多输入多输出合成孔径雷达关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)已经成为遥感领域的前沿科技,受到了世界各国学者的广泛关注,其在军事侦察以及国民经济中发挥着重要作用。作为SAR的两大重要功能需求,高分辨率宽测绘带静态场景成像和运动目标检测与成像一直是SAR领域研究的热点问题。然而,传统单通道SAR中高分辨率和宽测绘带两个指标存在着严重制约关系,同时受强地物杂波的影响,单通道SAR实现地面运动目标的有效检测非常困难。为此,基于单发多收的多通道SAR体制和算法相继提出,其系统自由度取决于接收通道数目。但是,受运动平台尺寸和载荷的限制,接收通道数目和阵列尺寸不能过大,并且下一代SAR对多功能设计和功能复合具有着迫切需求,因此急需提出新思路、新理论和新方法。
     MIMO(Multi-Input Multi-Output)雷达是近年来提出的一种新体制雷达,由于使用了多个互异的发射波形探测目标,引入了远多于阵元数目的等效观测通道和信号处理自由度,从而在目标检测、参数估计和目标成像等环节上,相对于传统雷达获得了显著的增益,极大地提高了雷达的总体性能。
     融合MIMO雷达与SAR的各自特点,可构成新体制的MIMO-SAR(SAR based MIMO)成像雷达。MIMO-SAR能够充分发挥收发阵列多阵元的优势,进一步提高系统自由度,因此其可为全面提高SAR工作能力提供一条更有效的解决途径。不过,MIMO-SAR作为一种新兴的雷达成像手段,国内外都处于研究起步阶段,许多关键问题还有待深入研究和突破。本文将围绕MIMO-SAR的若干关键技术开展研究,研究工作主要包括以下几个方面:
     针对MIMO-SAR对正交波形集高分辨率、良好相关特性及低截获特性的应用需求,提出两类新的正交宽带混合编码波形集,依次为伪随机相位-有符号线性调频(Polyphase Signed-Chirp,PSC)与伪随机相位-离散频率(Polyphase Discrete- Frequency,PDF)编码正交波形集。与传统正交伪随机相位编码(Polyphase Coding,PPC)波形集相比,PSC波形集具有更好的宽带和相关特性;与传统正交离散频率编码(Discrete Frequency-Coding,DFC)波形集相比,PDF波形集具有更好的相关特性。另外,以一次收发等效期间MIMO-SAR等效空间采样均匀及系统自由度最大为优化目标,提出并论证了一种MIMO-SAR优化线性阵列配置方案。
     针对MIMO-SAR等效相位中心误差问题,首先定量分析得到MIMO-SAR等效相位中心误差的解析表达式,其次深入分析了等效相位中心误差对SAR方位成像质量的影响,指出周期性的二阶等效相位中心误差将会造成SAR方位像存在“假峰”效应。另外,基于SAR图像质量指标,提出了MIMO-SAR等效相位中心误差界确定方法,从而可为系统设计与后续信号处理提供设计依据。
     针对高分辨率宽测绘带静态场景成像的应用需求,基于收发同置和收发分置阵列配置条件,研究了频分MIMO-SAR和码分MIMO-SAR的静态场景成像方案。为提高信号分选能力及成像质量,研究了码分MIMO-SAR优化接收滤波器设计问题。定量分析比较了MIMO-SAR与MPC-SAR两成像系统各指标性能。另外,为指导MIMO-SAR的多功能设计,提出了MIMO-SAR等效空间采样自由度权衡策略。
     针对MIMO-SAR运动目标检测与成像的应用需求,提出MIMO-SAR等效通道运动目标回波信号新模型,指出主要受运动目标径向速度影响,运动目标的方位像也会存在“假峰”效应。为有效抑制运动目标“假峰”及静止杂波,分别基于DPCA(Displaced Phase Center Antenna)技术、ATI(Along Track Interferometry)干涉图和CSI(Clutter Suppression Interferometry)技术,提出了三种MIMO-SAR运动目标处理方法。第一种方法在信号域抑制杂波,并以补偿径向速度引入的误差信号的方式来消除“假峰”;第二种在图像域抑制杂波,并从限制“假峰”幅值出发,实现一种利用杂波来抑制“假峰”的技术途径;第三种方法在信号域抑制杂波,并利用“假峰”的干涉相位来提高运动目标定位精度,最终实现运动目标的检测、定位、测速以及聚焦成像的一体化处理。
Synthetic aperture radar (SAR) has already become the advanced science and technology in the field of remote sensing, and received wide attention by scholars of many countries, which plays an important role in military scout and national economy. As two strong application demands for SAR, the high-resolution and wide-swath imaging as well as the moving target detection and imaging is always a hot topic in the field of radar imaging. However, there exists a tight tradeoff between azimuth high-resolution and wide-swath for the conventional single-channel SAR, which is also difficult to achieve ground moving target indication (GMTI) emerged in the strong background clutter effectively. Therefore, some multi-channel SAR systems with single-transmitting and multi-receiving antennas, as well as corresponding algorithms are proposed in succession, where system degrees of freedom (DOF) is determined by receiving channel number. However, the antenna size and number of receiving channels are restricted by moving platform size and load, besides there exists strong demands on multifunction design for the advanced SAR, so novel thinking, theory and techniques are needed to be proposed urgently.
     MIMO (multi-input multi-output) radar is a novel system proposed in recent years. Much more equivalent channels and DOF than the employed antennas can be obtained by transmitting multiple waveforms simultaneously that may be correlated or uncorrelated with each other. Therefore, the diversity gains are offered by MIMO radar in detection, estimation, imaging and etc., so that the radar performance may be significantly improved.
     MIMO-SAR, as a novel imaging radar, is an innovative concept proposed recently in the field of radar sensor technology, which integrates the advantages of MIMO radar and SAR. The system DOF can make further increase by utilizing the multiple transmitting elements and receiving elements, and thus MIMO-SAR provides an effective way to improve the performance of conventional SAR. However, as a new branch of radar imaging, researches on MIMO-SAR are starting, and many key problems are needed to be studied and improved deeply. Around this guideline, our research work can be described as follows
     Aiming at the demands on high-resolution, good correlation properties and low probability of intercept for orthogonal waveforms of MIMO-SAR, two novel kinds of orthogonal wideband hybrid-coding waveform set are proposed, namely polyphase signed-chirp (PSC) coding waveforms and polyphase discrete frequency (PDF) coding waveforms. Compared with conventional orthogonal polyphase coding (PPC) waveforms, the higher resolution and better correlation properties can be obtained by PSC waveforms. Compared with conventional orthogonal discrete frequency coding (DFC) waveforms, the PDF waveforms have better correlation properties. In addition, according to the designed rule for uniform equivalent spatial samplings and maximum system DOF during a transmitting and receiving (T/R) duration, an optimal uniform linear array configuration for MIMO-SAR is also proposed.
     Aiming at the equivalent phase center error, the analytic expressions are derived quantitatively, and then the influence on the azimuth imaging quality is studied. It is shown that the periodical quadratic phase error is a key factor in the equivalent phase center error, and it can bring about the“spurious peaks”effect on azimuth image for MIMO-SAR. In addition, based on evaluation of SAR image quality, the equivalent phase center error bounds in MIMO-SAR are proposed, which may provide reference to system design and successive signal processing for MIMO-SAR.
     Aiming at the demand on high-resolution and wide-swath imaging for static scene, two imaging schemes for frequency divided MIMO-SAR and code divided MIMO-SAR are researched, respectively. In order to improve separation capacity of the mixed receiving echoes and successive imaging quality, the optimal receiving filter is considered and used for code divided MIMO-SAR. The imaging indexes are compared between MIMO-SAR and multiple phase centers SAR (MPC-SAR), which show that the tradeoff between azimuth high-resolution and wide-swath can be solved by MIMO-SAR more effectively than the existing MPC-SAR. In addition, the equivalent spatial samplings DOF tradeoff schemes for MIMO-SAR are proposed to realize the multifunctional design.
     Aiming at the demand on moving target detection and imaging, a novel equivalent channel signal model of moving target for MIMO-SAR is proposed firstly. Influenced by radial velocity of moving target, a periodically modulated signal will be introduced into the signal model of MIMO-SAR, and then there will also appear the special“spurious peaks”effect in azimuth image. In order to suppress the“spurious peaks”and background clutter, three signal processing methods for MIMO-SAR are proposed based on displaced phase center antenna (DPCA), along track interferometry (ATI) and clutter suppurssion interferometry (CSI) techniques, respectively. The first method will suppress strong background clutter in the rawdata domain, and the“spurious peaks”are eliminated by compensating the error signal caused by radial velocity of moving target. The second method will eliminate strong background clutter in the image domain, and a new way to suppress“spurious peaks”using clutter is carried out, where the magnitudes and interferometry phases of“spurious peaks”can be weakened by modulating system parameters and using strong background clutter, respectively. The third method will also suppress strong background clutter in the rawdata domain, and the integration of detection, location, velocity estimation and imaging for moving target will be achieved, where location precision can be improved by using the infermetric phases of“spurious peaks”.
引文
[1] Oliver C, Quegan S. Understanding Synthetic Aperture Radar Images[M]. Norwood, MA: Artech House, 1998.
    [2] Soumekh M. Synthetic Aperture Radar Signal Processing with Matlab Algorithms[M]. New York: Wiley, 1999.
    [3]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [4]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [5]皮亦鸣,杨建宇,付毓生.合成孔径雷达成像原理[M].西安:电子科技大学出版社, 2007.
    [6]匡纲要,高贵,蒋咏梅.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科技大学出版社, 2007.
    [7]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [8]张直中.机载和星载合成孔径雷达导论[M].北京:电子工业出版社, 2004.
    [9] Mehlis J G. Synthetic Aperture Radar Range-Azimuth Ambiguity Design and Constraints[C]. Proceedings of the IEEE International Conference on Radar, Arlington, VA, 1980:143-152.
    [10] Dorey J, Garnier G, Auvray G. Synthetic Impulse and Antenna Radar[C]. Proceedings of the IEEE International Conference on Radar, Paris, 1989:556-562.
    [11] Fishler E, Haimovich A, Blum R S, et al. MIMO Radar: An Idea Whose Time Has Come[C]. Proceedings of the IEEE International Conference on Radar, Philadelphia, PA, United States, 2004:71-78.
    [12] Fishler E, Haimovich A, Blum R S, et al. Performance of MIMO Radar Systems: Advantages of Angular Diversity[C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2004:305-309.
    [13] Fishler E, Haimovich A, Blum R S, et al. Spatial Diversity in Radars-Models and Detection Performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.
    [14] Li J, Stoica P, Xu L, et al. On Parameter Identifiability of MIMO Radar[J]. IEEE Signal Processing Letters, 2007, 14(12):968-971.
    [15] Li J, Stoica P, eds. (2008). MIMO Radar Signal Processing (New York, NY, Wiley-IEEE Press).
    [16] Ender J H G. MIMO-SAR[C]. Proceedings of the International Radar Symposium (IRS), Cologne, Germany, 2007.
    [17] Song Y P, Yang Y L. High Resolution, Wide Swath SAR Using Subaperture Sub-Band Technique[C]. Proceedings of the CIE IEEE International Conference onRadar, Shanghai, 2006:1-4.
    [18]井伟,武其松,邢孟道,等.多子带并发的MIMO-SAR高分辨大测绘带成像[J].系统仿真学报, 2008, 20(16):4373-4378.
    [19] Tomiyasu K. Conceptual Performance of a Satellite Borne, Wide Swath Synthetic Aperture Radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 1981, 19(2):108-116.
    [20] Carrara W G, Goodman R S, Majewski R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995.
    [21] Griffiths H D, Mancini P. Ambiguity Suppression in SARs Using Adaptive Array Techniques[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Espoo, Finland, 1991:1015-1018.
    [22] Currie A, Brown M A. Wide-Swath SAR[J]. IEE Proc-F, Radar and Signal Processing, 1992, 139(2):122-135.
    [23]王小青,郭琨毅,盛新庆,等.基于距离向多孔径接收的宽测绘带SAR成像方法的研究[J].电子与信息学报, 2004, 26(5):739-745.
    [24]郭琨毅,王小青,盛新庆.距离向多孔径接收宽测绘带SAR三种成像算法比较[J].电波科学学报, 2005, 20(1):119-124.
    [25]郭琨毅,王小青,盛新庆.距离向多孔径超宽测绘带成像体制中各项误差分析[J].电子与信息学报, 2005, 27(9):1383-1387.
    [26] Currie A. Wide-Swath SAR Imaging with Multiple Azimuth Beams[C]. Proceedings of the IEE Colloquium on Synthetic Aperture Radar, London, U.K., 1989:3/1-3/4.
    [27]李世强,杨汝良.单相位中心多波束合成孔径雷达方位信号处理研究[J].电子与信息学报, 2005, 27(7):2110-2113.
    [28]李世强,杨汝良.单相位中心多波束合成孔径雷达的方位模糊分析[J].电子与信息学报, 2005, 27(10):1569-1572.
    [29]李世强,杨汝良.天线相位中心偏移方位多波束合成孔径雷达的误差分析[J].电子学报, 2004, 32(9):1429 -1433.
    [30]赵伟,宋红军. PRF可变的星载方位向多相位中心多波束SAR[J].电子与信息学报, 2005, 27(6):936-938.
    [31]马晓岩,吴顺华,向家彬.速度与PRF失配对MPC-SAR成像的影响及补偿方法研究[J].电子学报, 2005, 33(12):2130-2134.
    [32]马晓岩,杨军.多相位中心SAR虚假目标成对回波定位与强度研究[J].电子学报, 2006, 34(3):385-390.
    [33]郭振永,袁新哲,张平.一种多通道SAR高分辨率宽测绘带成像算法[J].电子与信息学报, 2008, 30(2):310-313.
    [34] Krieger G, Gebert N, Moreira A. Unambiguous SAR Signal Reconstruction from Nonuniform Displaced Phase Center Sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4):260-264.
    [35] Gebert N, Krieger G. Azimuth Phase Center Adaptation on Transmit for High-Resolution Wide-Swath SAR Imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(4):782-786.
    [36] Gebert N, Krieger G, Moreira A. Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2):564-592.
    [37]赖涛,蔡斌,董臻,等.基于谱分解的多相位中心SAR回波无模糊重建[J].信号处理, 2009, 25(5):697-701.
    [38]李真芳,邢孟道,王彤,等.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报, 2003, 31(12):1800-1803.
    [39] Li Z, Wang H, Su T et al. Generation of Wide-Swath and High-Resolution SAR Images from Multichannel Small Spaceborne SAR System[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(1):82-86.
    [40] Li Z, Bao Z. A Novel Approach for Wide-Swath and High-Resolution SAR Image Generation from Distributed Small Spaceborne SAR Systems[J]. International Journal of Remote sensing, 2006, 27(5):1015-1033.
    [41] Li Z, Bao Z, Wang H et al. Performance Improvement for Constellation SAR Using Signal Processing Techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(2):436-452.
    [42] Jing W, Xing M D, Qiu C W, et al. Unambiguous Reconstruction and High-Resolution Imaging for Multiple-Channel SAR and Airborne Experiment Results [J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(1):102-106.
    [43] Callaghan G D, Longstaff I D. Wide Swath Spaceborne SAR Using a Quad Element Array[J]. IEE Proc on Radar Sonar and Navigation, 1999, 146(3):159-165.
    [44] Suess M, Grafmueller B, Zahn R. A Novel High Resolution, Wide Swath SAR System[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Sydney, Australia, 2001:1013-1015.
    [45] Suess M, Zubler M, Zahn R. Performance Investigation on the High Resolution, Wide Swath SAR System[C]. Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Cologne, Germany, 2002:187-191.
    [46] Heer C, Soualle F, Zahn R et al. Investigations on a New High Resolution Wide Swath SAR Concept[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 2003:521-523.
    [47] Krieger G, Gebert N, Moreira A. Multidimensional Radar Waveforms:A New Paradigm for the Design and Operation of Highly Performant Spaceborne Synthetic Aperture Radar Systems[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona , Spain, 2007:4937-4941.
    [48] Krieger G, Gebert N, Younis M et al. Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity[C]. Proceedings of the IEEE International Conference on Radar, Rome, Italy, 2008:767-772.
    [49] Krieger G, Gebert N, Moreira A. Multidimensional Waveform Encoding. A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1):31-46.
    [50]武其松,井伟,邢孟道,等.多维波形编码信号大测绘带成像[J].西安电子科技大学学报(自然科学版), 2009, 36(5):801-806.
    [51]武其松,邢孟道,刘保昌,等.面阵MIMO-SAR大测绘带成像[J].电子学报, 2010, 38(4):817-824.
    [52]许稼,彭应宁,夏香根,等.合成孔径雷达运动目标检测和成像方法[C].第九届中国雷达年会,烟台,山东, 2004:617-620.
    [53] Ringel M B, Mooney D H, Long W H. F-16 Pulse Doppler Radar (AN/APG -66) Performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 1983, 19(1):147-158.
    [54] Schleher D C. MTI and Pulsed Doppler Radar[M].. Norwood, MA: Artech House, Inc., 1991.
    [55] Huang Y, Peng Y N, Wang X Q. Airborne Adaptive MTI Scheme with Preventing the Whitening of the Target[J]. IEEE Aerospace and Electronics Systems Magazine, 1999, 14(7):19-21.
    [56] Raney R K. Synthetic Aperture Imaging Radar and Moving Targets[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(3):490-505.
    [57] Ouchi K. On the Multilook Images of Moving Targets by Synthetic Aperture Radars[J]. IEEE Transactions on Antennas Propagations, 1985, 33(8):823-827.
    [58] Barbarossa S. Detection and Imaging of Moving Objects with Synthetic Aperture Radar Part 1: Optimal Detection and Parameter Estimation Theory[J]. IEE Proc-F on Radar Sonar and Navigation, 1992, 139(1):79-88.
    [59] Barbarossa S. Detection and Imaging of Moving Objects with Synthetic Aperture Radar Part 2: Joint Time-Frequency Analysis by Wigner-Ville Distribution[J]. IEE Proc-F on Radar Sonar and Navigation, 1992, 139(1):89-97.
    [60] Barbarossa S, Farina A. Space-Time-Frequency Processing of Synthetic Aperture Radar Signals[J]. IEEE Transactions on Aerospace Electronic Systems, 30(2):341-358.
    [61] Peleg S, Friedlander B. Multicomponent Signal Analysis Using the Polynomial-Phase Transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(1):378-387.
    [62] Fienup J R. Detecting Moving Targets in SAR Imagery by Focusing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(3):794-809.
    [63] Friedlander B, Francos J M. Estimation of Amplitude and Phase Multicomponent Signals[J]. IEEE Transactions on Signal Processing, 1995, 43:917- 926.
    [64] Zhou G, Giannakis G B, Swami A. On Polynomial Phase Signals with Time-Varying Amplitudes[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 848-861.
    [65] Ender J H G, Brenner A R. PAMIR-A Wideband Phased Array SAR/MTI System[J]. IEE Proc-F on Radar Sonar and Navigation, 2003, 150(4):165-171.
    [66]郑明洁.合成孔径雷达动目标检测和成像研究[D].北京:中国科学院电子学研究所, 2003.
    [67] Goldstein R M, Zebker H A. Interferometric Radar Measurement of Ocean Surface Current[J]. Nature, 1987, 328(20):707-709.
    [68] Beaulne P D, Gierull C H. Preliminary Design of a SAR-GMTI Processing System for Radarsat-2 Modex Data[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), 2003:1019-1021.
    [69] Chen C W. Performance Assessment of Along-Track Interferometry for Detecting Ground Moving Targets[C]. Proceedings of the IEEE International Conference on Radar, Pasadena, CA, 2004:99-104.
    [70] Chiu S, Livingstone C. A Comparison of Displaced Phase Centre Antenna and Along-Track Interferometry Techniques for Radarsat-2 Ground Moving Target Indication[J]. Canada Journal of Remote Sensing, 2005, 31(1):37-51.
    [71]王力宝,许稼,向家彬,等.基于DPCA和多分辨分析的SAR微弱运动目标检测[J].电子与信息学报, 2007, 29(12):2843-2847.
    [72]常玉林,黄晓涛,周红,等.基于ATI的双通道运动目标检测和距离向速度估计[J].信号处理, 2008, 24(5):742-746.
    [73] Li G, Xu J, Peng Y N, et al. Moving Target Location and Imaging Using Dual-Speed Velocity SAR[J]. IET Radar Sonar Navig, 2007, 1(2):158-163.
    [74] Xu J, Li G, Peng Y N, et al. Parameter Velocity Synthetic Aperture Radar: Signal Modeling and Optimal Methods[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9):2463-2480.
    [75] Damini A, Haslam G E. SAR/ISAR Ship Imaging: Theoretical Analysis and Practical Results[C]. Proceedings of the European Conference on Synthetic ApertureRadar (EUSAR), 1996:443-446.
    [76] Bao Z, Wang G, Luo L. Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets[J]. Journal of Optical Engineering, 1998, 37:1582-1588.
    [77]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析[J].电子学报, 2005, 33(12A):2441-2445.
    [78] Alamouti S M. A Simple Transmit Diversity Technique for Wireless Communications[J]. IEEE Journal on Selected Areas in Communications, 1998, 16(8):1451-1458.
    [79] Forsythe K W, Bliss D W, Fawcett G S. Multiple-Input Multiple-Output (MIMO) Radar: Performance Issues[C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2004:310-315.
    [80] Bliss D W, Forsythe K W. Multiple-Input Multiple-Output (MIMO) Radar and Imaging: Degrees of Freedom and Resolution[C]. Proceedings of the 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2003:54-59.
    [81] Robey F C, Coutts S, Weikle D, et al. MIMO Radar Theory and Exprimental Results[C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2004:300-304.
    [82] Luce A. Experimental Results on SIAR Digital Beam-Forming Radar[C]. Proceedings of the IEEE International Conference on Radar, London, 1992:505-510.
    [83]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达[J].现代雷达, 1995, 17(1):1-13.
    [84]陈伯孝. SIAR及其四维跟踪处理等技术研究[D].西安:西安电子科技大学, 1997.
    [85] Chen B X, Zhang S H, Wang Y J. Analysis and Experimental Results on Sparse-Array Synthetic Impulse and Aperture Radar[C]. Proceedings of the CIE IEEE International Conference on Radar, Beijing, 2001:76-80.
    [86]赵光辉,陈伯孝,朱守平.基于SIAR体制的单基地MIMO雷达方向综合及测角性能分析[J].中国科学E辑:技术科学, 2009, 39(1):181-192.
    [87]杨明磊.微波稀布阵SIAR相关技术研究[D].西安:西安电子科技大学, 2009.
    [88] Haimovich A M, Blum R S, Cimini L J. MIMO Radar with Widely Separated Antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1):116-129.
    [89] Li J, Stoica P. MIMO Radar with Colocated Antennas: Review of Some Recent Work[J]. IEEE Signal Processing Magazine, 2007, 24(5):106-114.
    [90] Deng H. Polyphase Code Design for Orthogonal Netted Radar Systems[J]. IEEE Transactions on Signal Processing, 2004, 52(11):3126-3135.
    [91] Khan H A, Edwards D J. Doppler Problems in Orthogonal MIMO Radars[C].Proceedings of the IEEE International Conference on Radar, 2006:244-247.
    [92] Khan H A, Zhang Y Y. Optimizing Polyphase Sequences for Orthogonal Netted Radar[J]. IEEE Signal Processing Letters, 2006, 13(10):589-592.
    [93] Deng H. Discrete Frequency-Coding Waveform Design for Netted Radar Systems[J]. IEEE Signal Processing Letters, 2004, 11(2):179-182.
    [94] Liu B, He Z S. Comments on‘Discrete Frequency-Coding Waveform Design for Netted Radar Systems’[J]. IEEE Signal Processing Letters, 2008, 15:449-451.
    [95] Liu B, He Z S. Orthogonal Discrete Frequency-Coding Waveform Set Design with Minimized Autocorrelation Sidelobes[J]. IEEE Transactions on Aerospace Electronic Systems, 2009, 45(4):1650-1657.
    [96]王敦勇袁俊泉,马晓岩.基于遗传算法的MIMO雷达离散频率编码波形设计[J].空军雷达学院学报, 2007, 21(2):105-107.
    [97] Zhang Y, Wang J. Improved Design of DFCW for MIMO Radar[J]. Electronics Letters, 2009, 45(5):285-286.
    [98] Yang Y, Blum R S. Radar Waveform Design Based on Mutual Information and Mean-Square Error Estimation[J]. IEEE Transactions on Aerospace and Electroinc Systems, 2007, 43(1):330-343.
    [99] Yang Y, Blum R S. Minimax Robust MIMO Radar Waveform Design[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1):147-155.
    [100]郭美彬.基于信息论的分布式MIMO雷达波形设计[D].西安:西安电子科技大学, 2009.
    [101]赵瑞丽. MIMO雷达发射波形优化设计[D].西安:西安电子科技大学, 2009.
    [102] Maio A D, Lops M. Design Pinciples of MIMO Radar Detectors[J]. IEEE Transactions on Aerospace and Electroinc Systems, 2007, 43(3):886-898.
    [103] Li J, Xu L, Stoica P, et al. Range Compression and Waveform Optimization for MIMO Radar: A Cramer-Rao Bound Based Study[J]. IEEE Transactions on Signal Processing, 2008, 56(1):218-232.
    [104] Fuhrmann D R, Antonio G S. Transmit Beamforming for MIMO Radar Systems Using Partial Signal Correlation[C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2004:295-299.
    [105] Fuhrmann D R, Antonio G S. Transmit Beamforming for MIMO Radar Systems Using Signal Cross-Correlation[J]. IEEE Transactions on Aerospace Electronic Systems, 2008, 44(1):171-186.
    [106] Antonio G S, Fuhrmann D R. Beampattern Synthesis for Wideband MIMO Radar Systems[C]. Proceedings of the 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), PuertoVallarta, Mexico, 2005: 105-108.
    [107] Stoica P, Li J, Xie Y. On Probing Signal Design for MIMO Radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8):4151-4161.
    [108] Stoica P, Li J, Xu L. Waveform Synthesis for Diversity-Based Transmit Beampattern Design[J]. IEEE Transactions on Signal Processing, 2008, 56(6):2593- 2598.
    [109]刘韵佛,刘峥,谢荣.一种基于拟牛顿法的MIMO雷达发射方向图综合方法[J].电波科学学报, 2008, 23(6):1188-1193.
    [110] Friedlander, Benjamin. Waveform Design for MIMO Radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1227-1238.
    [111] Langford B W, Pinaki S R. Signal Design for MIMO Diversity Systems[C]. Proceedings of the 38th Asilomar Conference on Signals, Systems and Computers, 2004:973-977.
    [112]戴喜增,彭应宁,汤俊. MIMO雷达检测性能[J].清华大学学报(自然科学版), 2007, 47(1):88-91.
    [113] Du C, Thompson J S, Petillot Y. Predicted Detection Performance of MIMO Radar[J]. IEEE Signal Processing Letters, 2008, 15:83-86.
    [114] Bekkerman I, Tabrikian J. Target Detection and Localization Using MIMO Radars and Sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10):3873- 3883.
    [115] Xu L, Jian J. Iterative Generalized-Likelihood Ratio Test for MIMO Radar [J]. IEEE Transactions on Signal Processing, 2007, 55(6):2375-2385.
    [116] Maio A D, Lops M, Venturino L. Diversity-Integration Tradeoffs in MIMO Detection[J]. IEEE Transactions on Signal Processing, 2008, 56(10):5051-5061.
    [117] Sheikhi A, Zamani A. Temporal Coherent Adaptive Target Detection for Multi-Input Multi-Output Radars in Clutter[J]. IET Radar Sonar Navigation, 2008, 2(2):86-96.
    [118]曾建奎. MIMO雷达信号检测的若干问题研究[D].成都:电子科技大学, 2008.
    [119]汤俊,伍勇,彭应宁,等. MIMO雷达检测性能和系统配置研究[J].中国科学F辑:信息科学, 2009, 39(7):776-781.
    [120]汤俊,伍勇,彭应宁,等. MIMO雷达对空域Rician起伏目标检测性能研究[J].中国科学F辑:信息科学, 2009, 39(8):866-874.
    [121] Xu J D X Z, Xia X G, et al. Optimizations of Multisite Radar System with MIMO Radars for Target Detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010. Accepted.
    [122] Xu L, Stoica P, Li J. Parameter Estimation and Number Detection of MIMO Radar Targets[C]. Proceedings of the 41th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2007:177-181.
    [123]江胜利,刘中,邓海.基于MIMO雷达的相干分布式目标参数估计Cramer-Rao下界[J].电子学报, 2009, 37(1):101-107.
    [124]曲毅,廖桂生,朱圣棋,等. MIMO雷达的目标运动方向及速度估计[J].西安电子科技大学学报(自然科学版), 2008, 35(5):781-784.
    [125] Yan H D, Li J, Liao G S. Multitarget Identification and Localization Using Bistatic MIMO Radar Systems[J]. EURASIP Journal on Advances in Signal Processing, 2008.
    [126] Lehmann N H, Fishler E, Haimovich A M. Evaluation of Transmit Diversity in MIMO-Radar Direction Finding[J]. IEEE Transactions on Signal Processing, 2007, 55(2):2215-2225.
    [127] Tabrikian J, Bekkerman I. Transmission Diversity Smoothing for Multi- Target Localization[C]. Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Philadelphia, Pennsylvania, USA, 2005:1041-1044.
    [128]杨巍,刘峥. MIMO雷达波达方向估计的性能分析[J].西安电子科技大学学报(自然科学版), 2009, 36(5):819-824.
    [129]张娟,张林让,刘楠. MIMO雷达最大似然波达方向估计方法[J].系统工程与电子技术, 2009, 31(6):1292-1294.
    [130]夏威. MIMO雷达模型与信号处理研究[D].成都:电子科技大学, 2008.
    [131]杨明磊,陈伯孝,秦国栋,等.多载频MIMO雷达的空时超分辨算法[J].电子与信息学报, 2009, 31(9):2048-2052.
    [132]许红波. MIMO雷达DOA估计算法研究[D].长沙:国防科学技术大学, 2009.
    [133]许红波,王怀军,陆珉,等.一种新的MIMO雷达DOA估计方法[J].国防科技大学学报, 2009, 31(3):92-96.
    [134]陈金立,顾红,苏卫民,等.基于发射分集的MIMO雷达相参信号处理方法[J].系统工程与电子技术, 2009, 31(8):1836-1841.
    [135]陈金立,顾红,苏卫民.一种双基地MIMO雷达快速多目标定位方法[J].电子与信息学报, 2009, 31(7):1664-1668.
    [136] Dai X Z, Xu J, Peng Y N. High Resolution Frequency MIMO Radar[C]. Proceedings of the IEEE International Conference on Radar, Waltham, MA, USA, 2007:693-697.
    [137] Dai X Z, Xu J, Ye C M, et al. Low-Sidelobe HRR Profiling Based on the FDLFM-MIMO Radar[C]. Proceedings of the Asian and Pacific Conference on Synthetic Aperture Radar (APSAR), Huangshan, China, 2007:132-135.
    [138]戴喜增,许稼,彭应宁,等. FD-MIMO距离高分辨雷达及其旁瓣抑制[J].电子与信息学报, 2008, 30(9):2033-2037.
    [139]杨明磊,张守宏,陈伯孝,等.多载频MIMO雷达一种新的信号处理方法[J].电子与信息学报, 2009, 31(1):147-151.
    [140]韩兴斌,胡卫东,郁文贤,等.分布式多通道雷达成像技术[J].电子与信息学报, 2007, 29(10):2354-2358.
    [141] Ma X Y, Wang D W, Su Y. High-Resolution Imaging Using a Narrowband MIMO Radar System[C]. Proceedings of the 9th International Conference on Signal Processing (ICSP), Beijing, 2008:2263-2266.
    [142] Wang D W, Duan N J, Ma X Y et al. High-Resolution Imaging Using a Wideband MIMO Radar System[C]. Proceedings of the IEEE International Conference on Information and Automation, Zhuhai/Macau, China, 2009:1150-1155.
    [143] Xue M, Zhu X M, Li J et al. MIMO Radar Angle-Doppler Imaging Via Iterative Space-Time Adaptive Processing[C]. Proceedings of the International WD&D Conference, 2009:129-133.
    [144] Roberts W, Li J, Stoica P, et al. MIMO Radar Angle-Range-Doppler Imaging[C]. Proceedings of IEEE Conference on Radar, Pasadena, CA, 2009.
    [145]王怀军,粟毅,朱宇涛,等.基于空间谱域填充的MIMO雷达成像研究[J].电子学报, 2009, 36(6):1242-1246.
    [146]朱宇涛,郁文贤,粟毅.一种基于MIMO技术的ISAR成像方法[J].电子学报, 2009, 37(9):1885-1894.
    [147] Klare J, Brenner A, Ender J H G. A New Airborne Radar for 3d Imaging- Image Formation Using the Artino Principle[C]. Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 2006.
    [148] Klare J, Weib M, Peters O. ARTINO: A New High Resolution 3d Imaging Radar System on an Autonomous Airborne Platform[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Denver, CO, USA, 2006:3842-3845.
    [149] Klare J, Cerutti-Maori D, Brenner A R, et al. Image Quality Analysis of the Vibrating Sparse MIMO Antenna Array of the Airborne 3d Imaging Radar Artino[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, 2007.
    [150] Wei? M, Ender J H G, Peters O, et al. An Airborne Radar for Three Dimensional Imaging and Observation-Technical Realisation and Status of ARTINO[C].Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 2006.
    [151]谭维贤,洪文,王彦平,等.基于波数域积分的人体表面微波三维成像算法研究[J].电子与信息学报, 31(11):2541-2545.
    [152]段广青,王党卫,马晓岩. MIMO雷达三维成像方法研究[J].空军雷达学院学报, 2009, 23(3):171-174.
    [153] Duan G Q, Wang D W, Ma X Y, et al. Three-Dimensional Imaging Via Wideband MIMO Radar System[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):445-449.
    [154]刘楠,张林让,张娟,等.多频-多基线MIMO InSAR及其性能分析[J].系统工程与电子技术, 2009, 31(9):2090-2095.
    [155] Ender J H G. Along-Track Array Processing for MIMO-SAR/MTI[C]. Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany 2008.
    [156] Ender J H G, Klare J. System Architectures and Algorithms for Radar Imaging by MIMO-SAR[C]. Proceedings of the IEEE Conference on Radar, Pasadena, CA, 2009:1-6.
    [157] Kim J-H, Ossowska A, Wiesbeck W. Investigation of MIMO SAR for Interferometry[C]. Proceedings of the European Radar Conference, Munich, Germany, 2007:51-54.
    [158] Kim J-H, Wiesbeck W. Investigation of a New Multifunctional High Performance SAR System Concept Exploiting MIMO Technology[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, 2008:221-224.
    [159] Li J, Zheng X Y, Stoica P. MIMO SAR Imaging: Signal Synthesis and Receiver Design[C]. Proceedings of the 2nd IEEE International workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Thomas, VI, 2007:89-92.
    [160] Li J, Stoica P, Zheng X Y. Signal Synthesis and Receiver Design for MIMO Radar Imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3959-3968.
    [161]宋岳鹏,杨汝良.应用多收发孔径实现高分辨宽测绘带的合成孔径雷达研究[J].电子与信息学报, 2007, 29(9):2110-2113.
    [162] Wang W Q. Application of MIMO Technique for Aerospace Remote Sensing[C]. Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2007:1-10.
    [163] Wang W Q, Peng Q C, Cai J Y. Novel MIMO SAR for Urban Remote Sensing Applications[C]. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China,Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Dresden, Germany, 2006.
    [151]谭维贤,洪文,王彦平,等.基于波数域积分的人体表面微波三维成像算法研究[J].电子与信息学报, 31(11):2541-2545.
    [152]段广青,王党卫,马晓岩. MIMO雷达三维成像方法研究[J].空军雷达学院学报, 2009, 23(3):171-174.
    [153] Duan G Q, Wang D W, Ma X Y, et al. Three-Dimensional Imaging Via Wideband MIMO Radar System[J]. IEEE Geoscience and Remote Sensing Letters, 2010, 7(3):445-449.
    [154]刘楠,张林让,张娟,等.多频-多基线MIMO InSAR及其性能分析[J].系统工程与电子技术, 2009, 31(9):2090-2095.
    [155] Ender J H G. Along-Track Array Processing for MIMO-SAR/MTI[C]. Proceedings of the European Conference on Synthetic Aperture Radar (EUSAR), Friedrichshafen, Germany 2008.
    [156] Ender J H G, Klare J. System Architectures and Algorithms for Radar Imaging by MIMO-SAR[C]. Proceedings of the IEEE Conference on Radar, Pasadena, CA, 2009:1-6.
    [157] Kim J-H, Ossowska A, Wiesbeck W. Investigation of MIMO SAR for Interferometry[C]. Proceedings of the European Radar Conference, Munich, Germany, 2007:51-54.
    [158] Kim J-H, Wiesbeck W. Investigation of a New Multifunctional High Performance SAR System Concept Exploiting MIMO Technology[C]. Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, 2008:221-224.
    [159] Li J, Zheng X Y, Stoica P. MIMO SAR Imaging: Signal Synthesis and Receiver Design[C]. Proceedings of the 2nd IEEE International workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), St. Thomas, VI, 2007:89-92.
    [160] Li J, Stoica P, Zheng X Y. Signal Synthesis and Receiver Design for MIMO Radar Imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3959-3968.
    [161]宋岳鹏,杨汝良.应用多收发孔径实现高分辨宽测绘带的合成孔径雷达研究[J].电子与信息学报, 2007, 29(9):2110-2113.
    [162] Wang W Q. Application of MIMO Technique for Aerospace Remote Sensing[C]. Proceedings of the IEEE Aerospace Conference, Big Sky, USA, 2007:1-10.
    [163] Wang W Q, Peng Q C, Cai J Y. Novel MIMO SAR for Urban Remote Sensing Applications[C]. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Beijing, China,
    [179] Li G, Xu J, Peng Y N, et al. Location and Imaging of Moving Targets Using Non-Uniform Linear Antenna Array SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3):1214-1219.
    [180] Dragosevic M V, Chiu S. Space-Based Motion Estimators-Evaluation with the First Radarsat-2 Modex Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 6(3):438-442.
    [181] Bamler R. Doppler Frequency Estimation and the Cramer-Rao Bound[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(3):385-390.
    [182] Xu J, Peng Y, Xia X. Parametric SAR Autofocusing: Inherent Accuracy Limitations and Realization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(11):2397-2411.
    [183]许稼,李骏,彭应宁.合成孔径雷达多普勒频谱的盲分裂解法[J].电子学报, 2005, 33(6):974-976.
    [184]高飞,毛士艺,玉振明.一种全自动的检测方法用于SAR-ATI的GMTI [J].航空学报, 2005, 26(1):84-89.
    [185]袁昊,周荫清,李景文.基于幅度和相位联合的ATI动目标检测新方法[J].北京航空航天大学学报, 2007, 33(2):169-175.
    [186]时公涛,高贵,蒋咏梅,等.基于干涉图的双通道合成孔径雷达地面慢速动目标检测新方法[J].自然科学进展, 2008, 18(5):559-572.
    [187] Whelan D A. Discoverer II Program Summary[C]. Proceedings of the IEEE International Conference on Radar, Alexandria, VA, USA, 2000:7-8.
    [188] Livingstone C, Thompson A. The Moving Object Detection Experiment on Radarsat-2[J]. Canada Journal of Remote Sensing, 2004, 30(3):355-368.
    [189]李景文,李春升,周荫清.三孔径INSAR动目标检测与成像[J].电子学报, 1999, 27(6):40-43.
    [190]张绪锦,张长耀,朱兆达,等.基于CSI处理的三通道机载SAR地面动目标检测[J].电子学报, 2008, 36(4):789-793.
    [191]邓海涛,张长耀.一种机载三通道GMTI实时信号处理方法[J].电子与信息学报, 2009, 31(2):370-373.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700