MIMO雷达成像算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新兴雷达技术,多输入多输出(MIMO)雷达受到国内外科研人员的广泛关注。该雷达综合利用阵列与分集技术,能够引入远多于实际物理阵元数目的观测通道和自由度,并在信号层联合进行多通道回波数据处理,从而在目标检测、参数估计和成像识别等多方面性能上,相对于传统雷达得到了改善与提高。因此,MIMO雷达具有广阔的应用前景。论文针对MIMO雷达应用中的对空中(空间)目标的成像探测问题,开展了MIMO雷达成像算法研究,主要工作分为四个部分:MIMO雷达成像基础、MIMO雷达成像反向投影(BP)算法、MIMO雷达成像距离偏移(RM)算法和MIMO雷达成像旁瓣抑制与超分辨算法。
     MIMO雷达成像算法研究的前提条件是要弄清楚MIMO雷达成像的数据获取方式、天线布阵及阵列特性等基础性问题。因此,第一部分工作首先对MIMO雷达成像的数据获取方式进行了分析,进而讨论了MIMO雷达成像技术的天线布阵方式。然后,对比分析了MIMO雷达阵列、合成孔径阵列和实孔径阵列的空间采样能力,并讨论了它们的分辨性能,从理论上给出了MIMO雷达阵列的分辨率表示式。最后根据上述理论分析,构建了一套MIMO雷达成像原理性实验系统,利用实验数据进行了MIMO雷达成像性能评估。
     复杂的多收发阵列结构使得现有许多常用成像算法难以直接应用于MIMO雷达成像,这就需要探寻合适的MIMO雷达成像算法。第二部分工作首先将传统的BP算法推广应用于MIMO雷达成像,导出了MIMO雷达标准BP算法,它具有不受MIMO雷达阵列形式限制的优点。而后,基于时延曲线校正原理,提出了MIMO雷达TCC-BP算法,该算法大大降低了标准BP算法的运算量。综合传统的距离多普勒(RD)算法和BP算法,提出了MIMO雷达RD-BP算法,在保证成像质量的同时,RD-BP算法相比于标准BP算法和TCC-BP算法大大提高了成像处理的运算效率。最后通过MIMO雷达外场实测数据对上述所提算法的有效性进行了验证。
     第三部分工作则结合MIMO雷达阵列设计,在SAR RM算法的基础上,从空间谱域角度研究了MIMO雷达成像算法。首先,通过分析雷达成像与空间谱域填充的基本关系,提出了基于谱域填充的MIMO雷达SF-RM算法,并通过谱域支撑区分布分析对MIMO雷达的成像性能进行了评估。而后根据相位中心近似原理,进行了MIMO雷达天线阵列设计,进而提出了基于均匀等效线阵处理的MIMO雷达UELA-RM算法,该算法通过等效相位中心误差校正后可以方便地完成MIMO雷达成像。最后,结合收发正交线阵设计,提出了MIMO雷达OLA-RM算法,该算法能够有效实现窄带MIMO雷达二维“方位—方位”向成像。
     MIMO雷达成像BP算法和RM算法都是为了重建目标图像,它们不能够解决成像系统固有的高旁瓣和分辨率受限问题。以提高MIMO雷达的成像质量为目的,第四部分工作进一步研究了MIMO雷达成像旁瓣抑制和超分辨算法。首先基于空间频谱支撑区变形原理,提出了一种不损失分辨率且简单、有效的MIMO雷达成像旁瓣抑制算法—SRSR算法。在SRSR算法的基础上,分析了旁瓣抑制与频谱外推的内在关系,提出了MIMO雷达成像谱变形超分辨算法—Super-SRSR算法,与常规的超分辨率成像算法相比,Super-SRSR算法具有简单、高效、对噪声不敏感和非参数化的优点。最后,为了解决MIMO雷达空间频谱缺失情况下的超高旁瓣问题,提出了一种基于AR模型谱估计的MIMO雷达成像超高旁瓣抑制算法,该算法可以有效改善频谱缺失情况下成像结果的旁瓣性能。
MIMO (Multi-Input Multi-Output) radar is an emerging technology that has drawn considerable attention. With judiciously designed antenna arrays and diversities, MIMO radar can obtain various channels and degrees of freedom, which are much more than the actual antennas. Through joint signal processing of the received data from multiple channels, MIMO radar has been shown to provide enhanced performance in detection, estimation, imaging and etc., so MIMO radar has significant potential for advancing the state-of-the-art of modern radar. Aimed at achieving the imaging of airborne (or spatial) targets, MIMO radar imaging algorithms are studied in this dissertation. The main contents fall into four sections, which are the elements of MIMO radar imaging, back projection (BP) algorithm for MIMO radar imaging, range migration (RM) algorithm for MIMO radar imaging, sidelobe suppression and super-resolution algorithms for MIMO radar imaging.
     The premise of research on MIMO radar imaging algorithm is to solve some basic problems of MIMO radar imaging, such as data acquisition, design of antenna array, array characteristic, and so on. Therefore, the data acquisition of MIMO radar imaging is analyzed in the first section. Next, the antenna array of MIMO radar imaging is discussed, and then the sampling abilities of MIMO radar array, synthetic aperture array and real aperture array are analyzed contrastively. Their resolution capabilities are discussed respectively and the resolution expression of MIMO radar array is demonstrated. At last, an experiment system for MIMO radar imaging is constructed. The excellent imaging performance of MIMO radar is validated through measured data processing and analysis.
     Many popular imaging algorithms are not applicable to MIMO radar because of its complicated multistatic architecture, so there is urgent need to explore suitable MIMO radar imaging algorithms. Based on conventional BP algorithm, MIMO radar standard BP algorithm is studied firstly in the second section. This algorithm is not restricted by the array architecture of MIMO radar. Through time-delay curve correction of MIMO radar range compressed data, a novel imaging algorithm called TCC-BP is proposed for MIMO radar. TCC-BP algorithm provides a significant reduction in computational burden. Combing conventional range Doppler (RD) algorithm and BP algorithm, RD-BP algorithm is proposed for MIMO radar imaging. Compared with the standard BP algorithm and TCC-BP algorithm, RD-BP algorithm dramatically improves the processing efficiency while maintaining the imaging quality. Finally, the effectiveness of the proposed imaging algorithms is demonstrated using the measured data by MIMO radar experiment system.
     MIMO radar spectral imaging algorithm is studied based on array design and RM algorithm in the third section. Firstly, the relationship between radar imaging and spectral filling is discussed, and MIMO radar SF-RM algorithm is proposed. Then MIMO radar imaging performance is evaluated according to the distribution of spectral support area. Based on phase center approximation and a new design of MIMO radar antenna array, UELA-RM algorithm is proposed for MIMO radar imaging, which can conveniently produce images after the correction of displaced phase center error. With orthogonal linear arrays, MIMO radar OLA-RM algorithm is proposed. This algorithm can provide two-dimensional image profile in both azimuth directions via a narrowband MIMO radar system.
     MIMO radar BP algorithm and RM algorithm are both for the image reconstruction. They can not overcome the inherent sidelobe artifacts and resolution limitation of MIMO radar imaging system. For the purpose of enhancing the quality of MIMO radar images, sidelobe reduction method and super-resolution imaging algorithm for MIMO radar are studied in the last section. Based on the reshaping of spatial spectrum, a novel algorithm called SRSR is proposed. SRSR can effectively reduce sidelobe artifacts without degrading the imaging resolution. The extrapolation of spatial spectrum due to sidelobe reduction is analyzed. Then a super-resolution algorithm in conjunction with SRSR is proposed for MIMO radar imaging. This super-resolution algorithm is called Super-SRSR, which has features of simple process, low computational load, non-sensibility to noise and nonparametric model. In order to solve the problem of huge sidelobes arising from gapped spatial spectrum of MIMO radar, a huge sidelobe reduction algorithm for MIMO radar is proposed. The proposed algorithm that uses autoregressive (AR) based spectral estimation technique is able to improve the quality of MIMO radar images.
引文
[1]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社, 2005.
    [2]刘永坦.雷达成像技术[M].哈尔滨:哈尔滨工业大学出版社, 1999.
    [3]张直中.微波成像术[M].北京:科学出版社, 1990.
    [4]张澄波.综合孔径雷达原理、系统分析与应用[M].北京:科学出版社, 1989.
    [5]匡纲要,高贵,蒋咏梅.合成孔径雷达目标检测理论、算法及应用[M].长沙:国防科技大学出版社, 2007.
    [6] Wehner D R. High resolution radar(2nd edition)[M]. Boston, MA: Artech House, 1995.
    [7] Mensa D L. High resolution radar cross-section imaging[M]. Boston, MA: Artech House, 1991.
    [8] Ausherman D A, Kozma A, Walker J L, et al. Development in radar imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1984, 20(4): 363-400.
    [9]王小谟,张光义.雷达与探测(第二版)[M].北京:国防工业出版社, 2008.
    [10] Chen C C, Andrews H C. Target-motion-induced radar imaging[J]. IEEE Transactions on Aerospace and Electronic System, 1980, 16(1): 2-14.
    [11] Brown W M, Fredericks R J. Range-doppler imaging with motion through resolution cells[J]. IEEE Transactions on Aerospace Electronics System, 1969, 5(1): 98-102.
    [12] Fletcher A S, Robey F C. Performance bounds for adaptive coherence of sparse array radar[C]. The 12th Annual Workshop on Adaptive Sensor Array Processing, Lexington, MA, 2003: 1-6.
    [13] Bliss D W, Forsythe K W. Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution[C]. The 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2003: 54-59.
    [14] Rabideau D J, Parker P. Ubiquitous MIMO multifunction digital array radar[C]. The 37th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2003: 1057-1064.
    [15] Fishler E, Haimovich A M, Blum R S, et al. MIMO radar: an idea whose time has come[C]. IEEE Radar Conference, Philadelphia, PA, 2004: 71-78.
    [16] Luce A S, Molina H, Muller D, et al. Experimental results on SIAR digital beamforming radar[C]. IEEE International Radar Conference, London, 1992: 505-510.
    [17]保铮,张庆文.一种新型的米波雷达—综合脉冲与孔径雷达[J].现代雷达, 1995, 17(1): 1-13.
    [18]何子述,韩春林,刘波. MIMO雷达概念及其技术特点分析[J].电子学报,2005, 33(12A): 2441-2445.
    [19] Dorey J, Garnier G, Auvray G. RIAS, synthetic impulse and antenna radar[C]. IEEE International Radar Conference, Paris, 1989: 556-562.
    [20] Chen D F, Chen B X, Zhang S H. Multiple-input multiple-output radar and sparse array synthetic impulse and aperture radar[C]. CIE International Conference on Radar, Shanghai, 2006: 1-4.
    [21]周延.稀布阵综合脉冲孔径雷达实验系统仿真信号源的研制[D].西安电子科技大学, 2001.
    [22]陈伯孝,张守宏.基于相位编码的稀布阵综合脉冲孔径雷达的脉冲压缩性能分析[J].电子科学学刊, 1998, 20(1): 50-55.
    [23]张明友.数字阵列雷达和软件化雷达[M].北京:电子工业出版社, 2008.
    [24] Skolnik M. Improvements to air-surveillance radar[C]. IEEE Radar Conference Waltham, MA, 1999: 18-21.
    [25] Alter J J, White R M, Kretschmer F F, et al. Ubiquitous radar: an implementation concept[C]. IEEE Radar Conference, Philadelphia, PA, 2004: 65-70.
    [26]赵亚男,张禄林,吴伟陵. MIMO技术的发展与应用[J].电讯技术, 2005(1): 7-11.
    [27] Chen C Y, Vaidyanathan P P. Minimum redundancy MIMO radars[C]. IEEE International Symposium on Circuits and Systems, Seattle, WA, 2008: 45-48.
    [28] Godrich H, Haimovich A M, Blum R S. A comparative study of target localization in MIMO radar systems[C]. International Waveform Diversity and Design Conference, Kissimmee, FL, 2009: 124-128.
    [29]胡晓琴,陈建文,王永良等. MIMO体制米波圆阵雷达研究[J].国防科技大学学报, 2009, 31(1): 52-57.
    [30] Frazer G J, Abramovich Y I, Johnson B A. HF skywave MIMO radar: the HILOW experimental program[C]. The 42nd Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2008: 639-643.
    [31] Li J, Zheng X Y, Stoica P. MIMO SAR imaging: signal synthesis and receiver design[C]. The 2nd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, US Virgin Islands, 2007: 89-92.
    [32] Wang W Q. Applications of MIMO technique for aerospace remote sensing[C]. IEEE Aerospace Conference, Big Sky, MT, 2007: 1-10.
    [33] Fishler E, Haimovich A M, Blum R S, et al. Performance of MIMO radar systems: advantages of angular diversity[C]. The 38th Asilomar Conference on Signals System and Computers, Pacific Grove, CA, 2004: 7-10.
    [34] Forsythe K W, Bliss D W, Fawcett G S. Multiple-input multiple-output (MIMO) radar: performance issues[C]. The 38th Asilomar Conference on Signals Systems andComputers, Pacific Grove, CA, 2004: 310-315.
    [35] Robey F C, Coutts S, Weikle D, et al. MIMO radar theory and experimental results[C]. The 38th Asilomar Conference on Signals, System and Computers, Pacific Grove, CA, 2004: 300-304.
    [36] White L B, Ray P S. Signal design for MIMO diversity systems[C]. The 38th Conference on Signals Systems and Computers, Pacific Grove, CA, 2004: 937-977.
    [37] Fuhrmann D R, Antonio G S. Transmit beamforming for MIMO radar systems using partial signal correlation[C]. The 38th Asilomar Conference on Signals, System and Computers, Pacific Grove, CA, 2004: 295-299.
    [38] Fishler E, Haimovich A M, Blum R S, et al. Spatial diversity in radars-models and detection performance[J]. IEEE Transactions on Signal Processing, 2006, 54(3): 823-838.
    [39] Haimovich A M, Blum R S, Cimini L J. MIMO radar with widely separated antennas[J]. IEEE Signal Processing Magazine, 2008, 25(1): 116-129.
    [40] Li J, Stoica P. MIMO radar with colocated antennas[J]. IEEE Signal Processing Magazine, 2007, 24(5): 106-114.
    [41] Du C R, Thompson J S, Petillot Y. Predicted detection performance of MIMO radar[J]. IEEE Signal Processing Letters, 2008, 15: 83-86.
    [42] Sammartino P F, Baker C J, Griffiths H D. Target model effects on MIMO radar performance[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Toulouse, 2006: 1129-1132.
    [43] Sammaritino P F, Baker C J, Griffiths H D. Adaptive MIMO radar system in clutter[C]. IEEE Radar Conference, Boston, MA, 2007: 276-281.
    [44] Yazici A, Hamurcu A C, Baykal B. A practical point of view: Performance of Neyman-Pearson detector for MIMO radar in K-distributed clutter[C]. The 15th Workshop on Statistical Signal Processing, Cardiff, 2009: 273-276.
    [45]戴喜增,彭应宁,汤俊. MIMO雷达检测性能[J].清华大学学报(自然科学版), 2007, 47(1): 88-91.
    [46]屈金佑,张剑云,刘春生.波形具有任意相关性时MIMO雷达的检测性能[J].电路与系统学报, 2009, 14(2): 68-73.
    [47] Ghobadzadeh A, Tadaion A A, Taban M R. GLR approach for MIMO radar signal sampling in unknown clutter parameter[C]. International Symposium on Telecommunications, Tehran, 2008: 624-628.
    [48] Sheikhi A, Zamani A, Norouzi Y. Model-based adaptive target detection in clutter using MIMO radar[C]. CIE International Conference on Radar, Shanghai, 2006: 1-4.
    [49] Sheikhi A, Zamani A. Coherent detection for MIMO radars[C]. IEEE Radar Conference, Boston, MA, 2007: 302-307.
    [50] Sheikhi A, Zamani A. Temporal coherent adaptive target detection for multi-input multi-output radars in clutter[J]. IET Radar, Sonar & Navigation, 2008, 2(2): 86-96.
    [51]王鞠庭,江胜利,何劲等.机载MIMO雷达广义最大似然检测器[J].电子与信息学报, 2009, 31(6): 1315-1318.
    [52] Xu L Z, Li J. Iterative generalized - likelihood ratio test for MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2375-2385.
    [53] Li J, Stoica P, Xu L Z, et al. On parameter identifiability of MIMO radar[J]. IEEE Signal Processing Letters, 2007, 14(12): 968-971.
    [54] Xu L Z, Li J, Stoica P. Adaptive techniques for MIMO radar[C]. The 4th IEEE Workshop on Sensor Array and Multichannel Signal Processing, Waltham, MA, 2006: 258-262.
    [55] Bekkerman I, Tabrikian J. Target detection and localization using MIMO radars and sonars[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 3873-3838.
    [56] Tabrikian J. Barankin bounds for target localization by MIMO radars[C]. The 4th IEEE Workshop on Sensor Array and Multi-Channel Processing, Waltham, MA, 2006: 278-281.
    [57] Bekkerman I, Tabrikian J. Transmission diversity smoothing for multi-target localization[C]. IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, PA, 2005: 1041-1044.
    [58] Lehmann N H, Fishler E, Haimovich A M, et al. Evaluation of transmit diversity in MIMO-radar direction finding[J]. IEEE Transactions on Signal Processing, 2007, 55(2): 2215-2225.
    [59]夏威,何子述. APES算法在MIMO雷达参数估计中的稳健性研究[J].电子学报, 2008, 36(9): 1804-1809.
    [60]许红波,王怀军,陆珉等.一种新的MIMO雷达DOA估计方法[J].国防科技大学学报, 2009, 31(3): 92-96.
    [61]许红波. MIMO雷达DOA估计算法研究[D].长沙:国防科技大学, 2009
    [62]王鞠庭,江胜利,何劲等.冲击噪声下基于子空间的MIMO雷达DOA估计研究[J].宇航学报, 2009, 30(4): 1653-1657.
    [63]王鞠庭,江胜利,刘中.复合高斯杂波中MIMO雷达DOA估计的克拉美-罗下限[J].电子与信息学报, 2009, 31(4): 786-789.
    [64]江胜利,刘中,邓海.基于MIMO雷达的相干分布式目标参数估计Cramer-Rao下界[J].电子学报, 2009, 37(1): 101-107.
    [65]吴向东,赵永波,张守宏等.一种MIMO雷达低角跟踪环境下的波达方向估计新方法[J].西安电子科技大学学报(自然科学版), 2008, 35(5): 793-798.
    [66]张娟,张林让,刘楠. MIMO雷达最大似然波达方向估计方法[J].系统工程与电子技术, 2009, 31(6): 1292-1294.
    [67] He Q, Blum R S, Godrich H, et al. Cramer-Rao bound for target velocity estimation in MIMO radar with widely separated antennas[C]. The 42nd Annual Conference on Information Sciences and Systems, Princeton, NJ, 2008: 123-127.
    [68]曲毅,廖桂生,朱圣棋等. MIMO雷达的目标运动方向及速度估计[J].西安电子科技大学学报(自然科学版), 2008, 35(5): 781-784.
    [69] Deng H. Discrete frequency - coding waveform design for netted radar system[J]. IEEE Signal Processing Letters, 2004, 11(2): 179-182.
    [70] Deng H. Polyphase code design for orthogonal netted radar systems[J]. IEEE Transactins on Signal Processing, 2004, 52(11): 3126-3135.
    [71] Khan H A, Edwards D J. Doppler problems in orthogonal MIMO radar[C]. IEEE Radar Conference, Verona, NY, 2006: 244-247.
    [72] Liu B, He Z S, Zeng J K, et al. Polyphase orthogonal code design for MIMO radar systems[C]. CIE International Conference on Radar, Shanghai, 2006: 1-4.
    [73] Xu J, Xu J, Dai X Z, et al. Using GA to design frequency-hopping waveform for orthogonal multistatic ISAR[C]. The 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, 2007: 107-110.
    [74] Liu B, He Z S, He Q. Optimization of orthogonal discrete frequency-coding waveform based on modified genetic algorithm for MIMO radar[C]. International Conference on Communications, Circuits and Systems, Kokura, 2007: 966-970.
    [75] Chen C Y, Vaidyanathan P P. MIMO radar ambiguity optimization using frequency-hopping waveforms[C]. The 41st Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2007: 192-196.
    [76]刘波,韩春林,苗江宏. MIMO雷达正交频分LFM信号设计及性能分析[J].电子科技大学学报, 2009, 38(1): 28-31.
    [77]杨明磊,张守宏,陈伯孝等.多载频MIMO雷达的一种新的信号处理方法[J].电子与信息学报, 2009, 31(1): 147-151.
    [78] Fuhrmann D R, Antonio G S. Transmit beamforming for mimo radar systems using signal cross-correlation[J]. IEEE Aerospace and Electronic Systems, 2008, 43(1): 171-186.
    [79] Antonio G S, Fuhrmann D R. Beampattern synthesis for wideband MIMO radar systems[C]. The 1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Puerto Vallarta, Mexico, 2005: 105-108.
    [80] Stoica P, Li J, Zhu X. Waveform synthesis for diversity-based transmit beampattern design[J]. IEEE Transactions on Signal Processing, 2008, 56(6): 2593-2598
    [81] Stoica P, Li J, Xie Y. On probing signal design For MIMO radar[J]. IEEE Transactions on Signal Processing, 2007, 55(8): 4151-4161.
    [82] Forsythe K W, Bliss D W. Waveform correlation and optimization issus for MIMO radar[C]. The 39th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2005: 1306-1310.
    [83] Li J, Xu L Z, Stoica P, et al. Range compression and waveform optimization for MIMO radar: a Cramer-Rao bound based study[J]. IEEE Transactions on Signal Processing, 2008, 56(1): 218-232.
    [84] Yang Y, Blum R S. MIMO radar waveform design[C]. The 14th Workshop on Statistical Signal Processing, Madison, WI, 2007: 468-472.
    [85] Yang Y, Blum R S. MIMO radar waveform design based on mutual information and minimum mean - square error estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 2007.
    [86] Yang Y, Blum R S. Minimax robust MIMO radar waveform design[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 147-155.
    [87]金明,廖桂生,李军.基于遗传算法的类零相关多相码设计[J].系统工程与电子技术, 2010, 32(1): 14-17.
    [88] Steinberg B D, Subbaram H M. Microwave imaging techniques[M]. New York: John Wiley & Sons, 1991.
    [89] Weib M, Ender J H G. A 3D imaging radar for small unmanned airplanes - ARTINO[C]. European Radar Conference, Paris, 2005: 229-232.
    [90] Klare J, Weib M, Peters O, et al. ARTINO: a new high resolution 3D imaging radar system on an autonomous airborne platform[C]. IEEE International Geoscience and Remote Sensing Symposium, Denver, CO, 2006: 5315-5318.
    [91] Weib M, Peters O, Ender J H G. A three dimensional SAR system on an UAV[C]. IEEE International Geoscience and Remote Sensing Symposium, Barcelona, 2007: 5315-5318.
    [92] Xu L Z, Li J, Stoica P. Radar imaging via adaptive MIMO techniques[C]. The 14th European Signal Processing Conference, Florence, 2006: 1-5.
    [93] Roberts W, Li J, Stoica P, et al. MIMO radar angle-range-Doppler imaging[C]. IEEE Radar Conference, Pasadena, CA, 2009: 1-6.
    [94] Martinez-Vazquez A, Fortuny-Guasch J. UWB MIMO radar arrays for small area surveillance applications[C]. The 2nd European Conference on Antennas and Propagation, Edinburgh, 2007: 1-6.
    [95]韩兴斌,胡卫东,郁文贤等.分布式多通道雷达成像技术[J].电子与信息学报, 2007, 29(10): 2354-2358.
    [96]韩兴斌.基于空间谱域分析的MIMO雷达成像技术研究[D].长沙:国防科技大学, 2006.
    [97] Ma X Y, Wang D W, Su Y. High-resolution imaging using a narrowband MIMO radar system[C]. The 9th Internation Conference on Signal Processing, Beijing, 2008: 2263-2267.
    [98] Wang H J, Su Y. Narrowband MIMO radar imaging with two orthogonal linear T/R arrays[C]. The 9th Internation Conference on Signal Processing, Beijing, 2008: 2513-2516.
    [99]段广青,王党卫,马晓岩. MIMO雷达三维成像方法研究[J].空军雷达学院学报, 2009, 23(3): 171-174.
    [100] Li J, Stoica P, Zheng X Y. Signal synthesis and receiver design for MIMO radar imaging[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3959-3968.
    [101] Lehmann N H, Haimovich A M, Blum R S, et al. High Resolution Capabilities of MIMO Radar[C]. The 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2006: 25-30.
    [102]井伟,武其松,邢孟道等.多子带并发的MIMO-SAR高分辨大测绘带成像[J].系统仿真学报, 2008, 20(16):4373-4378.
    [103]武其松,井伟,邢孟道等. MIMO-SAR大测绘带成像[J].电子与信息学报, 2009, 31(4): 772-775.
    [104]王力宝,许稼,皇甫堪等. MIMO-SAR等效相位中心误差分析与补偿[J].电子学报, 2009, 37(12): 2688-2693.
    [105]王力宝,许稼,皇甫堪等.基于干涉图的星载MIMO-SAR动目标检测[J].信号处理, 2010, 26(1): 23-27.
    [106] Klare J, Cerutti-Maori D, Bernner A, et al. Image quality analysis of the vibrating sparse MIMO antenna array of the airborne 3D imaging radar ARTINO[C]. IEEE International Geoscience and Remote Sensing Symposium, Barcelona, 2007: 5310-5314.
    [107]朱宇涛,郁文贤,粟毅.一种基于MIMO技术的ISAR成像方法[J].电子学报, 2009, 37(9): 1885-1894.
    [108] Xie Y, Guo B, Li J, et al. Novel multistatic adaptive microwave imaging methods for early breast cancer detection[J]. EURASIP Journal on Applied Signal Processing, 2006, 2006(12): 1-13.
    [109] Xie Y, Guo B, Xu L Z, et al. Multistatic adaptive microwave imaging methods for early breast cancer detection[J]. IEEE Transations on Biomedical Engineering, 2006, 53(8): 1647-1656.
    [110] Bliss D W, Forsythe K W. MIMO radar medical imaging: self-interference mitigation for breast tumor detection[C]. The 40th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2006: 1558-1562.
    [111] Yang B, Zhuge X, Yarovoy A G, et al. UWB MIMO antenna array topology design using PSO for through dress near - field imaging[C]. The 38th European Microwave Conference, Amsterdam, 2008: 1620-1623.
    [112] Mecca V F, Ramakrishnan D, Krolik J L. MIMO radar space-time adaptive processing for multipath clutter mitigation[C]. IEEE workshop on Sensor Array and Mulitchannel Signal Processing, Waltham, MA, 2006: 249-253.
    [113] Chen C Y, Vaidyanathan P P. A subspace method for MIMO radar space-time adaptive processing[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Honolulu, HI, 2007: 925-928.
    [114] Chen C Y, Vaidyanathan P P. MIMO radar space - time adaptive processing using prolate spheroidal wave functions[J]. IEEE Transations on Signal Processing, 2008, 56(2): 623-634.
    [115] Rabideau D J. Nonadaptive MIMO radar techniques for reducing clutter[C]. IEEE Radar Conference, Rome, 2008: 1-6.
    [116] Deng H, Himed B. Detection of low-speed ground moving targets using MIMO radar[C]. IEEE Antennas and Propagation Society International Symposium, Charleston, SC, 2009: 1-4.
    [117]戴喜增,许稼,彭应宁等. MIMO-VSAR及其一种优化的阵列配置[J].电子学报, 2008, 36(12): 2394-2399.
    [118] Antonio G S, Fuhrmann D R, Robey F C. MIMO radar ambiguity functions[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(1): 167-177.
    [119] Qu J Y, Zhang J Y, Liu C Q. The amgiguity function of MIMO radar[C]. IEEE International Syposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications, Hangzhou, 2007: 265-268.
    [120] Chen C Y, Vaidyanathan P P. Properties of the MIMO radar ambiguity function[C]. IEEE International Conference on Acoustics, Speech and Signal Processing, Lasvegas, NV, 2008: 2309-2312.
    [121] Sammaritino P F, Baker C J, Griffiths H D. A comparison of algorithms for MIMO and netted radar systems[C]. The 2nd International Waveform Diversity and Design Conference, Lihue, Hawaii, 2006: 22-27.
    [122] Li J, Stoica P. MIMO radar - diversity means superiority[C]. The 14th Annual Workshop on Adaptive Sensor Array Processing, Lexington, MA, 2006: 1-6.
    [123]黄培康,殷红成,许小剑.雷达目标特性[M].北京:电子工业出版社, 2005.
    [124] Kell R E. On the derivation of bistatic RCS from monostatic measurements[J]. Proc. of the IEEE, 1965(8): 983-988.
    [125]常文革,梁甸农,周智敏.轨道超宽带SAR实验技术研究[J].电子学报, 2001, 29(9): 1213-1216.
    [126] Charvat G L, Kempel L C, Coleman C. A low-power high-sensitivity X-band railSAR imaging system[J]. IEEE Antennas and Propagation Magazine, 2008, 50(3): 108-115.
    [127] Cumming I G, Wong F H著,洪文,胡东辉等译.合成孔径雷达成像—算法与实现[M].北京:电子工业出版社, 2007.
    [128] Curlander J C, Mcdonough R N著,韩传钊等译.合成孔径雷达—系统与信号处理[M].电子工业出版社, 2006.
    [129] Soumekh M. Synthetic aperture radar signal processing with MATLAB algorithm[M]. New York: John Wiley & Sons, 1999.
    [130] Franceschetti G, Lanari R. Synthetic aperture radar processing[M]. New York: CRC Press, 1999.
    [131] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207.
    [132] Raney R K, Runge H, Bamler R, et al. Precision SAR processing using chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(7): 786-799.
    [133] Moreira A, Mittermayer J, Scheiber R. Extended chirp scaling algorithm for air and spaceborne SAR data processing in stripmap and scanSAR imaging modes[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(5): 1123-1139.
    [134] Walker J L. Range-Doppler imaging of rotating objects[J]. IEEE Transactions on Aerospace and Electronic Systems, 1980, 16(1): 23-52.
    [135] Walterscheid I, Ender J H G, Brenner A R, et al. Bistatic SAR processing and experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2710-2717.
    [136] Zhang N, Shen X F, Wan Q, et al. Bistatic SAR imaging based on range-Doppler algorithm without interpolation[C]. International Conference on Communications, Circuits and Systems, Kokura, 2007: 854-857.
    [137] Rigling B D, Moses R L. Polar format algorithm for bistatic SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(4): 1147-1159.
    [138] Hu C, Zeng T. Forward-looking bistatic SAR range migration algorithm[C]. CIE International Conference on Radar, Shanghai, 2006: 1-4.
    [139] Sanz-Marcos J, Mallorqui J J, Broquetas A. Bistatic parasitic SAR processor evaluation[C]. IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK, 2004: 3666-3669.
    [140] Qiu X L, Hu D H, Ding C B. Non-linear chirp scaling algorithm for one-sationary bistatic SAR[C]. The 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, 2007: 111-114.
    [141]张升康,宋岳鹏,杨汝良.适于“Tandem”模式双基地SAR修正距离多普勒算法[J].系统工程与电子技术, 2007, 29(11): 1806-1810.
    [142] McCorkle J W. Focusing of synthetic aperture ultra wideband data[C]. IEEE International Conference on System Engineering, Dayton, OH, 1991: 1-5.
    [143] McCorkle J W, Rotheart M. An order N2log(N) backprojection algorithm for focusing wide-angle wide-bandwidth arbitrary-motion synthetic aperture radar[C]. SPIE Radar Sensor Technology, Orlando, FL, 1996: 25-36.
    [144] Yegulalp A F. Fast backprojection algorithm for synthetic aperture radar[C]. IEEE Radar Conference, Waltham, MA, 1999: 60-65.
    [145] Boag A, Bresler Y. A multilevel domain decomposition algorithm for fast O(N2log(N)) reprojection of tomographic images[J]. IEEE Transactions on Imaging Processing, 2000, 9(9): 1573-1581.
    [146] Ulander L M, Hellsten H, Stenstrom G. Performance analysis of fast backprojection for synthetic aperture radar processing[C]. SPIE Algorithms for Synthetic Aperture Radar Imagery VIII, 2001: 13-21.
    [147] Soumekh M. Wide-bandwidth Continuous-wave Monostatic/bistatic synthetic aperture radar imaging[C]. International Conference on Image Processing, Chicago, IL, 1998: 361-365.
    [148] Ding Y, Munson D C. A fast back-projection algorithm for bistatic SAR imaging[C]. International Conference on Image Processing, Rochester, NY, 2002: 449-452.
    [149] Arikan O, Munson D C. A new back-projection algorithm for spotlight-mode SAR and ISAR[C]. SPIE High Speed Computing II, 1989: 108-117.
    [150] Halman J I, Shubert K A, Ruck G T. SAR processing of ground-penetrating radar data for buried UXO detection: results from a surface-based system[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(7): 1023-1027.
    [151] Cui G L, Long L J, Yang J Y. A fast back-projection algorithm to stepped-frequency synthetic aperture through-the-wall radar imaging[C]. The 1st Asian and Pacific Conference on Synthetic Aperture Radar, Huangshan, 2007: 123-126.
    [152]王顺华.机载大处理角UWB-SAR成像理论及算法研究[D].长沙:国防科技大学, 1998.
    [153]雷文太.脉冲GPR高分辨成像算法研究[D].长沙:国防科技大学, 2006.
    [154]吕彤光,陆仲良,粟毅等.冲激信号SAR成像的方位分辨率分析[J].电子学报, 2000, 28(6): 40-43.
    [155]董臻,常文革,梁甸农.冲激SAR成像的分辨率估计[J].国防科技大学学报, 2002, 24(5): 61-64.
    [156]杨延光,周智敏,宋千.分裂孔径发射阵列接收BP算法方位分辨率分析[J].信号处理, 2008, 24(5): 752-756.
    [157]吕彤光,陆仲良,粟毅等.单周波和双周波信号用于冲激SAR成像的性能分析[J].电子与信息学报, 2001, 23(6): 559-568.
    [158]沈永欢,梁在中,许履瑚等.实用数学手册[M].北京:科学出版社, 2003.
    [159]刘光平,梁甸农.适用大场景高分辨合成孔径雷达的快速BP算法[J].系统工程与电子技术, 2003, 25(5): 545-548.
    [160] Stolt R H. Migration by transform[J]. Geophysics, 1978, 43(1): 23-48.
    [161] Cafforio C, Prati C, Rocca F. Full resolution focusing of SEASAT SAR images in the frequency-wave number domain[C]. The 8th EARSel Workshop, Capri, Italy, 1988: 336-355.
    [162] Rocca F, Cafforio C, Prati C. Synthetic aperture radar: a new application for wave equation techniques[J]. Geophysical Prospecting, 1989, 37: 809-830.
    [163] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(2): 194-207.
    [164] Bamler R. A comparison of range-Doppler and wavenumber domain SAR focusing algorithms[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(4): 706-713.
    [165]雷文太,粟毅,黄仕家.探地雷达近场三维距离偏移成像算法[J].电子与信息学报, 2003, 25(12): 1641-1646.
    [166] Chew W C著,聂在平,柳清伙译.非均匀介质中的场与波[M].北京:电子工业出版社, 1992.
    [167]黄卡玛,赵翔.电磁场中的逆问题及应用[M].北京:科学出版社, 2005.
    [168]黄培康.雷达目标特征信号[M].北京:宇航出版社, 1993.
    [169]王小宁.微波成像的算法研究[D].西安:西北工业大学, 2001.
    [170]薛睿峰.逆散射层析成像技术在微波成像雷达中的应用[D].上海:上海交通大学, 2005.
    [171]粟毅,黄春琳,雷文太.探地雷达理论与应用[M].北京:科学出版社, 2006.
    [172]葛德彪.电磁逆散射原理[M].西安:西北电讯工程学院出版社, 1987.
    [173]薛睿峰,袁斌,毛军发等.基于空间谱域分布的衍射层析成像分析[J].上海交通大学学报, 2005, 39(4): 590-593.
    [174] Bellettini A, Pinto M A. Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase center antenna[J]. IEEE Journal of Oceanic Engineering, 2002, 27(4): 780-789.
    [175]许稼,彭应宁,王秀坛等.多子阵合成孔径声纳成像研究[J].清华大学学报(自然科学版), 2004, 44(4): 515-518.
    [176]蒋小奎,孙超,冯杰.采用Vernier阵技术的SAS图像重建[J].西北工业大学学报, 2005, 23(1): 60-64.
    [177] Harris J F. On the use of window for harmonic analysis with the DFT[J]. IEEE Processing, 1978, 66(1): 51-83.
    [178] Brian H S. An analytic nonlinear approach to sidelobe reduction[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1162-1168.
    [179] Tsao J, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique[J]. IEEE Transactions on Antennas and Propagation, 1988, 36(4): 543-556.
    [180] DeGraaf S R. Sidelobe reduction via adaptive fir filtering in SAR imagery[J]. IEEE Transactions on Image Processing, 1994, 3(3): 292-301.
    [181] Stankwitz H C, Dallaire R J, Fienup J R. Spatially variant apodization for sidelobe control in SAR imagery[C]. IEEE National Radar Conference, Atlanta, GA, 1994: 132-137.
    [182] Stankwitz H C, Dallaire R J,Fienup J R. Non-linear apodization for sidelobe control in SAR imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(1): 267-278.
    [183] Thomas G, Gadhok N. Sidelobe apodization in Fourier imaging[C]. The 35th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2001: 1369-1373.
    [184] DeGraaf S R. SAR imaging via modern 2-D spectral estimation methods[J]. IEEE Transactions on Image Processing, 1998, 7(5): 729-761.
    [185]王永良,陈辉,彭应宁等.空间谱估计理论与算法[M].北京:清华大学出版社, 2004.
    [186] Odendaal J E, Barnard E, Pistorius C W I. Two-dimensional superresolution radar imaging using the MUSIC algorithm[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(10): 1386-1391.
    [187] Rouquette R, Najim M. Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods[J]. IEEE Transactions on Signal Processing, 2001, 49(1): 237-245.
    [188]冯德军,王雪松,陈志杰等.酉ESPRIT超分辨ISAR成像方法[J].电子学报, 2005, 33(12):2097-2100.
    [189] Nuthalapati R M. High reolution reconstruction of ISAR images[J]. IEEE Transactions on Aerospace and Electronic Systems, 1992, 28(2): 462-472.
    [190] Gupta I J. High-resolution radar imaging using 2-D linear prediction[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(1): 31-37.
    [191] Gupta I J, Beals M J, Moghaddar A. Data extrapolation for high resolution radar imaging[J]. IEEE Transactions on Antennas and Propagation, 1994, 42(11): 1540-1545.
    [192] Moore T G, Zuerndorfer B W, Burt E C. Enhanced imagery usingspectral-estimation-based techniques[J]. Lincoln Laboratory Journal, 1997, 10(2): 171-186.
    [193] Gilmore C, LoVetri J. On Fourier imaging techniques for biomedical imaging[C]. IEEE Antennas and Propagation Society International Symposium, Albvquerque, NM, 2006: 279-282.
    [194] Goodman R, Tummala S, Carrara W. Issues in ultra-wideband, widebeam SAR image formation[C]. IEEE International Radar Conference, Alexandria, VA, 1995: 479-485.
    [195] Wang L, Huang X T, Zhou Z M, et al. Control sidelobes in UWB SAR images[C]. IEEE International Geoscience and Remote Sensing Symposium, Seoul, 2005: 4630-4632.
    [196] Stankwitz H C, Dallaire R J, Fienup J R. Super-resolution for SAR/ISAR RCS measurement using spatially variant apodization[C]. Antenna Measurement Techniques Association 17th Annual Meeting and Symposium, Williamsburg, VA, 1995: 13-17.
    [197] Larsson E G, Petre S, Li J. Amplitude spectrum estimation for two-dimensional gapped data[J]. IEEE Transactions on Signal Processing, 2002, 50(6): 1343-1354.
    [198]王琦,李亚超,邢孟道等.多视角ISAR成像研究[J].西安电子科技大学学报(自然科学版), 2007, 34(2): 165-169.
    [199]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700