程学院)石油炼制与化工,2006,1(37):1-5
    [36]梅小峰,朱谱新,吴大诚,等.接枝淀粉的合成与应用[J].四川纺织科技,2004,(1):32-36
    [37]冯国涛.变性淀粉的种类及其应用研究(续)[J].皮革化工,2005,4(22):11-15
    [38]宋万超.水溶性阳离子高分子在油田中的应用[M].北京:石油工业出版社,2004:202-215
    [39] Grundman C.,Kreutzberger A..Triazines.XX s-triazine as a new co-reactant in polymer synthesis[J].Polym.Sci.PolymChem,1959,38:425-432
    [40] Hme F.B..Synthesis and Properties of Polyamidines[J].Polym.Sci.PolymChem,1998,36:929-938
    [41] Komber H..1H,13C and 15N nuclear magnetic resonance studies of polyamidines prepared from di(4,4’-aminophenyl) methane and different triethyl orthoesters-polymers with a prototropic tautomerism[J].Polymer,1997,38(11):2603-2608
    [42] Karthikeyan,Sharavanan.Formation and stability of hydrogen bonds and ionic complexes inpolyacetamidine and its mixtures with proton dono-a vibrationalspectroscopy study[J].Polymer,2003,44:2601-2605
    [43] Frederic,Bouyer.Aggregation of Colloidal Particles in the Presence of Oppositely Charged Polyelectrolytes[J].Effect of Surface Charge Heterogeneities,Langmuir,2001,17:5225-5231
    [44]夏畅斌,黄念东,何绪文.新型阳离子絮凝剂的制备及其应用[J].水处理技术,2000:11-16
    [45]吴敦虎.有机高分子絮凝剂在污泥脱水中的应用研究[J].水处理技,2004,30(2):116-118
    [46]夏明珠.二氧化碳的分离回收技术与综合利用[J].现代化工,1999,19(5):46-48
    [47] Takeshi Endo.A Novel Construction of a Reversible Fixation-Release System of Carbon Dioxide by Amidines and Their Polymers[J].Macromolecules,2004,37(6):2007-2009
    [48] Aleksandrova E.L..A Mechanism of Charge-CarrirPhotogeneration in Polyamidine Supramolecular Structures[J].Electronic and Optical Properties of Semiconductors,2000,38(11):1325-1331
    [49]翟廷珠,林锡权.胶体滴定法及其应用[J].化学通报,1989,3:11-14
    [50]李丽.有机硫类含油废水絮凝剂的研制及性能研究[D].成都:西南石油学院,2005
    [51]任广萌,孙德智,王美玲.我国三次采油污水处理技术研究进展[J].工业水处理,2006,26(1):1-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700