高分辨ISAR成像新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
逆合成孔径雷达(ISAR, Inverse synthetic aperture radar)是一种重要的高分辨雷达,可以全天候、全天时、远距离的获取非合作目标的图像,具有重要的军事和民用价值。随着实际需求的不断发展,对ISAR成像技术的研究也在不断的深入。本论文主要针对高分辨ISAR成像处理中的新技术进行了研究,包括信号形式、成像算法、成像体制和目标特征提取等几部分。
     第一章介绍了本文工作的研究背景和意义,并对ISAR成像的发展历史和研究现状进行了评述。
     第二章介绍了ISAR成像的距离高分辨和方位高分辨的原理,并对国内外有关ISAR成像算法方面的研究成果进行了综述。
     第三章对线性调频步进信号处理进行了讨论。在对合成距离包络法进行介绍的基础上,提出了两种基于CLEAN技术的目标抽取算法。利用发射信号构造二维参考函数,利用遗传算法对脉组回波数据进行全局搜索来估计目标上散射点的参数(如位置、幅度和速度),通过CLEAN迭代处理将已提取出的散射点从回波数据中消除,从而可以重构出目标的高分辨一维距离像。最后用仿真结果对本方法的有效性进行了验证。
     第四章对线性调频步进信号的带宽合成方法(时域、频域带宽合成)及其两种应用——高速目标和舰船目标ISAR成像进行了研究。首先,简要介绍了调频步进频信号的时域带宽合成方法和频域带宽合成方法。其次,提出了一种利用调频步进信号频域带宽合成方法对高速目标进行ISAR成像处理的方法,并用仿真结果进行了验证。最后,针对调频步进信号频域带宽合成方法对舰船目标进行ISAR成像,本章提出了一种简单、有效的调频步进信号带宽合成算法。此算法将线性调频信号子脉冲在频域进行拼接以获得距离高分辨。利用一组步进频信号中相邻两个子脉冲频谱重叠的部分估计出两个子脉冲间的相位差,然后进行相位补偿实现子脉冲信号之间的相参化。相对于传统的带宽合成方法,本方法不再需要运动补偿。仿真和实测数据结果验证了本方法的有效性。
     第五章提出了一种新的舰船目标ISAR成像方法。常规的ISAR成像方法是利用散射点的多普勒频率来成像。对于复杂运动目标,如三维转动(偏航、横滚和俯仰)的舰船,可能会因为其散射点在某些时刻的瞬时多普勒频率很小而无法获得有效的图像,然而此刻散射点的瞬时多普勒调频率往往很大,因此,本章中提出了一种利用散射点的调频率进行ISAR成像的方法,称为距离-瞬时调频率(RIC, range instantaneous chirp)方法。利用此方法,可以获得目标在同一时刻不同视角的图像,从而获得目标更多的信息,改善对高机动目标的成像和识别效果。实测和仿真结果证明了此方法的有效性
     第六章对双基ISAR成像体制进行了研究。本章首先在波数域对双基地逆合成孔径雷达模型进行了分析。与单基地雷达ISAR成像对比可以发现,双基雷达ISAR的特殊性主要体现在双基地角和等效视线方位角这两个参数中。利用双基地角等值线将雷达观测区域划分为四类,双基地角和等效视线方位角在各类区域内有不同的变化规律。通过对各类区域内参数的讨论确定了合适的双基ISAR成像算法。研究了双基体制进行高分辨ISAR成像时双基地角变化对回波信号的影响。当分辨率较低时,双基角的变化基本可以忽略,但是当分辨率较高时,双基角的变化有可能导致散射点发生距离徙动,文中给出了双基角变化影响可以忽略的条件和距离徙动校正方法。本章中分析的正确性和所提方法的有效性均用仿真结果进行了验证。
     第七章研究了目标三维图像重构。建立了在目标与天线电轴间存在较大斜角情况下的干涉式逆合成孔径雷达(InISAR)三维成像模型,并给出了运动补偿的详细步骤,针对因目标运动补偿误差导致的干涉测量误差,提出了利用估计出的目标重心相位对相位差进行补偿的方法。测量得到的目标三维坐标并不是在直角坐标系下得到的,文中给出了正确重构目标三维图像所需要坐标转换的公式。最后用仿真结果验证了本文方法的有效性。
Inverse synthetic aperture radar (ISAR) is a useful all-weather high-resolution radar system for moving target imaging and target recognition in a long-distance all-weather conditions. It is with great military and civil values. To meet the rising demand, the researches about ISAR technologies are rapidly developing. The main research in this dissertation is the new technologies of the ISAR imaging, which including the new waveforms, imaging algorithm, imaging system and the scatterering center extraction. The summary of this dissertation is as follows:
     Chapter 1 is the introduction. It reviews the history of ISAR development and introduces the dissertation’s research background and main work.
     Chapter 2 introduces the principles of high range and cross-range resolution in ISAR imaging. It overviews the research achievements about ISAR imaging algorithm both at home and abroad.
     Chapter 3 studies the processing of SFW (stepped frequency waveform). Based on the discussion of SRP (synthetic range profile) method, two target extraction algorithm base on CLEAN technique are proposed. The two-dimensional reference function is constructed with the emitted signal. The parameters (i.e., position, amplitude and velocity) of a point scatterer can be found by global searching with genetic algorithm. And an iterative CLEAN processing is used to eliminate the extracted point from the received data of one SFW burst. Then the high range resolution profile (HRRP) of the target can be reconstructed with the estimated parameters. Finally the effectiveness of the algorithm is verified by the simulation results.
     Chapter 4 introduces the bandwidth synthetic method (time domain and frequency domain bandwidth synthetic) of SFW and two applications, the ISAR imaging of high speed moving targets and ship targets based on SFW. First of all, the time domain and frequency domain bandwidth synthetic methods are introduced. Then using the frequency domain bandwidth synthetic method, the ISAR imaging procedure of high speed moving target based on SFW are given out. The simulation results fully demonstrate the effectiveness of the proposed methods. Finally, a simple and successful bandwidth synthetic processing of SFW for ISAR imaging of ship targets is presented. The high range resolution is obtained by combining the sub-pulses of SFW in the frequency domain. The overlapping bandwidth of the two adjacent sub-pulses is used to estimate phase errors. And the usual motion compensation approach is avoided if the band coherent processing is used. Furthermore, the experimental results of the ship target are shown.
     Chapter 5 presents a novel ISAR imaging algorithm for ship target. The conventional ISAR imaging method is based on the instantaneous Doppler of scatterers. For a high maneuvering target, such as ship with yaw, pitch and roll motions, the instantaneous Doppler of scatterers may be small and the satisfactory may be unobtainable at some time instants. Meanwhile, a large instantaneous chirp rate is often present for the same scatterer at the same instant. In order to get some additional information of target, a novel ISAR imaging approach, referred to as range instantaneous chirp (RIC), is proposed based on instantaneous chirp rate of scatterer to provide cross range resolution. Therefore, RIC image is generated with a different 'view'. It may provide some additional information and a better target recognition and identification can be achieved for high maneuvering targets. The proposed RIC algorithm is verified by results of simulation and raw radar data.
     Chapter 6 studies the bistatic radar system for ISAR imaging. The model of bistatic ISAR is analyzed in wave-number domain. Comparing with the monostatic radar, the bistatic angle and azimuth angle of equivalent LOS (line of sight), these two angles demonstrate the characteristic of bistatic radar. Because the variation of the two angles is changed with the target's location, the observation region is partitioned into four parts using the bistatic angle isoline. The proper bistatic ISAR imagery algorithm in a specific region can be determined through the discussion of these two angles in this region.The range migration problem may occurred due to the bistatic angle change when the high resolution bistatic ISAR image need to be obtained. The critical condition that the variation of bistatic angle can be ignored is given out, and the range migration correction method is presented. The correctness of the analysis in this Chapter are proved by simulation results.
     Chapter 7 introduces the 3D scatterering center extraction and image reconstruction of target. The model of interferometric inverse synthetic aperture radar (InISAR) three-dimensional imaging is proposed when the angle between the target and the antenna axis is considerable. And the motion compensation scheme is discussed in detail. To deal with the measurement error induced by the motion compensation error, the phase of the target's barycentre is estimated to compensate the phase differences. The measured scatterers' height and width are wrong because they are not obtained in rectangular coordinates. The formula to transform the measured coordinates into rectangular coordinates and generate a correct 3D image is given in this chapter. Finally, the simulation results are given.
     Chapter 8 is the summary of the dissertation. It also discusses future research areas to be further studied.
引文
[1]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005.
    [2] J. C. Curlander, R. N. McDonough. Synthetic aperture radar: system and signal processing. Jone Wiley & Sons, INC, 1991.
    [3] M. Soumekh. Fourier Array Imaging. Prentice Hall, INC., 1994.
    [4] W. G. Carrara, R. S. Goodman, and R. M. Majewski. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms. Boston: Artech House, 1995.
    [5] C. V. Jakowatz Jr., D. E. Wahl, P. H. Eichel, D. C. Ghiglia, and P. A. Thompson. Spotlight-Mode Synthetic Aperture Radar: A Signal Processing Approach, Boston: KluwerAcademic Publishers, 1996.
    [6] G. Franceschetti and R. Lanari. Synthetic Aperture Radar Processing, CRC Press Boca Raton London New York Washington, D.C.
    [7] J. Patrick Fitch. Synthetic Aperture Radar. Springer-Verlag New York Inc., 1988.
    [8] S. A. Hovanessian. Introduction to Synthetic Array and Imaging Radar. Artech House, 1980.
    [9] W. M. Brown. Synthetic aperture radar. IEEE Trans. AES. 1967, Vol.3(2), 217-229.
    [10] W.M. Brown and L.J. Porcello., An introduction to synthetic aperture radar, IEEE Spectrum, Sept. 1969, Vol. 6, 52-62.
    [11] C. Elahci, T. Bicknell, R. L. Jordan, and C. Wu. Spaceborne synthetic aperture imaging radars: application, techniques, and technology. Proc. Of IEEE. 1982, Vol.70(10), 1174-1209.
    [12] C. A. Wiley. Synthetic Aperture radar. IEEE Trans. AES. 1985, Vol.21(3), 440-443.
    [13]张澄波.综合孔径雷达.北京:科学出版社,1989.
    [14]张直中.微波成像技术.北京:科学出版社,1990.
    [15]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社,1999.
    [16] M. I. Skolnik.王军等译.雷达手册.北京:电子工业出版社, 2003.
    [17]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003.
    [18] R. J. Sullivan. Micowave Radar Imaging and Advanced Concepts. Boston: Artech House, 2000.
    [19] M. Soumekh. Synthetic Aperture Radar Signal Processing with MATLAB Algorithms. John Wiley & Sons, Inc. 1999.
    [20] D. R. Wehner. High-Resolution Radar. 2nd Edition, Artech House, Inc. 1995.
    [21] D. L. Mensa. High Resolution Radar Imaging. Artech House, Inc. 1981.
    [22] D. L. Mensa. High Resolution Radar Cross-Section Imaging. Artech House,Inc. 1991.
    [23] B. Borden. Radar imaging of airborne targets: a primer for applied mathematicians and physicists. Institute of Physics Publishing Bristol and Philadelphia. 1999.
    [24] M. J. Pricket, C. C. Chen. Principle of inverse synthetic aperture radar(ISAR) imaging. EASCON record, 1980, 340-345.
    [25] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments in radar imaging. IEEE Trans. AES. July.1984. Vol. 20(4), 363-399.
    [26] W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion Through Resolution Cells. IEEE Trans. AES. Jan.1969, Vol. 5(1), 98-102.
    [27] C. C. Chen and H. C. Andrews. Target-motion-induced Rader Imaging. IEEE Trans. Aerospace and Electronic systems. Jan.1980, Vol. (16), 2-14.
    [28] C. Chen, H. C. Andrews. Multifrequency imaging of radar turntable data. IEEE Trans on AES. Jan. 1980, Vol. 16(1),15-22.
    [29] M. Soumekh, S. Nugroho. ISAR imaging of an airborne DC-9. Proc ICASSP. 1993, 465-468.
    [30] R. Goodman, W, Nagy, Wilelm. A high fidelity ground to air imaging radar system. IEEE National Radar Conference Record. 1994, 29-34.
    [31] D.J. Klass. Inverse synthetic aperture technology aids radar identification of ships. AE&ST, Sept.1987.
    [32] Voles R. Resolving revolutions: imaging and mapping by modern radar., IEE-F Radar and Signal Processing Proc, Feb. 1993, Vol. 140(1), 1-11.
    [33] K. K. Eerland. Application of inverse synthetic aperture radar on aircraft. Proc International Conference on Radar. Paris, 1984, 618-623.
    [34] V. C. Chen, S. Qian. Joint Time-Frequency Transform for Radar Range-Doppler Imaging. IEEE Trans. AES. 1998, Vol. 34(2), 486-499.
    [35] V. C. Chen. Adaptive Time-Frequency ISAR Processing. SPIE 1996, Vol. 2845, 133-140.
    [36] V. C. Chen. Analysis of radar micro-Doppler with time-frequency transform. Proc. 10th IEEE Workshop on Statistical signal and array processing. Pocono Manor, PA, USA, Aug. 2000. 463-466.
    [37] J. Li and H. Ling. Application of adaptive chirplet representation for ISAR feature extraction from targets with rotating parts. IEE Proc.-Radar Sonar Navig. August 2003, Vol. 150(4), 284-291.
    [38] J. F. Li. Model-Based Signal Processing for Radar Imaging of Targets with Complex Motions. The University of Texas at Austin, August 2002 Dissertation.
    [39] V. C. Chen, F. Li. S. Ho. et al.. Micro-doppler effect in radar-phenomenon, model and simulation study. IEEE Trans on AES. 2006, Vol. 42(1), 2-21.
    [40] K. M. Cuomo, J. E. Piou, and J. T. Mayhan. Ultrawide-Band Coherent Processing. IEEE Trans on Antennas And Propagation. June 1999, Vol. 47(6), 1094-1107.
    [41] M. Axelbank, W.W. Camp, V.L. Lynn, et al.. ALCOR—A High-Sensitivity Radar with One-Half-Meter Range Resolution. IEEE 71 International Conv. Dig., New York, 22–25 Mar. 1971, pp. 112–113.
    [42] A Sourcebook for the Use of the FGAN Tracking and Imaging Radar for Satellite Imaging. http://www.fhr.fgan.de/fhr/fhr_en.html.
    [43]史仁杰,雷达反导与林肯实验室.系统工程与电子技术. 2007, Vol. 29(11), 1781-1799.
    [44] Herbert G. Weiss, The Millstone and Haystack Radars,IEEE Trans. on AES. 2001. Vol. 37(1), 365-379.
    [45] http://www.esa.int/esapub/bulletin/bullet109/chapter16_bul109.pdf.
    [46] http://www.fas.org/spp/military/program/track/shuttle_movie.gif.
    [47]保铮,王根原,罗琳.逆合成孔径雷达的距离-瞬时多普勒成像方法.电子学报. 1998,Vol. 26(12), 79-83.
    [48]王根原,保铮.一种基于自适应Chirplet分解的逆合成孔径雷达成像方法.电子学报. 1999, Vol. 27(3), 29-31.
    [49] M. Xing, R. Wu and Z. Bao. High resolution ISAR imaging of high speed moving targets. IEE Proc.-Radar Sonar Navig. April 2005, Vol. 152(2), 58-68.
    [50]黄小红,邱兆坤,许人灿.空间轨道目标ISAR成像方法.数据采集与处理. Jun. 2005, Vol. 20(2), 203-207.
    [51]刘茜.导弹目标ISAR成像的仿真.上海航天. 2005, 6, 21-24.
    [52]冯德军,王雪松,肖顺平等.空间目标ISAR成像与识别对抗研究.系统工程与电子技术. Jan. 2005, Vol. 127(11), 43-45.
    [53]毛勇,阮成礼.自旋运动目标的ISAR成像.系统工程与电子技术. Oct. 2006, Vol. 28(10), 1513-1515.
    [54]张直中.逆合成孔径雷达(ISAR)成像.中国电子科学研究院学报. Oct. 2006, Vol. 1(5), 391-404.
    [55] G. Y. Wang, X. G. Xia, V. C. Chen, Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers, IEEE Trans. on Image Process., Vol. 10(3), 436-447.
    [56] Q. Zhang, T. S. Yeo, G. Du, S. Zhang, Estimation of Three-Dimensional Motion Parameters in Interferometric ISAR Imaging, IEEE Trans. on GRS. 2004, Vol. 42(2), 292-300.
    [57] MIT Lincoln Laboratory 2008 Annual Report. www.ll.mit.edu.
    [1] C. C. Chen, H. C. Andrews. Target-Motion-Induced Radar Imaging. IEEE Trans on AES. 1980, Vol. 16(1), 2-14.
    [2] D. A. Ausherman, A. Kozma, J. L. Walker, et al.. Developments in Radar Imaging. IEEE Trans on AES. July 1984, Vol. 20(4), 363-399.
    [3] W. M. Brown, R. J. Fredericks. Range-Doppler Imaging with Motion Through Resolution Cells. IEEE Trans on AES. Jan.1969, Vol. 5(1), 98-102.
    [4] M. Soumekh. Fourier Array Imaging. Englewood Cliffs, NJ: Prentice-Hall.1994.
    [5] R. P. Perry, R. C. Dipietro, and R. L. Fante. SAR imaging of moving targets. IEEE Trans on AES. Jan. 1999, Vol. 35, 188–199.
    [6] M. Xing, Z. Bao. Imaging algorithm for steadily flying and maneuvering big targets. Proc.SPIE. 4382, 182-190.
    [7]陈文驰,保铮,邢孟道.基于Keystone变换的低信噪比ISAR成像.西电学报. 2003, Vol. 30(2), 155-159.
    [8] C. Chen and H. C. Andrews. Target-motion-induced Radar Imaging. IEEE Trans. on Aerospace and Electronic systems. Jan.1980, Vol. 16, 2-14.
    [9] G. Y. Delise, H. Wu. Moving target imaging and trajectory computation using ISAR. IEEE Trans on AES, 1994, Vol. 30(3), 887~889.
    [10]王琨,罗琳. ISAR成像中包络对齐的幅度相关全局最优法.电子科学学刊. 1998, Vol. 20(3), 369-373.
    [11]王根原,保铮.逆合成孔径雷达运动补偿中包络对齐的新方法.电子学报. 1998, Vol. 26(6), 5-8.
    [12]邢孟道,保铮.一种逆合成孔径雷达成像包络对齐的新方法.西安电子科技大学学报. 2000, Vol. 27(1), 93-96.
    [13] G. Wang, Z. Bao. The Minimum Entropy Critertion of Range Alignment in ISAR Motion Compeasation. Proceeding Conference Radar’97. Edinburgh UK, October 1997, 14-16.
    [14] J. Wang, D. Kasilingam. Global Range Alignment for ISAR. IEEE trans on AES. Jan 2003, Vol. 39(1), 351-357.
    [15]邬小青,朱兆达.同时运动补偿和雷达成像,电子学报, 1991, Vol. 19(1), 123-125.
    [16] K. K. Eerland, Application of ISAR on aircraft, IEEE Int. Radar Conf., Paris, May 1984, 618-623.
    [17] B. D. Steinberg, Microwave imaging of aircraft, Proc. IEEE. 1988, Vol. 76(12), 1578-1592.
    [18] B. D. Steinberg, Radar imaging from a distorted array: the radio camera algorithm and experiments, IEEE Trans. on AP, 1981, Vol. 29(5), 740-748.
    [19]保铮,邓文彪,杨军, ISAR成像处理中的一种运动补偿方法,电子学报, 1992, Vol. 20(6), 1-6.
    [20] M. J. Pricket, C. C. Chen,“Principle of inverse synthetic aperture radar(ISAR) imaging, EASCON record, 1980, 340-345.
    [21] R. Xu, Z. Cao,Y. Liu, A new method of motion compensation for ISAR, Proc.IEEE Int. Radar Conf., Paris, 1990, 234-237.
    [22]毛引芳,吴一戎,以散射质心为基准的ISAR成像的运动补偿,电子科学学刊, 1992, Vol. 14(5), 532-536。
    [23] M. Martorella, F. Berizzi, B. Haywood, Contrast maximization based technique for 2-D ISAR autofocusing, IEE Proceedings on Radar, Sonar and Navigation, 2005, Vol. 152(4), 253-262.
    [24] D. E. Wahl, P. H. Eichel, D. C. Ghiglia, Phase gradient autofocus- A robust tool for high resolution SAR phase correction, IEEE Trans. on AES., 1994, Vol. 30(3), 827-835.
    [25] L. Xi, L. Guosui, J. Ni, Autofocusing of ISAR Imaging based on Entropy Minimization, IEEE Trans. on AES, 1999, Vol. 35(4), 1240-1252.
    [26] C. E. Mancill. Enhancement of radar imagery by maximum entropy processing. Proceedings of the 21st annual meeting of Human Factors Society, Santa, Monica, CA,1977, 241-243.
    [27] S. L. Borison, S. B. Bowling, and K. M. Cuomo. Super-resolution methods for wideband radar. Lincoln Laboratory Journal. 1992, Vol. 5(3), 441-461.
    [28] R. M. Nuthalapati. High resolution reconstruction of SAR image. IEEE Trans on Aerospace and Electronic System. April 1992, Vol. 8(2), 462-472.
    [29] I. J. Gupta. High-resolution radar imaging using 2-D linear prediction. IEEE Trans on Antennas and Propagation. Jan. 1994, Vo. 42(1), 31-37.
    [30] J. W. Odendaal, E. Barnard, and C. W. I. Pistorius. Two-dimensional superresolution radar imaging using the MUSIC algorithm. IEEE Trans on Antennas and Propagation. Oct. 1994, Vol. 42(10), 1386-1391.
    [31] S. Barbarossa, L. Marsili, and G. Mungari. SAR super-resolution imaging by signal subspace projection techniques. Proceedings of EUSAR'96, Konigswinter, Germany. 1996, 267-270.
    [32] Y. B. Hua. High resolution imaging of continuously moving target using stepped frequency radar. Signal Processing. 1994, Vol. 35(1), 33-40.
    [33] S. R. DeGraaf. SAR imaging via modern 2-D spectral estimation methods. SPIE Proceedings on Optical Engineering in Aerospace Sensing, Orlando, FL, April,1994, 36-49.
    [34] J. Li and P. Stoica. An adaptive filtering approach to spectral estimation and SAR imaging. IEEE Trans on Signal Processing. 1996, Vol. 44(6), 1469-1484.
    [35] J. Li, P. Stoica. Efficient mixed-spectrum estimation with applications to target feature extraction. IEEE Trans on Signal Proc. 1996, Vol. 44(2), 281-295.
    [36] M. W. Tu, I. J. Gupta, and E. K. Walton. Application of maximum likelihood estimation to radar imaging. IEEE Trans on Antennas and Propagation. Jan, 1997, Vol. 45(1), 20-27.
    [37] J.L.Walker, Range-Doppler of rotating objects, IEEE Trans. On AES, Jan 1980, Vol. 16(1), 23-52.
    [38] D. A. Ausherman, A. Kozma, J.L. Walker, H.M. et al.. Developments in radar imaging. IEEE Trans. AES. July.1984. Vol. 20(4), 363-399.
    [39] A.W.Doerry, Synthetic aperture radar processing with polar formatter subapertures, 1994 IEEE Conference on Signals, Systems and Computer, Vol.2, Oct.1994, 1210-1215.
    [40] D.L.Mensa, S.Halevy, G.Wade, Coherent Doppler tomography for microwave imaging, Proc. IEEE, 71(2), Aug. 1983, 254-261.
    [41] D.C.Muson, Jr., J. D. O'Brien, W.K.Jenkins, A tomographic formulation of spotlight mode synthetic aperature radar, Proc. IEEE, Vol. 71(8). 1983, 917-925.
    [42] Qi Wang, Mengdao Xing, Guangyue Lu, Zheng Bao. High Resolution 3D Radar Imaging of Rapidly Spinning Targets. IEEE Trans. Geoscience and Remote Sensing, 2008, Vol. 46 (1), 22-30.
    [43] Qi Wang,Mengdao Xing,Zheng Bao .Single Range Matching Filtering for Space Debris Radar Imaging,IEEE Geoscience and Remote Sensing Letters, 2007, Vol. 4(4), 576-580.
    [44] V. C. Chen, S. Qian. Joint time-frequency analysis for radar Range-Doppler imaging. IEEE Trans on AES. 1998, Vol. 34 (2), 486-499.
    [45]保铮,王根原,罗琳.逆合成孔径雷达的距离——瞬时多普勒成像方法.电子学报. 1998, Vol. 26 (12), 79-83.
    [46] Z. Bao, G. Wang, L. Luo. Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets. Optical Engineering. 1998, Vol. 37(5), 1582-1588.
    [47]金添,常文革.基于Radon-ambiguity变换的ISAR成像算法.现代雷达. 2004, Vol. 26(11), 18-21.
    [48]刘爱芳,刘中,陆锦辉.基于Radon-ambiguity变换的ISAR成像算法.现代雷达. 2003, Vol. 25 (6), 13-14.
    [49] G. Lu, Z. Bao. Compensation of scatterers migration through resolut ion cell in inverse synthetic aperture radar imaging. IEEE Proceeding, Radar Sonar Navigate. 2000, Vol. 147(2), 80-85.
    [50]卢光跃,保铮.基于瞬时谱估计的ISAR距离瞬时多普勒成像算法.西安电子科技大学学报. 1998, Vol. 25 (5), 593-597.
    [51] G. Wang. Adaptive filtering approach to chirp estimation and inverse synthetic aperture radar imaging of maneuvering targets. Society of Photo-Optical Instrumentation Engineers. 2003, Vol. 42(1), 190-199.
    [52]孙长印,保铮.雷达成像的近似二维模型及其超分辨算法.电子学报. 1999, Vol. 27 (12), 84-87.
    [53] G. Wang, Z. Bao. Inverse synthetic aperture radar imaging ofmaneuvering targets based on chirplet decomposition. Optical Engineering. 1999, Vol. 38 (9), 1534-1541.
    [54]王勇,姜义成.一种新的信号分解算法及其在机动目标ISAR成像中的应用.电子学报. Mar 2007, Vol. 35(3), 445-449.
    [55]邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法.电子学报. 2001, Vol. 29(4), 515-517.
    [56] L. Du and G. Su. Adaptive Inverse Synthetic Aperture Radar Imaging for Nonuniformly Moving Targets. IEEE GRS letter. July 2005, Vol. 2(3), 247-249.
    [57]邢孟道,保铮,冯大政.基于调幅-线性调频信号参数估计的机动目标成像方法.现代雷达. 2000, Vol. 22 (6), 44-48.
    [58]郑义明,邢孟道,保铮.基于多分量多项式信号参数估计的机动目标成像.西安电子科技大学学报. 2000, Vol. 27(4), 471-475.
    [59]王勇,成萍,姜义成等.变加速旋转目标ISAR成像距离-瞬时多普勒法.现代雷达. May 2005, Vol. 27(5), 25-27.
    [60]马长征,雷达目标三维成像技术,西安电子科技大学博士论文,1999.
    [61]李强,单脉冲雷达目标三维成像与识别研究,西安电子科技大学博士论文,2007.
    [62] Genyuan Wang, Xiang-Gen Xia, Victor C.Chen , Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers, IEEE Trans. Imag. Proc., Mar. 2001, Vol. 10(3), 436-447.
    [63]张群,马长征,张涛,张守宏,干涉式逆合成孔径雷达三维成像技术研究,电子与信息学报, Sept. 2001, Vol. 23(9), 890-898.
    [64] Qun Zhang, Tat Soon Yeo, Gan Du, Shouhong Zhang, Estimation of the Three-Dimensional Motion Parameters in Interferometric ISAR Imaging, IEEE Trans. Geosc. Remote Sensing, Feb,2004, Vol. 42(2), 292-300.
    [65]罗斌凤,张群,袁涛,张守宏,InISAR三维成像中的ISAR像失配准分析及其补偿方法,西安电子科技大学学报, Dec. 2003, Vol. 30(6), 739-743.
    
    [1] Wehner D R. High Resolution Radar. 2nd Edition, Artech House, 1995, 3-5.
    [2]马长征,雷达目标三维成像技术,西安电子科技大学博士论文,1999.
    [3] Chen H, Liu Y, Li X. Mathematics of synthesizing range profile. IEEE Trans.Signal Processing, 2007, Vol. 55 (5), 1950-1955.
    [4]毛二可,龙腾,韩月秋.频率步进雷达数字信号处理.航空学报. 2001. 22(Sup.), S16-S25.
    [5]张焕颖,张守宏,李强.调频步进雷达目标抽取算法及系统参数设计.电子学报,2007, Vol. 35(6), 53-58.
    [6]李眈,龙腾.步进频率雷达目标去冗余算法.电子学报. 2000. Vol. 28(6), 61-67.
    [7] Gill G S. Step frequency waveform design and processing for detection of moving target in clutter. IEEE International Radar Conference. 1996, 573-578.
    [8] H?gbom J A. Apertuer synthesis with a non-regular distribution of interferometer baselines[J]. Astron. Astrophys, 1974, Vol. 15(2), 417-426.
    [9] Schwarz U J. Mathematical-statistical description of the iterative beam removing technique (method CLEAN). Astron. Astrophys, 1978, Vol. 65(2), 345-356.
    [10] Hai D. Effective CLEAN algorithms for performance - enhanced detection of binary coding radar signals. IEEE Trans. on Signal Processing, 2004, Vol. 52(1), 72–78.
    [11] In-Sik Choi, Hyo-Tae Kim. Two-dimensional evolutionary programming-based CLEAN. IEEE Trans. on AES., 2003, Vol. 39(1), 373– 382.
    [12] Martorella, M., Acito, N., Berizzi, F. Statistical CLEAN Technique for ISAR Imaging. IEEE Trans. on GRS., 2007, Vol. 45(11), 3552-3560.
    [13]何云涛,江月松,钟宇. CLEAN算法在机载毫米波综合孔径成像中的应用.电子与信息学报2007. Vol. 29(7), 1757-1760.
    [14]刘峥,张守宏.跳频脉冲ISAR成像运动补偿的最小波形熵方法.西安电子科技大学学报. 2000. Vol. 27(6), 691-695.
    [15]张涛,马长征,张守宏.一种新的ISAR-FS成像运动补偿方法.西安电子科技大学学报. 2000. Vol. 27(1), 66-69.
    [16] Michalewicz, Z.,“Genetic algorithms + data structure=evolution program,”AI Series, New York: Springer-Verlag, 1994.
    [17] In-Sik Choi, Hyo-Tae Kim. Two-dimensional evolutionary programming-based CLEAN]. IEEE Trans. on AES., 2003, Vol. 39(1), 373– 382.
    [18] Yang, J-M., and Cao, C. Y. A combined evolutionary algorithm for real parameters optimization. In IEEE International Conference on Evolutionary Computation, 1996, 732-737.
    [1] Wehner D R. High Resolution Radar. 2nd Edition, Artech House, 1995
    [2] Lord, R.T., and Inggs, M.R. High resolution SAR processing using stepped-frequencies. IGARSS, August 1997, Singapore, 490–492
    [3] Wilkinson, A.J., Lord, R.T., and Inggs, M.R. Stepped-frequency processing by reconstruction of target reflectivity spectrum. Proceedings of the 1998 IEEE South African Symposium on Communications and Signal Processing, 7-8 Sep. 1998, Cape Town, South Africa, 101-104
    [4] French, A.: Improved high range resolution profiling of aircraft using stepped-frequency waveforms with an S-band phased array radar. 2006 IEEE Radar Conference, 24-27 April 2006, Verona, NY, USA, 69-75
    [5] Schimpf, H., and Wahlen, A. High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps. IEE Electronics Letters, 2003, Vol. 39(18), 1346-1348
    [6]罗贤全,于久恩,何强,等.基于参数估计的步进频ISAR成像运动补偿方法.系统工程与电子技术. 2007, Vol. 29(9), 1464-1468.
    [7]刘峥,张守宏.跳频脉冲ISAR成像运动补偿的最小波形熵方法.西安电子科技大学学报. 2000. Vol. 27(6), 691-695.
    [8]张涛,马长征,张守宏.一种新的ISAR-FS成像运动补偿方法.西安电子科技大学学报. 2000. Vol. 27(1), 66-69.
    [9]蒋楠稚,王毛路,李少洪,等.频率步进脉冲距离高分辨一维成像速度补偿分析.电子科学学刊, 1999, Vol. 21 (5), 665-670.
    [10] M. Xing, R. Wu and Z. Bao: High resolution ISAR imaging of high speed moving targets. IEE Proc.-Radar Sonar Navig., April 2005, Vol. 152(2), 58-67.
    [11]丁鹭飞,耿富录.雷达原理.西安,西安电子科技大学出版社, 1995: 246-247.
    [12]邢孟道,保铮.基于运动参数估计的SAR成像.电子学报, 2001, Vol. 29(12A), 1824-1828.
    [13] Madsen, S.N. Estimating the Doppler centroid of SAR data, IEEE Trans. on AES. Mar 1989 , Vol. 25(2), 134-140.
    [14] Wang, K., Luo, L., and Bao, Z., Global optimum method for motion compensation in ISAR imagery. Proc. Radar Conference, 14-16 Oct. 1997, Edinburgh, UK,. 233-235
    [15] Ye, W., Yeo, T.S., and Bao, Z., Weighted Least-Squares Estimation of Phase Errors for SAR/ISAR Autofocus. IEEE Trans. on Geoscience and Remote Sensing, 1999, Vol. 37(5), 2487-2494.
    [16] Cuomo K. M., Piou J. E., Ultrawide-band coherent processing, IEEE Trans. On Antennas and Propagation, 1999, Vol. 47(6), 1094-1107.
    [17] Bao, Z., Wang, G., and Luo, L., Inverse synthetic aperture radar imaging of Maneuvering Targets., Optical Engineering, 1998, Vol. 37(5), 1582-1588.
    [1] Wehner D R. High Resolution Radar. 2nd Edition, Artech House, 1995.
    [2] Hajduch, G., Le Caillec, J.M., and Garello, R., Airborne high-resolution ISAR imaging of ship targets at sea, IEEE Trans. AES, 2004, Vol. 40 (1), 378-384.
    [3] Bao Z., Wang G., Luo L., Inverse synthetic aperture radar imaging of Maneuvering Targets, Optical Engineering, 1998, Vol. 37(5), 1582-1588.
    [4] Chen V.C., Hao L. Time-frequency transforms for radar imaging and signal analysis. Artech House, 2002.
    [5] Chen V.C., Qian S.:‘Joint Time-Frequency analysis for radar Range-Doppler imaging’, IEEE Trans on AES, 1998, Vol. 34, (2), 486-499.
    [6] Wang G., Bao Z., Inverse synthetic aperture radar imaging of maneuvering targets based on Chirplet decomposition. Optical Engineering, 1999, Vol. 38(9), 1534-1541.
    [7] Pastina D., Montanari A., Aprile A. Motion estimation and optimum time selection for ship ISAR imaging, Record. IEEE 2003 Radar Conference, 7-14.
    [8] Berizzi F., Dalle Mese E., Diani M., and Martorella M. High-Resolution ISAR imaging of maneuvering targets by means of the range instantaneous dopplertechnique: modeling and performance analysis, IEEE Trans. Image Processing, 2001, Vol. 10(12), 1880-1890.
    [9] Chen V.C., Miceli W.J. Simulation of ISAR imaging of moving targets, IEE Proc., Radar Sonar Navig., 2001, Vol. 148(3), 160-166.
    [10] O’Neill J.C., Flandrin P. Virtues and Vices of Quartic Time-Frequency Distributions, IEEE Trans. Signal Processing, 2000, Vol. 48(9), 2641-2650.
    [11] Hogbom. J.A. Aperture synthesis with a nonregular distribution of interferometer baselines, Astron. Astrophys. Supplements, 1974, 15, 417-426.
    [12] Tsao J. and Steinberg B.D. Reduction of sidelobe and speckle artifacts in microwave imaging: The CLEAN technique, IEEE Trans. Antennas Propagat., 1988, Vol. 36(4), 543-556.
    [13] Wang G. and Bao Z. The minimum entropy criterion of range alignment in ISAR compensation, Proc. Int. Conf. of Radar '97., Edinburgh, UK ,October 1997, 236-239.
    [14] Xing, M., Wu, R., and Bao, Z. High resolution ISAR imaging of high speed moving targets, IEE Proc., Radar Sonar Navig., 2005, Vol. 152(2), 58-67.
    [1] M.I.Skolnik. Radar Handbook. McGraw-Hill, Inc.1970.
    [2]杨振起,张永顺.双(多)基地雷达系统.北京:国防工业出版社,1998.
    [3] Griffiths, H.D. From a different perspective: principles, practice and potential of bistatic radar. Proceedings of the International Radar Conference. 2003, 1-7.
    [4] G. Yates, A. M. Horne, A. P. Blake, et al. Bistatic SAR image formation. Proc. EUSAR, Ulm, Germany, 2004: 581–584.
    [5] M. Wendler, G. Krieger, R. Horn, et al. Results of a bistatic airborne SAR experiment Proc. Int. Radar Symp., Dresden, Germany, 2003: 247–253.
    [6] Walterscheid, A. Brenner, and J. Ender. Geometry and system aspects for a bistatic airborne SAR experiment. Proc. EUSAR, Ulm, Germany, 2004: 567–570.
    [7] J. Klare, I. Walterscheid, A. Brenner, et al. Evaluation and optimisation of configurations for a hybrid SAR experiment between TerraSAR-X and PAMIR. IGARSS 2006, Denver, Colorardo, USA, 2006.
    [8]汤子跃,张守融.双站合成孔径雷达系统原理.北京:科学出版社,2003.
    [9]张振华.双/多基成像算法研究.西安电子科技大学博士论文,2007.
    [10] J.Palmer, J.Homer, I.D.Longstaff, et al. ISAR imaging using an emulatedmultistatic radar system. IEEE Transactions on AES., 2005, Vol. 41(4), 1464-1472.
    [11]张亚标,朱振波,汤子跃,等.双站逆合成孔径雷达成像理论研究.电子与信息学报,2006, Vol. 28(6): 969-972.
    [12] T.Tsao, M.Slamani, P.Varshney, et al. Ambiguity Function for a Bistatic Radar. IEEE Transactions on AES., 1997, Vol. 33(3):1041-1051.
    [13]郭强,李伟锋,陶然,等.双基地雷达沿基线目标模型的建立及零多普勒区的划分.兵工学报, 2007, Vol. 28(6), 661-666.
    [14] Willis, N.J. Bistatic Radar. Raleigh, NC. SciTech Publishing, Inc. 2005
    [15]杨丽,蔡志明.双基地声纳探测范围分析.兵工学报, 2007, Vol. 28(7), 839-843
    [16] Bao Z, Wang G Y, Luo L. Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets. Optical Engineering, 1998, Vol. 37(5), 1582-1588.
    [17] Xing, M., Wu, R., and Bao, Z. High resolution ISAR imaging of high speed moving targets. IEE Proc. Radar Sonar Navig., 2005, Vol. 152 (2), 58-67.
    [18]张涛,张群,罗斌凤,等.基于时频分析的双基地前向散射雷达侧影成像.电子学报, 2001, Vol. 29(6), 1-4.
    [19]邢孟道,保铮,郑义明.用整体最优准则实现ISAR成像的包络对齐.电子学报, 2001, Vol. 29 (12A), 1807-1811.
    [20] Perry R.P., Dipietro R.C., and Fante R.L. SAR imaging of moving targets. IEEE Trans. AES., 1999, Vol. 35(1), 188-199.
    [1] R. Bamler and P. Hart, Synthetic aperture radar interferometry, Inv. Prob., 1998, Vol.14(4), R1-R54
    [2]袁孝康,星载合成孔径雷达导论,国防工业出版社, 2003.
    [3] Genyuan Wang, Xiang-Gen Xia, Victor C.Chen, Three-Dimensional ISAR Imaging of Maneuvering Targets Using Three Receivers, IEEE Trans. Imag. Processing, Mar. 2001, Vol.10(3), 436-447.
    [4]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社, 2006.
    [5]张群,马长征,张涛,张守宏,干涉式逆合成孔径雷达三维成像技术研究.电子与信息学报, Sept. 2001. Vol.23(9), 890-898.
    [6] Qun Zhang, Tat Soon Yeo, Gan Du, Shouhong Zhang, Estimation of the Three-Dimensional Motion Parameters in Interferometric ISAR Imaging. IEEE Trans. GRS., Feb, 2004, Vol.42(2), 292-300.
    [7]罗斌凤,张群,袁涛,张守宏, InISAR三维成像中的ISAR像失配准分析及其补偿方法,西安电子科技大学学报, Dec. 2003, Vol.30(6), 739-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700