高分辨ISAR成像新方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(Inverse Synthetic Aperture Radar, ISAR)具有全天时、全天候的特点,并且能够在远距离的情况下得到目标的ISAR图像,对雷达获取目标形状信息具有重大意义,因此在军事和民用中具有重大的应用价值。随着对ISAR的实时成像、超分辨、方位定标的不断需求,ISAR成像技术的研究不断深入。为了提高雷达的成像能力,更有利于后续基于ISAR图像的目标识别工作的展开,本文对有限脉冲、快速、自适应的ISAR成像算法做了一些研究。本文的主要内容概括如下:
     (1)基于稀疏贝叶斯学习的超分辨ISAR成像技术
     本文第三章首先介绍了刚体和微动目标ISAR成像模型,然后通过理论和公式的推导,提出了基于稀疏贝叶斯学习的超分辨ISAR成像算法。针对快速成像和自适应ISAR成像开展了以下研究工作:
     提出了一种基于稀疏贝叶斯学习(Sparse Bayesian Learning, SBL)ISAR超分辨成像算法。近年来,压缩感知已经成功应用到ISAR成像中。由于压缩感知方法将稀疏约束L0松弛到L1范数,导致最终解的稀疏度下降。另外,正则化参数需要手动调节,限制了其在实际ISAR成像的应用。由于SBL算法采用独立高斯分布,更能表征最终解的稀疏度。此外,利用该算法还可以通过置信最大化程序的得到相应的参数,不用人为干预,提高了算法的实际应用价值。飞机和舰船实测数据处理实验验证了基于稀疏贝叶斯学习ISAR超分辨成像算法的有效性。
     提出了一种基于多稀疏贝叶斯学习的微动目标ISAR成像算法。首先对微动目标的回波信号模型进行分析,得到目标图像具有不规则图形(微动成份)和直线的规则图形(主体成分)。由于主体部分具有散射点位置不变和幅度有起伏的特性,通过多稀疏贝叶斯学习(Mutiple Sparse Bayesian learning, MSBL)得到目标主体成分图像。进而通过减去主体的ISAR图像得到微动成分的图像。最终得到清晰的主体ISAR图像和微动参数。仿真和实测数据处理验证了该算法的有效性。
     (2)基于置信框架的自适应ISAR超分辨成像算法
     本文第四章提出了一种基于置信框架(Evidence Framework)的自适应ISAR超分辨成像算法。在压缩感知ISAR成像模型基础上,通过对稀疏约束L1范数的近似,利用置信框架推导得到相应参数的近似闭式解。本算法在稀疏编码和参数求解交替迭代,直到算法收敛到指定的步数,提高了ISAR成像算法的自适应性。仿真和实测数据处理验证了该算法的有效性。
     (3)基于自适应字典的压缩感知的ISAR超分辨成像及定标一体化技术
     本文第五章主要针对ISAR图像的方位定标进行了研究。首先建立了调频率-压缩感知的超分辨ISAR成像模型,通过构造自适应字典得到目标代价函数。由于此信号模型多了一个调频率的干扰矩阵,原压缩感知重构方法不再适用。通过理论推导和实验验证,得出在一定条件下可以通过交替迭代算法高概率的恢复出稀疏的目标信号。迭代算法分为两步:1)固定调频率的值,通过稀疏重构算法得到目标的超分辨ISAR图像;2)固定超分辨ISAR图像,通过梯度算法得到调频率的值。最后,利用得到的调频率的值,对目标的旋转速度进行最小二乘估计,利用得到的目标的转速值对超分辨ISAR图像进行方位定标,最终得到目标的距离-方位距离超分辨ISAR图像。实测数据验证了该算法的有效性。
     (4)一种匀加速空间目标一维距离像补偿算法
     本文第六章从宽带线性调频雷达信号目标回波的模型出发,分析了处于匀加速状态的空间目标回波的特性,得到回波为立方相位信号,通过推导得到速度和加速度估计的克拉美-罗界,提出基于立方相位函数参数估计的运动补偿方法。该方法可以在较低信噪比下实现速度和加速度的估计以及高分辨一维距离像的运动补偿,更有利于后续的成像和目标识别,仿真实验表明,该算法可以有效的实现匀加速目标的高分辨一维距离像的运动补偿。
Inverse Synthetic Aperture Radar (ISAR) can acquire ISAR image ofnon-cooperative target under the condition of all weather, all day and far distance,which enhances radar’s information inquisition capability dramatically. Therefore, inboth military and civilian application, ISAR imaging method has great importance.Recently, the problem of real-time, super-resolution and cross-range scaling in ISARimaging has been studied deeply. In order to improve the imaging capability of ISAR,which is more suitable for radar automatic target recognition base on ISAR image, somenew fast and adaptive imaging ISAR imanging algorithms with limited pulses arestudied in this dissertation. The main work in this dissertation can be shown as follows.
     (1) Superresolution ISAR imaging based on sparse Bayesian learning
     In Chapter3, ISAR imaging models of ridge target and micro-motion target havebeen analyzed, and the process of superresolution ISAR imaging based on sparse signalprocessing is presented. The following works have been done to improve the ISARimage quality for real-time and adaptive ISAR imaging.
     An algorithm for superresolution ISAR imaging based on sparse Bayesianlearning (SBL) is proposed. Recently, compressive sensing (CS) has been successfullyused in ISAR imaging. Since the exact sparse reconstruction, i.e., L0-norm constraint, isNP hard, L1-norm relaxation is widely used at the cost of performance degradation inthe sparseness of the solution. Furthermore, the regularized factor in CS-based ISARimaging algorithms should be adjusted manually. This makes the existing algorithmsinconvenient to be used in practice. SBL adopts individual Gaussian prior, which retainsa preferable property of diversity measure and can give more sparse solution. Moreover,all the necessary parameters can be estimated using an efficient evidence maximizationprocedure, which can be easily used in practice. The validity of the superresolutionbased on SBL has been verified by measured data of airplane and ship.
     A novel ISAR imaging algorithm for micromotion target based on multiplesparse Bayesian learning (MSBL) is proposed. The signal model of micromotion targetis analyzed. The ISAR image can be divided into irregular image (rotating part) andstraight lines (main body). Since the signal of the main body has the property ofcommon profiles, MSBL can be used to obtain the signal of main body effectively. Theimage of micromotion parts can be obtained by substracting the image of main body.Finally, the clear ISAR image of main body and the micromotion parameter of rotating part can be obtained. The validity of the proposed ISAR imaging algorithm based onMSBL has been testified by simulated and measured data.
     (2) An adaptive ISAR imaging algorithm based on evidence framework
     In Chapter4,An adaptive ISAR imaging algorithm based on evidenceframework is proposed. Based on the CS ISAR signal model and the approximation ofsparse constraint, i.e., L1-norm, the closed forms of all necessary parameters areobtained using evidence framework. This algorithm iterates between sparse coding andparameter estimation until a fixed number of iterations is reached. This ISAR imagingalgorithm improves the adaptivity of ISAR imaging. Experiments based on simulatedand measured data are demonstrated to show the efficiency of the proposed ISARimaging algorithm.
     (3) Joint ISAR imaging and cross-range scaling using compressive sensing withadaptive dictionary (CSAD)
     In Chapter5, ISAR cross-rang scaling is mainly studied. Firstly, the chirprate-CSISAR signal model is presented, and the cost function is obtained by constructing theadaptive dictionary. Since a disturbed matrix with chriprate is added to original CSISAR imaging model, the sparse reconstruction method used in CS method is invalid.An alternative recursion algorithm can be used to reconstruct the sparse signal with highprobability and this has been confirmed by theories analysis and data demonstration.The recursion algorithm can be divided two stages:1) fix the value of chirprate, get thesuperresolution ISAR image by the algorithm of sparse reconstruction;2) fix thesuperresolution ISAR, get the value of chirprate by gradient algorithm. Finally, therotation rate can be obtained by least square method, and the range and corss-rangeISAR image can be obtained by using the rotation rate to scale the ISAR image. Thevalidity of the proposed ISAR imaging algorithm based on CSAD algorithm has beentestified by measured data.
     (4) A range profile compensation algorithm for space target with uniformacceleration
     In Chapter6,Based on the model of wideband linear frequency modulation signal,the property of space target echo with uniform acceleration is analyzed. The target echocan be modeled as cubic phase signal, the Cramer-Rao bound of velocity andacceleration is deduced. A compensation algorithm based on cubic phase function isproposed, which can estimate the velocity and acceleration of target and compensate thehigh resolution range profile under lower signal to noise ratio, then it is preferable to the following imaging and target recognition. The results of simulation data show that theproposed algorithm can effective compensate the motion of space target with uniformacceleration.
引文
[1]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [2] M. Soumekh. Fourier Array Imaging. Prentice Hall, INC.,1994.
    [3] J. C. Curlander, R. N. McDonough. Synthetic aperture radar: system and signalprocessing. Jone Wiley&Sons, INC,1991.
    [4] C. V. Jakowatz Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson.Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Boston:Kluwer Academic Publishers,1996.
    [5] W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight Synthetic ApertureRadar: Signal Processing Algorithms. Boston: Artech House,1995.
    [6] J. Patrick Fitch. Synthetic Aperture Radar. Springer-Verlag New York Inc.,1988.
    [7] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing, CRC PressBoca Raton London New York Washington, D.C.
    [8] S. A. Hovanessian. Introduction to Synthetic Array and Imaging Radar. ArtechHouse,1980.
    [9] W. M. Brown. Synthetic aperture radar. IEEE Trans. AES.1967, Vol.3(2),217-229.
    [10] W. M. Brown and L.J. Porcello., An introduction to synthetic aperture radar, IEEESpectrum, Sept.1969, Vol.6,52-62.
    [11] C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu. Spaceborne synthetic apertureimaging radars: application, techniques, and technology. Proc. Of IEEE.1982,Vol.70(10),1174-1209.
    [12] C. A. Wiley. Synthetic Aperture radar. IEEE Trans on Aerospace and ElectronicSystem.1985, Vol.21(3),440-443.
    [13]张直中.微波成像技术.北京:科学出版社,1990.
    [14]张澄波.综合孔径雷达.北京:科学出版社,1989.
    [15]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [16] M. I. Skolnik.王军等译.雷达手册.北京:电子工业出版社,2003.
    [17] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLABAlgorithms. John Wiley&Sons, Inc.1999.
    [18]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [19] R. J. Sullivan. Micowave Radar Imaging and Advanced Concepts. Boston:Artech House,2000.
    [20] D. L. Mensa. High Resolution Radar Cross-Section Imaging. Artech House,Inc.1991.
    [21] M. J. Pricket, C. C. Chen. Principle of inverse synthetic aperture radar(ISAR)imaging. EASCON record,1980,340-345.
    [22] D. R. Wehner. High-Resolution Radar.2nd Edition, Artech House, Inc.1995.
    [23] D. L. Mensa. High Resolution Radar Imaging. Artech House, Inc.1981.
    [24] B. Borden. Radar imaging of airborne targets: a primer for applied mathematiciansand physicists. Institute of Physics Publishing Bristol and Philadelphia.1999.
    [25] W. M. Brown. Synthetic Aperture Radar [J]. IEEE Trans on AES,1967, Vol.3(2).217-229.
    [26] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments in radarimaging. IEEE Trans. AES. July.1984. Vol.20(4),363-399.
    [27] http://www.gov.cn/jrzg/2010-08/10/content_1675289.htmH.
    [28] M. J. Pricket, C. C. Chen. Principle of Inverse Synthetic Aperture Radar (ISAR)Imaging [A], EASCON record, Arlington, VA, Sep.29-Oct.1,1980.340-345.
    [29] D.R.Wehner. High-ResolutionRadar,2ndEdition,Artech House,Ine.,1987.
    [30] R.Goodman,W:Nagy,Wilelm.A high fidelity ground to air imaging radarsystem.IEEE National Radar Conference Record.1994.29-34.
    [31] M.Soumekh,S.Nugroho.ISAR imaging of an airborne DC-9.Proc ICASSP.1993.465-468.
    [32] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al. Developments in radarimaging. IEEE Trans. AES. July.1984. Vol.20(4),363-399.
    [33]史仁杰.雷达反导与林肯实验室[J].系统工程与电子技术.2007,29(11),1781-1799.
    [34] Herbert G. Weiss. The Millstone and Haystack Radars,IEEE Trans. on AES.2001.Vol.37(1),365-379.
    [35] MIT Lincoln Laboratory2009Annual Report. www.ll.mit.edu.
    [36] A Sourcebook for the Use of the FGAN Tracking and Imaging Radar for SatelliteImaging. http://www.fhr.fgan.de/fhr/fhr_en.html.
    [37] http://www.esa.int/esapub/bulletin/bullet109/chapter16_bul109.pdf.
    [38] http://www.fas.org/spp/military/program/track/shuttle_movie.gif.
    [39]保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法.电子学报.1998,Vol.26(12),79-83.
    [40]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法.电子学报.1999, Vol.27(3),29-31.
    [41]保铮,叶炜. ISAR运动补偿聚焦方法的改进.电子学报,1996,24(9):83-88.
    [42]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法.西安电子科技大学学报,2000,27(1):93-96.
    [43] Z.Bao, C.Y Sun,M.D.Xing. Time—Frequency Approaches to ISARImaging of Maneuvering Targets and Their Limitations. IEEE Trans on Aerospaceand Electronic System.2001,37(3):1091-1099.
    [44]G Wang,Z.Bao,L.Luo. Inverse synthetic aperture radar imaging ofmaneuvering targets. Optical Engineering,1998,37(5):1582-1588.
    [45]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐.电子学报,2001,29(12):1807-1811.
    [46]保铮,邓文彪,杨军.ISAR成像处理中的一种运动补偿方法.电子学报,1992,20(6):1-6.
    [47]李亚超,周峰,邢孟道,保铮.一种直升机的舰船Dechirp实测数据SAR成像方法.电子与信息学报,2007,29(8):1794-1798.
    [48]G. Lu,Z.Bao. Compensation of scatterers migration through resolution cell ininverse synthetic aperture radar imaging. IEEE Proceeding,Radar SonarNavigate.2000,147(2):80-85.
    [49]卢光跃,保铮.基于瞬时谱估计的ISAR距离瞬时多普勒成像算法.西安电子科技大学学报,1998,25(5):593-597.
    [50]邢孟道,保铮.外场实测数据的舰船目标ISAR成像.电子与信息学报,2001,23(12):1271-1277.
    [51]郑义明,邢孟道,保铮.基于多分量多项式信号参数估计的机动目标成像.西安电子科技大学学报,2000,27(4):471-475.
    [52]李亚超,苏军海,邢孟道,保铮.利用时间-调频率分布特性的复杂运动目标ISAR成像研究.西安电子科技大学,2008,35(1):1-7.
    [53]邢孟道,保铮,郑义明,冯大政.适合于大型平稳和机动目标的成像算法.信号处理,2001,17(1):47-55.
    [54]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达,2000,22(6):44-48.
    [55]高昭昭,邢孟道,张守宏,张焕颖.基于线性调频步进信号的高速目标ISAR成像.电子信息学报,2008,30(12):2813-2817.
    [56]Zhaozhao Gao, Huanying Zhang, Mengdao Xing, Zhang Shouhong. High SpeedTarget ISAR Imaging Based on Synthetic Bandwidth.7th European Conference onSynthetic Aperture Radar. Friedrichshafen, Germany, June2-5,2008.Vol.3.153-156.
    [57]M.Xing, Z.Bao. SAR ship imaging of real data. Journal of Electronics andInformation Technology,2001,23(12):1271-1277.
    [58]李亚超,苏军海,邢孟道,保铮.利用时间-调频率分布特性的复杂运动目标ISAR成像研究.西安电子科技大学学报,2008,35(1):1-7.
    [59]Z. Gao, M. Xing, S. Zhang and Z. Bao. Experimental results on ISAR imaging withstepped-frequency waveforms. Electronics Letters,200945(1):77-79.
    [60]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像.西电学报.2003, Vol.30(2),155-159.
    [61]孙长印,保铮.雷达成像的近似二维模型及其超分辨算法.电子学报.1999, Vol.27(12),84-87.
    [62]邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法.电子学报.2001,Vol.29(4),515-517.
    [63]Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High Resolution3D RadarImaging of Rapidly Spinning Targets. IEEE Trans. Geoscience and RemoteSensing,2008, Vol.46(1),22-30.
    [64]Qi Wang,Mengdao Xing,Zheng Bao.Single Range Matching Filtering for SpaceDebris Radar Imaging,IEEE Geoscience and Remote Sensing Letters,2007, Vol.4(4),576-580.
    [65]王勇,姜义成.一种估计ISAR成像转交的新方法.电子与信息学报.2007,29(3):521-523.
    [66]王勇,成萍,姜义成.等变加速度旋转目标ISAR成像-瞬时多普勒法.现代雷达.2005,27(5):25-27.
    [67]王勇,姜义成.多项式相位信号瞬时频率变化率估计及其应用.电子学报.2007,35(12):2404-2407.
    [68]王勇,姜义成.基于自适应Chirplet分解的舰船目标ISAR成像.电子与信息学报.2006,28(6):982-984.
    [69]Wang Y, Jiang Y C. Generalized time-frequency distributions for multicomponentploynomial phase signals. Signal Procssing.2008,88:984-1001.
    [70]Wang Y, Jiang Y C. ISAR imaging for three-dimensional rotation targets based onadaptive Chirplet decomposition. Multidim Syst Sig Process.2010,21:59-71.
    [71]Wang Y, Jiang Y C. ISAR imaging of a shiip target using product high-ordermathced-phase transform. IEEE Trans. on Geoscience and Remote Sensing Letters.2009,6(4):658-661.
    [72]Wang Y, Jiang Y C. A novel algorithm for estimating the rotation angle in ISARimaging. IEEE Trans. on Geoscience and Remote Sensing Letters.2008,5(4):608-609.
    [73]马长征.雷达目标三维成像技术.西安电子科技大学博士论文,1999.
    [74]李强,单脉冲雷达目标三维成像与识别研究,西安电子科技大学博士论文,2007.
    [75]Genyuan Wang, Xiang-Gen Xia, Victor C.Chen, Three-Dimensional ISAR Imagingof Maneuvering Targets Using Three Receivers, IEEE Trans. Imag. Proc., Mar.2001, Vol.10(3),436-447.
    [76]张群,马长征,张涛,张守宏.干涉式逆合成孔径雷达三维成像技术研究.电子与信息学报, Sept.2001, Vol.23(9),890-898.
    [77]Qun Zhang, Tat Soon Yeo, Gan Du, Shouhong Zhang. Estimation of theThree-Dimensional Motion Parameters in Interferometric ISAR Imaging. IEEETrans. Geosc. Remote Sensing, Feb,2004, Vol.42(2),292-300.
    [78]罗斌凤,张群,袁涛,张守宏,InISAR三维成像中的ISAR像失配准分析及其补偿方法,西安电子科技大学学报, Dec.2003, Vol.30(6),739-743.
    [79] M. Xing, R. Wu and Z. Bao. High resolution ISAR imaging of high speed movingtargets. IEE Proc.-Radar Sonar Navig. April2005, Vol.152(2),58-68.
    [80]黄小红,邱兆坤,许人灿.空间轨道目标ISAR成像方法.数据采集处理. Jun.2005, Vol.20(2),203-207.
    [81]刘茜.导弹目标ISAR成像的仿真.上海航天.2005,6,21-24.
    [82]冯德军,王雪松,肖顺平等.空间目标ISAR成像与识别对抗研究.系统工程与电子技术. Jan.2005, Vol.127(11),43-45.
    [83]毛勇,阮成礼.自旋运动目标的ISAR成像.系统工程与电子技术. Oct.2006, Vol.28(10),1513-1515.
    [84]张直中.逆合成孔径雷达(ISAR)成像.中国电子科学研究院学报. Oct.2006, Vol.1(5),391-404.
    [85]C. C. Chen, H. C. Andrews. Target-Motion-Induced Radar Imaging. IEEE Trans onAES.1980, Vol.16(1),2-14.
    [86]W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion throughResolution Cells. IEEE Trans on Aerospace and Electronic System. Jan.1969, Vol.5(1),98-102.
    [87]M. D. Xing, R. B. Wu, J. Q. Lan and Z. Bao. Migration through resolution cellcompensation in ISAR imaging. IEEE Trans. on Geoscience and Remote SensingLetters.2004,1(2):141-144.
    [88]M. Soumekh. Fourier Array Imaging. Englewood Cliffs, NJ: Prentice-Hall.1994
    [89]R. P. Perry, R. C. Dipietro, and R. L. Fante. SAR imaging of moving targets. IEEETrans on Aerospace and Electronic System. Jan.1999, Vol.35,188–199.
    [90]M. Xing, Z. Bao. Imaging algorithm for steadily flying and maneuvering big targets.Proc.SPIE.4382,182-190.
    [91]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像.西电学报.2003, Vol.30(2),155-159.
    [92]D. Y. Zhu,Y. Li,Z. D. Zhu. A Keystone Transform Without Interpolation forSAR Ground Moving-Target Imaging. IEEE Trans. on Geoscience and RemoteSensing Letters.2007,4(1):18-22.
    [93]郭汉伟.合成孔径雷达地面运动目标检测与成像技术研究.博士学位论文.国防科技大学,2003.
    [94]王琨,罗琳. ISAR成像中包络对齐的幅度相关全局最优法.电子科学学刊.1998,Vol.20(3),369-373.
    [95]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法.电子学报.1998,Vol.26(6),5-8.
    [96]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法.西安电子科技大报.2000, Vol.27(1),93-96.
    [97]J. Wang, D. Kasilingam. Global Range Alignment for ISAR. IEEE trans on AES. Jan2003, Vol.39(1),351-357.
    [98]G. Wang, Z. Bao. The Minimum Entropy Critertion of Range Alignment in ISARMotion Compensation. Proceeding Conference Radar’97. Edinburgh UK, October1997,14-16.
    [99]H. Wu. Translational Motion Compensation in ISAR Image Processing. IEEE Trans.On Image Process.1995,14(11):1561-1571.
    [100]邬小青,朱兆达.同时运动补偿和雷达成像,电子学报,1991, Vol.19(1),123-125.
    [101] B. D. Steinberg, Microwave imaging of aircraft, Proc. IEEE.1988, Vol.76(12),1578-1592.
    [102] K. K. Eerland, Application of ISAR on aircraft, IEEE Int. Radar Conf., Paris, May1984,618-623.
    [103] B. D. Steinberg, Radar imaging from a distorted array: the radio camera algorithmand experiments, IEEE Trans. on AP,1981, Vol.29(5),740-748.
    [104]保铮,邓文彪,杨军, ISAR成像处理中的一种运动补偿方法,电子学报,1992,Vol.20(6),1-6.
    [105] M. J. Pricket, C. C. Chen. Principle of inverse synthetic aperture radar (ISAR)imaging. EASCON record,1980,340-345.
    [106] R. Xu, Z. Cao,Y. Liu, A new method of motion compensation for ISAR, Proc.IEEE Int. Radar Conf., Paris,1990,234-237.
    [107] M. Martorella, F. Berizzi, B. Haywood, Contrast maximization based technique for2-D ISAR autofocusing, IEE Proceedings on Radar, Sonar and Navigation,2005,Vol.152(4),253-262.
    [108]毛引芳,吴一戎,以散射质心为基准的ISAR成像的运动补偿,电子科学学刊,1992, Vol.14(5),532-536.
    [109] D. E. Wahl, P. H. Eichel, D. C. Ghiglia. Phase gradient autofocus-A robust tool forhigh resolution SAR phase correction. IEEE Trans on Aerospace and ElectronicSystem.1994, Vol.30(3),827-835.
    [110] L. Xi, L. Guosui, J. Ni. Autofocusing of ISAR Imaging based on EntropyMinimization. IEEE Trans on Aerospace and Electronic System,1999, Vol.35(4),1240-1252.
    [111] C. E. Mancill. Enhancement of radar imagery by maximum entropy processing.Proceedings of the21st annual meeting of Human Factors Society, Santa, Monica,CA,1977,241-243.
    [112] V. C. Chen, S. Qian. Joint time-frequency analysis for radar Range-Dopplerimaging. IEEE Trans on Aerospace and Electronic System.1998, Vol.34(2),486-499.
    [113]金添,常文革.基于Radon-ambiguity变换的ISAR成像算法.现代雷达.2004,Vol.26(11),18-21.
    [114]刘爱芳,刘中,陆锦辉.基于Radon-ambiguity变换的ISAR成像算法.现代雷达.2003, Vol.25(6),13-14.
    [115] G. Lu, Z. Bao. Compensation of scatterers migration through resolut ion cell ininverse synthetic aperture radar imaging. IEEE Proceeding, Radar Sonar Navigate.2000, Vol.147(2),80-85.
    [116] G. Wang. Adaptive filtering approach to chirp estimation and inverse syntheticaperture radar imaging of maneuvering targets. Society of Photo-OpticalInstrumentation Engineers.2003, Vol.42(1),190-199.
    [117]孙长印,保铮.雷达成像的近似二维模型及其超分辨算法.电子学报.1999,Vol.27(12),84-87.
    [118]邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法.电子学报.2001,Vol.29(4),515-517.
    [119] L. Du and G. Su. Adaptive Inverse Synthetic Aperture Radar Imaging forNonuniformly Moving Targets. IEEE Trans. on Geoscience and Remote SensingLetters. July2005, Vol.2(3),247-249.
    [120] C. E. Mancill. Enhancement of radar imagery by maximum entropy processing.Proceedings of the21st annual meeting of Human Factors Society, Santa, Monica,CA,1977,241-243.
    [121] R. M. Nuthalapati. High resolution reconstruction of SAR image. IEEE Trans onAerospace and Electronic System. April1992, Vol.8(2),462-472.
    [122] S. L. Borison, S. B. Bowling, and K. M. Cuomo. Super-resolution methods forwideband radar. Lincoln Laboratory Journal.1992, Vol.5(3),441-461.
    [123] I. J. Gupta. High-resolution radar imaging using2-D linear prediction. IEEE Transon Antennas and Propagation. Jan.1994, Vo.42(1),31-37.
    [124] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensionalsuperresolution radar imaging using the MUSIC algorithm. IEEE Trans onAntennas and Propagation. Oct.1994, Vol.42(10),1386-1391.
    [125] S. Barbarossa, L. Marsili, and G. Mungari. SAR super-resolution imaging by signalsubspace projection techniques. Proceedings of EUSAR'96, Konigswinter,Germany.1996,267-270.
    [126] S. R. De Graaf. SAR imaging via modern2-D spectral estimation methods. SPIEProceedings on Optical Engineering in Aerospace Sensing, Orlando, FL, April,1994,36-49.
    [127] Y. B. Hua. High resolution imaging of continuously moving target using steppedfrequency radar. Signal Process.1994, Vol.35(1),33-40.
    [128] J. Li, P. Stoica. Efficient mixed-spectrum estimation with applications to targetfeature extraction. IEEE Trans on Signal Proc.1996, Vol.44(2),281-295.
    [129] J. Li and P. Stoica. An adaptive filtering approach to spectral estimation and SARimaging. IEEE Trans on Signal Processing.1996, Vol.44(6),1469-1484.
    [130] M. W. Tu, I. J. Gupta, and E. K. Walton. Application of maximum likelihoodestimation to radar imaging. IEEE Trans on Antennas and Propagation. Jan,1997,Vol.45(1),20-27.
    [131] T. G. Moore, B. W. Zuerndorfer, and E. C. Burt. Enhanced Imagery UsingSpectral-Estimation-Based Techniques. Lincoln Lab. J.,1997, Vol.10(2),171–186.
    [132] P. R. Wu. A Criterion for Radar Resolution Enhancement with Burg Algorithm.IEEE Trans on AES, July1995, Vol.31(2),877-915.
    [133] T. Thayaparan, L. Stankovic, C. Wernik, and M. Dakovic. Real-Time MotionCompensation, Image Formation and Image Enhancement of Moving Targets inISAR and SAR Using S-method Based Approach. IET Signal Processing,September2008, Vol.2(3),247-264
    [134] W. Ye, T. S. Yeo, and Z. Bao. Weighted Least Squares Estimation of Phase Errorsfor SAR/ISAR Autofocus. IEEE Trans. on GRS, Septermber1999, Vol.37(5).2487-2494.
    [135] Zweig, G. Super-Resolution Fourier Transforms by Optimization and ISARImaging. IEE Proc-RSN, Vol.150(4), July2003,247-252.
    [136] M. etin and W. C. Karl. Feature-Enhanced Synthetic Aperture Radar ImageFormation Based on Nonquadratic Regularization. IEEE Trans on IP, Vol.10(4),April2001,623-631.
    [137] M. etin. Feature-Enhanced Synthetic Aperture Radar Imaging. BostonUniversity,Docter Dessertion,2001.
    [138] Joachim H.G. Ender. On Compressive Sensing Applied to Radar. Signal Processing,Vol.90(5), May2010,1402-1414.
    [139] Matthew A. Herman, Thomas Strohmer. High-Resolution Radar via CompressedSensing [J]. IEEE Trans on SP, Vol.57(6),2009,2275-2284.
    [140] Alessandra Budillon, Annarita Evangelista, and Gilda Schirinzi,Three-Dimensional SAR Focusing From Multipass Signals Using CompressiveSampling [J], IEEE. Trans on GRS, Vol.49(1),Jan.2011,488–499.
    [141] L. Zhang, M. D. Xing, C.W. Qiu, J. Li, Z. Bao. Achieving Higher Resolution ISARImaging with Limited Pulses via Compressed Sampling. IEEE GRSL, July2009,Vol.6(3),567-571.
    [142] L. Zhang, M. D. Xing, C.W. Qiu, J. Li, J. Sheng, Y. Li, Z. Bao. ResolutionEnhancement for Inversed Synthetic Aperture Radar Imaging under Low SNR viaImproved Compressive Sensing. IEEE Trans on GRS, October2010, Vol.48(10),3824-3838.
    [143] L. Zhang, Z. J. Qiao, M. D. Xing, Y. Ch. Li, Z. Bao,―High-resolution ISARimaging with sparse stepped-frequency waveforms,‖IEEE Trans. Geosci. RemoteSens. vol.49, no.10, pp.1-22, Oct.2011.
    [144] S. J. Wu, L. Zhang and M. D. Xing,―Super-resolution ISAR imaging via statisticalcompressive sensing,‖Proceeding of2011IEEE CIE international conference onradar, vol.1, no.4, pp.545-550, Sep.2011.
    [145] H. X. Wang, Y. H. Quan, M. D. Xing, and S. H. Zhang,―ISAR imaging via sparseprobing frequency,‖IEEE Trans. Geosci. Remote Sens. Let., vol.8, no.3, pp.451-455, May.2011.
    [146] G. Xu, M. D. Xing, L. Zhang, Y. B. Liu and Y. C. Li,―Bayesian inverse syntheticaperture radar imaging,‖IEEE Trans. Geosci. Remote Sens. Lett., vol.8, no.6, pp.1150-1154, Nov.2011.
    [147] Y. Wang, H. Ling, and V. C. Chen. ISAR motion compensation via adaptive jointtime–frequency techniques. IEEE Trans. Aerosp. Electron Syst., vol.34, no.2, pp.670–677, Apr.1998.
    [148] D. Y. Zhu, L. Wang, Y. S. Yu, Q. N. Tao. Z. D. Zhu. Robust ISAR rangealignment via minimizing the entropy of the average range profile. IEEETrans.Geosci. Remote Sens. Lett., vol.6, no.2, Apr.2009.
    [149] E. Cand s, and T. Tao,―Decoding by Linear Programming‖IEEE trans. Inf.Theory, vol.51, no.12, pp.4203-4215, Feb.2005.
    [150] E. Cand s, J. Rombery, and T. Tao,―Robust uncertainty principles: Exact signalreconstruction from highly incomplete frequency information,‖IEEE Trans.Inf.Theory, vol.52, no.2, pp.489-509, Feb.2006.
    [151] D. L. Donoho,―Compressed sensing,‖IEEE Trans. Inf. Theory, vol.52, no.4, pp.1289-1306, Apr.2006.
    [152] B. K. Natarajan,―Sparse approximate solutions to linear systems,‖SIAM J.Comput., vol.24, pp.227-234, Apr.1995.
    [153] S. S. Chen, D. L. Donoho, and M. A. Saunders,―Atomic decomposition by basispursuit,‖SIAM J. Sci. Comput., vol.20, no.1, pp.33-61,1999.
    [154] J.A. Tropp and A. C. Gilbert,―Signal recovery from random measurements viaorthogonal matching pursuit,‖IEEE Trans. Inf. Theory, vol.53, no.12, pp.4655-4666, Dec.2007.
    [155] R. Tibshirani,―Regression shrinkage and selection via the lasso,‖J. R. Stat. Soc.,Ser. B, vol.58, pp.267-288,1996.
    [156] M. Figueiredo, R. Nowak, and S. J. Wright,―Gradient projection for sparsereconstruction: Application to compressed sensing and other inverse problems,‖IEEE Trans. Sel. Topics Signal Process., vol.1, no.4, pp.586-597, Dec.2007.
    [157] S. H. J, Y. Xue, and L. Carin,―Bayesian compressive sensing,‖IEEE Trans.Signal process. vol.52, pp.2153-2164, Aug.2004.
    [158] S.D. Babacan, R. monlina, A.k. Katsaggelos,―Bayesian compressive sensingusing Laplace priors,‖IEEE trans. Image Process., vol.19, no.1, Jan.2010.
    [159] D. P. Wipf and B. D. Rao,―Sparse Bayesian learning for basis selection,‖IEEETrans. Signal. Process. vol.52, no.8, pp.2153-2164, Aug.2004.
    [160] J. Berger, Statistical Decision Theory and Bayesian Analysis. Springer, New York,2nd edition,1985.
    [161] M. Tipping,―Sparse Bayesian learning and the relevance vector machine,‖J.Mach. Learn. Res., pp.211-244,2001.
    [162] G. E. P. Box and C. Tiao, Bayesian Inference in Statistical Analysis. Reading,MA: Addison-Wesley,1992.
    [163] D. J. C. MacKay,―Bayesian interpolation,‖Neural Comput., vol.4, no.3, pp.415-447, May,1992.
    [164] V. C. Chen,―Analysis of radar micro-Doppler signature with time-frequencytransform,’ in Proc. IEEE Statistical Signal Array Process.,2000, pp.463-466.
    [165] V. C. Chen, F. Li, S.-S. Ho etal.―Micro-Doppler effect in radar: Phenomenon,model, and simulation study,‖IEEE Trans. Aerosp. Electron. Syst., vol.42, no.1,pp.2-21, Jan.2006.
    [166] T. Sparr and P. Krane,―Micro-Doppler analysis of vibrating targets in SAR,‖Proc.Inst. Electr. Eng.-Radar Sonar Navig. vol.150, no.4, pp.277-283, Aug.2003.
    [167] V. C. Chen,―Analysis of radar micro-Doppler signatures,‖Proc. Inst. Electr. Eng.-Radar Sonar Navig., vol.150, no.4, pp.271-276,2003.
    [168] L. Stankovic, I. C Djurovi, T. Thayaparan et al.,―Separation of target rigid bodyand micro-Doppler effects in SAR imaging,‖IEEE Trans. Aerosp. Electron. Syst.,vol.42, no.4, pp.1496-1506, Oct.2006.
    [169] C. J. Cai, W. X. Liu, J. S. Fu, and L. L. Lu,‖Empirical mode decomposition ofmicro-Doppler signature,‖in Proc. IEEE int. Radar Conf.,2005, pp.895-899.
    [170] T. Thayaparan, S. Abrol, E. Riseborough etal.,―Analysis of radar micro-Dopplersignatures from experimental helicopter and human data,‖Proc. Inst. Electr. Tech.-Radar Sonar Navig., vol.1, no.4, pp.289-299. Aug.2007.
    [171] J. Li and H. Ling,―Application of adaptive chirplet representation for ISARfeature extraction from targets with rotating parts,‖Proc. Inst. Electr. Eng.-Radar Sonar Navig., vol.150, no.4, pp.284-291, Aug.2003.
    [172] Q. Zhang, T. S. Yeo, H. S. Tan et al.,―Imaging of a moving target with rotatingparts based on the Hough transform,‖IEEE Trans. Geosci. Remote Sens., vol.46,no.1, pp.291-299, Jan.2008.
    [173] X. R. Bai, M. D. Xing, F. Zhou, G. Y. Lu, Z. Bao,―Imaging of micromotiontargets with rotating parts based on empirical model decomposition,‖IEEE Trans.Geosci. Remote Sens. vol.46, no.11, pp.3514-3523, Nov.2008.
    [174] K. M. Li, X. J. Liang, Q. Zhang etal.,―Micro-Doppler signature extraction andISAR imaging for target with micromotion dynamics,‖IEEE Trans. Geosci.Remote Sens. Lett., vol.8, no.3, pp.411-415, May.2011.
    [175] D. P. Wipf and B. D. Rao,―An empirical Bayesian strategy for solving thesimultaneous sparse approximation problem,‖IEEE Trans. Signal Process. vol.55,no.7, pp.3704-3715, Jul.2007.
    [176] L.Stankovic, M. Dakovic, T. Thayaparan, V. Popovic-Bugarin,―Micro-DopplerRemoval in the Radar Imaging Analysis,‖IEEE Transactions on Aerospace andElectronic and Systems, vol.49, no.2, pp.1234-1250, April2013.
    [177] L.Stankovic, I. Orovic, S. Stankovic, M. Amin―Compressive Sensing BasedSeparation of Non-Stationary and Stationary Signals Overlapping inTime-Frequency‖, IEEE Transactions on Signal Processing Vol.61, no.9, Sept.2013., pp.4562–4572.
    [178] J. C. MacKay,―A practical Bayesian framework for backprop networks,‖NeuralComput., vol.4, no.3, pp.448–472,1992.
    [179] J. T. Kwok,―The evidence framework applied to support vector machines,‖IEEETrans. Neural Netw., vol.11, no.5, pp.1162–1173, Sep.2000.
    [180] M. Datcu, K. Seidel, and M. Walessa,―Spatial information retrieval fromremote-sensing images—Part I: Information theoretical perspective,‖IEEE Trans.Geosci. Remote Sens., vol.36, no.5, pp.1431–1445, Sep.1998.
    [181] H. C. Li, W. Hong, Y. R. Wu and H. M. Tai,―Texture-preserving despeckling ofSAR images using evidence framework,‖IEEE Trans. Geosci. Remote Sens. Lett.,vol.4, no.4, pp.537-541, Oct.2007.
    [182] Marco Martorella,―Novel approach for ISAR image cross-range scaling,‖IEEEAerosp. Electron. Syst., vol.44, no.1, pp.285-294, Jan.2008.
    [183]苏军海,钱江,邢孟道.一种ISAR方位定标的新方法.第十届全国雷达学术年会论文集.
    [184]佘志舜,朱兆达.逆合成孔径雷达横向距离定标.电子学报,1997,25(3):45-48.
    [185] Chun-Mao Yeh, Jia Xu, Ying-Ning Peng, and Xiu-Tan Wang. Cross-RangeScaling for ISAR Based on Image Rotation Correlation. IEEE. Trans. on GRSL,Vol.6No.3, JULY,2009.
    [186] D. Pastina, C.Spina. A new technique for optimum formation and scaling of shiptarget, EUSAR,2004, PP.855-859.
    [187] L.M.Murphey. Linear feature detection and enhancement in noisy image via RadonTransform. Pattern Recognition Letters, Vol.4, N0,4,1986, PP.279-284.
    [188]汪玲.逆合成孔径雷达成像关键技术研究.南京航空航天大学博士论文.2006.
    [189] E. J. Cand s,―The restricted isometry property and its implications for compressedsensing,‖Acad mie des Sci., vol. I, no.346, pp.589–592,2008.
    [190] M. Rudelson and R. Vershynin,―Sparse reconstruction by convexrelaxation:Fourier and Gaussian measurements,‖in Proc. IEEE Ann.Conf. Inf. Sci.Syst.,2006, pp.207–212.
    [191] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge, UK: CambridgeUniv. Press,2004.
    [192] P.O’Shea,―A Fast Algorithm for Estimating the Parameters of a Quadratic FMSignal,‖IEEE Trans. Signal Process, vol.52, no.2, pp.385-393, Feb.2004.
    [193] E.van den Bergand M. P.Friedlander,―Probingthe Pareto frontier for basis pursuitsolutions,‖SIAM J. Sci. Comp, vol.31, no.2, pp.890–912,2008.
    [194] E. van den Berg and M. P. Friedlander,―SPGL1: A solver for large-scale sparsereconstruction.‖[Online]. Available: http://www.cs. ubc.ca/labs/scl/spgl1
    [195] David L. Donoho, Arian Maleki, and Andrea Montanari,―The Noise-SensitivityPhase Transition in Compressed Sensing,‖IEEE trans. Inf. Theory, vol.57, no.10,pp.6920-6940, Oct.2011.
    [196]黄小红,邱兆坤,王伟.目标高速运动对宽带一维距离像的影响及补偿方法研究[J].信号处理,2002,18(6):487-490.
    [197] Wang Minsheng, Chan Andrew K, Chui Charles K. Linear Frequency-ModulatedSignal Detection Using Radon-ambiguity Transform [J]. IEEE Trans. On SignalProcessing,1998,46(3):571-586.
    [198] Liu Aifang, Zhu Xiaohua, and Lu Jinhui, ecal.. The ISAR range profilecompensation of fast moving target using the dechirp method [C] IEEE Int. Conf.Neural Networks&Signal Processing. Nanjing, China,2003:1619-1623.
    [199] Sergio Barbarsossa, Anna scaglione, Georgios B. Giannakis. Product High-OrderAmbiguity Function for Multicomponent Polynomial-Phase Signal Modeling[J].IEEE Trans. On Signal Processing,1998,46(3):691-708.
    [200]高勋章,任双桥,黎湘,庄钊文.基于mc-PPS模型的空间目标运动补偿[J].系统工程与电子技术,2004,26(9):1201-1204.
    [201] P.O’Shea. A Fast Algorithm for Estimating the Parameters of a Quadratic FMSignal [J]. IEEE Trans. On Signal Processing,2004,52(2):385-393.
    [202] Branko Ristic and Boualem Boashash. Comments on―The Cramer-Rao LowerBounds for Signals with Constant Amplitude and Polynomial Phase‖[J]. IEEETrans on Signal Processing,1998,46(6):1708-1709.
    [203] M. J. Gerry, L. C. Potter, I. J. Gupta, and A. van der Merwe,―A parametric modelfor synthetic aperture radar measurements,‖IEEE Trans Antennas Propagat., vol.47, no.7, pp.1179–1188, Jul.1999.
    [204] M. A. Koets and R. L. Moses,―Feature extraction using attributed scatteringcenter models on SAR imagery,‖in Proc. SPIE, Orlando, Florida, Apr.1999.
    [205] M. A. Koets and R. L. Moses,―Image domain feature extraction from syntheticaperture imagery,‖in Proc. ICASSP, Phoenix, AZ, Mar.1999.
    [206] Yeliz Akyildiz, Randolph L. Moses,―A scattering center model for SARimagery,‖in Proc. SPIE SAR Image Analysis, Modeling and Techniques,Florence, Italy,1999, pp.76–85.
    [207] L. C. Potter and R. L. Moses,―Attributed scattering centers for SAR ATR,‖IEEETrans. Image Process., vol.6, no.1, pp.79–91, Jan.1997.
    [208] Xu Shao-kun, Wei Xi-zhang, and Li Xiang, et al.. Parameter estimation andperformance analysis of coherent polarization attributed scattering center model[J].Chinese Journal of Electronics,2013,22(1):195-201.
    [209] J. A. Jackson and R. L. Moses, A Feature Extraction Algorithm for3D SceneModeling and Visualization Using Monostatic SAR[C]. Algorithms for SyntheticAperture Radar Imagery XIII, E. G. Zelnio and F. D. Garber, eds., Proc. SPIE, vol.6237,2006.
    [210] J. A. Jackson, Three-dimensional Feature Models for Synthetic Aperture Radarand Experiments in Feature Extraction[D]. Ph.D. dissertation, Ohio State Univ.,Columbus, OH,2009.
    [211] J. A. Jackson, B. D. Rigling, and R. L. Moses,―Canonical scattering featuremodels for3D and bistatic SAR,‖IEEE Trans. on Aerospace and ElectronicSystems, vol.46, no.2, pp.525–541, Apr.2010.
    [212] L. C. Potter, D.-M. Chiang, R. Carrière, and M. J. Gerry,―A GTD-basedparametric model for radar scattering,‖IEEE Trans. Antennas Propagat., vol.43,no.10, pp.1058–1067, Oct.1995.
    [213] Dungan K E and Potter L C.―Classifying vehicles in wide-angle radar usingpyramid match hashing,‖IEEE Journal of Selected Topics in Signal Processing,vol.5, no.3, pp.577–591, Jun.2011.
    [214] Dungan K E and Potter L C.―Classifying sets of attributed scattering centersusing a hash coded database,‖in Proc. Algorithms for Synthetic Aperture RadarImagery XVII,2010.
    [215] Xu Shao-kun, Wei Xi-zhang, and Li Xiang, et al.. Parameter estimation andperformance analysis of coherent polarization attributed scattering center model[J].Chinese Journal of Electronics,2013,22(1):195-201.
    [216] Bai X, Zhou F, Xing M, et al. A novel method for imaging of group targetsmoving in a formation [J]. Geoscience and Remote Sensing, IEEE Transactionson,2012,50(1):221-231.
    [217] Li Y, Fu Y, Li X, et al. ISAR imaging of multiple targets using particle swarmoptimisation–adaptive joint time frequency approach[J]. IET signal processing,2010,4(4):343-351.
    [218] Park S H, Park K K, Jung J H, et al. ISAR imaging of multiple targets using edgedetection and Hough transform [J]. Journal of Electromagnetic Waves andApplications,2008,22(2-3):365-373.
    [219] Yi-an Z. ISAR imaging of multiple moving targets based on RSPWVD-Houghtransform [J]. Telecommunication Engineering,2010,1:012.
    [220] Park S H, Kim H T, Kim D H. Segmentation of ISAR images of targets moving information [J]. Geoscience and Remote Sensing, IEEE Transactions on,2010,48(4):2099-2108.
    [221] Chen W C. Implementation method of ISAR imaging for multiple targets information [J]. Dianzi Xuebao (Acta Electronica Sinica),2006,34(6):1119-1122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700