临近空间宽域高分辨SAR成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临近空间(Near-space)一般指高度为20~100千米之间的区域,而临近空间合成孔径雷达(Synthetic Aperture Radar, SAR)是一种新型遥感SAR,通过搭载在气球、飞艇或机动飞行器等临近空间平台上来获取地面目标二维高分辨率图像。
     论文以临近空间快速平台SAR为研究背景,开展了临近空间方位多波束SAR成像技术和分布式SAR成像技术研究。在分析非均匀采样对方位向成像影响的基础上,提出了一种基于分数阶傅立叶变换的方位多波束非均匀信号频谱重构算法;将方位多波束技术与距离向宽带信号合成技术相结合,实现了临近空间宽测绘带高分辨率SAR成像;提出了一种基于Legendre展开的非线性CS成像算法,实现了临近空间分布式SAR高精度成像。论文主要包括以下内容:
     1.针对临近空间单平台SAR,研究了基于偏移相位中心的方位多波束成像技术。建立了单发多收和多发多收成像信号模型,实现了均匀采样条件下方位多波束成像。分析了非均匀采样对方位向成像的影响,提出了一种基于分数阶傅立叶变换的方位多波束非均匀信号频谱重构算法,并通过仿真验证了算法的有效性。分析了方位向多普勒模糊产生的原因,研究了基于等效相位中心的空域滤波解模糊技术,实现了方位向宽带信号的合成。
     2.将方位多波束技术与距离向宽带信号合成技术相结合,实现了临近空间宽测绘带高分辨率SAR成像。详细推导了距离向宽带信号合成和非线性CS成像算法,并通过点目标的正侧视和斜视成像结果验证了该方法的有效性。
     3.针对临近空间分布式SAR成像技术特点,提出了一种基于Legendre展开的非线性CS成像算法。文中给出了NCS调频率,Chirp Scaling操作因子以及距离向和方位向压缩等关键函数的表达式。在斜视角为0o ,30o,45o和50o的情况下分别用基于Legendre展开的NCS成像算法和用基于Taylor展开的NCS成像算法对点目标进行成像。通过对比仿真结果,得出了在临近空间SAR大斜视工作模式下,Legendre多项式有效的改善了NCS算法的成像质量。
Near Space generally refers to the altitude which is between 20 and 100 km region, while the Near Space Synthetic Aperture Radar (SAR) is a new type of remote sensing SAR, which gets the targets’two dimensional high-resolution images, has been carried with the balloon, airship or aircraft and others Near Space platforms.
     Who’s the research background is Near Space quick platform SAR, the paper is mainly on the multiple azimuth beams and distributed SAR imaging. After analyzing the reason that the echo signal are sampled in non-uniformly and its influence, a novel spectrum reconstruction algorithm based on Fractional Fourier Transform (FrFT) for multiple azimuth beam SAR is presented. It is utilized to carry out Near Space high-resolution and wide-swath SAR imaging simultaneously by integrating the multiple azimuth beam technology and wideband signal synthesis technology. A novel nonlinear CS imaging algorithm based on Legendre polynomial is proposed, which improves the approximation accuracy, and realizes Near Space distributed SAR high-precision SAR imaging. Paper includes the following:
     1. On the basis of the Near Space signal platform SAR, paper has a detailed analysis of displacing phase centre multibeam technology. First, we established the signal model of Single Transmitter Multiple Azimuth Beams and Multiple Transmitter Multiple Azimuth Beams and realized uniform sampling SAR imaging. Second, the influence of non-uniform sampling for SAR imaging has been derived and a novel spectral reconstruction algorithm for multiple azimuth beams SAR based on the FrFT theory was presented, simulation results were proposed to verify the results. Finally, we given the reason of azimuth ambiguities, based on the theory of equivalent phase center space filters to remove azimuth ambiguities by using the abundant space resources in multiple azimuth beam SAR system and achieved the wideband signals synthesis in azimuth direction.
     2. It is utilized to carry out Near Space high-resolution and wide-swath SAR imaging simultaneously by integrating the multiple azimuth beam technology and wideband signal synthesis technology. In this paper, a detailed formula was derived on the wideband signal synthesis and the nonlinear CS imaging algorithm. Through analysis of point targets imaging results in the positive side and squint modes, we verify the system is feasibility and effectiveness.
     3. Based on the distributed SAR imaging’s characteristic, a novel nonlinear CS imaging algorithm based on Legendre polynomial expansion is proposed. We have given the expression of NCS chirp rate, Chirp Scaling Operation factor, range matching function, the azimuth matching function and others. In the case of squint 0o , 30o , 45o and 50o , we use the NCS imaging algorithm based on the Legendre expansion and the Taylor expansion respectively to realize the point targets imaging. Compared with the simulation results at different angles, we get the Legendre polynomial improves the NCS imaging algorithm effectively in high squint mode SAR.
引文
[1]王彦广,李健全,李勇,姚伟.近空间飞行器的特点及其应用前景.航天器工程, 2007,16(1):50-57
    [2]尹志忠,李强.近空间飞行器及其军事应用分析.装备指挥技术学院学报, 2006, 17(5):64-68
    [3] Freeman A, Johnson W T K, Huneycutt B, et al. The“Myth”of the minimum SAR antenna area constraint. IEEE Trans on Geoscience Remote Sensing. 2000, 38(1): 320-324
    [4] Currie A. Wide-swath SAR imaging with multiple azimuth beams. IEE Colloquium on Synthetic Aperture Radar. London, 1989, Nov.29:3/1-3/4
    [5] Currie A, Brown M A. Wide-swath SAR. IEE Proceedings Radar Sonar and Navigation. 1992, 139(2):122-135
    [6] Kim Luu, et al. University Nanosatellite Distributed Satellite Capabilities to Support TechSat21. USA: 13th AIAA/USU Conference on Small Satellites (SSC99-III-3), 1999, 1:9
    [7] Massonnet D, Thouvenot E, Ramongassie S, et al. A wheel of passive radar microsats for upgrading existing SAR projects. Proc. IEEE of Int. Geoscience Remote Sensing Symposium. 2000, 1000:1003
    [8] Massonnet D. Capabilities and limitations of the interferometric cartwheel. IEEE Trans. On Geoscience Remote Sensing. 2001, 39(3):506-520
    [9] D Massonnet. The Interferometric Cartwheel: a Constellation of Passive Satellites to Produce Radar Images to Be Coherently Combined. International Journal of Remote Sensing. 2001, 22(12):2413-2430
    [10] Callaghan G D. and Longstaff I D. Wide-swath space-borne SAR and range ambiguity. Proceedings of Radar 97, 1997, 248:252
    [11]宋岳鹏,杨汝良.应用多收多发孔径实现高分辨率宽测绘带的合成孔径雷达研究.电子与信息学报,2007,29(9):2110-2113
    [12]宋岳鹏,杨汝良.偏置相位中心方位多波束SAR天线姿态误差分析.系统工程与电子技术,2007,29(8):1233-1237
    [13]胡玉新,丁赤飚,吴一戎.利用相位中心偏移方位多波束来实现宽测绘带SAR成像.电子与信息学报,2008,30(5):1022-1026
    [14]林来兴.小卫星编队飞行及其轨道构成.中国空间科学技术,2001, 21(1): 23-28
    [15] Goodman N A, Lin S C, Rajakrishna D, Stiles J M. Processing of multiple–receiver spaceborne arrays for wide area SAR. IEEE Trans. On Geoscience Remote Sensing. 2002, 40(4):841-852
    [16] Krieger G, Wendler M. Comparison of the interferometric performance for spaceborne parasitic SAR configurations. EUSAR 2002. Berlin: VDE VERLAG GMBH, 2002, 467:470
    [17]李真芳,保铮,王彤,邢孟道.分布式小卫星SAR宽域和高方位分辨率处理方法.雷达科学与技术,2003,1(1):193-196
    [18]雷万明,刘光炎,黄顺吉.基于波束形成的分布式卫星SAR成像.电波科学学报, 2002,17(1):64-68
    [19]闫鸿慧,王岩飞,张冰尘.利用频谱合成实现分布式SAR高分辨力成像.电子与信息学报,2006,28(2):345-349
    [20]井伟,武其松,邢孟道,保铮.多子带并发的MIMO-SAR高分辨大测绘带成像.系统仿真学报,2008,20(16):4373-4378
    [21]夏玉立,雷宏,黄瑶.分布式小卫星多中心频率SAR实现宽域二维高分辨率成像.电子与信息学报,2009,31(2):501-504
    [22] R. K. Raney, H. Runge, R. Bamler, I. G. Cumming, F. H. Wong. Precision SAR Pricessing Using Chirp Scaling. IEEE Transactions on Geoscience and Remote Systems. 1994, 32(4):786-799
    [23] Giorgio Franceschetti, Gilda Schirinzi. A SAR Processor Based on Two– Dimensional FFT Codes. IEEE Transactions on Aerospace and Electronic Systems. 1990, 26(2):356-366
    [24] Giorgio Franceschetti, Daniele Riccio. SARAS: A Synthetic Aperture Radar (SAR) Raw Signal Simulator. IEEE Transactions on Geoscience and Remote Systems. 1992, 30(1):110-123
    [25]杨凤凤,王敏,梁甸农.基于非均匀采样的小卫星多通道SAR无模糊成像.电子学报,2007,35(9):1754-1756
    [26]李国春,俞一明,范强,张平.基于Spectral-Fit法的星域SAR方位多波束方位向非均匀采样的处理.现代雷达,2005,27(8):32-34
    [27] Yih-Chyun Jenq. Perfect Reconstruction of Digital Spectrum from Nonuniformly Sampled Signals. IEEE Transactions on Instrumentation and Measurement. 1997, 46(3):649-652
    [28] Ran Tao, Bing Zhao, Yue Wang. Spectral Analysis and Reconstruction for Periodic Nonuniformly Sampled Signals in Fractional Fourier Domain. IEEE Transactions on Signal Processing. 2007, 55(7):3541-3547
    [29] Ryan S. Prendergast, Bernard C. Levy, Paul J. Hurst. Reconstruction of Band-Limited Periodic Nonuniformly Sampled Signals Through Multirate Filter Banks. IEEE Transactions on Circuits and Systems. 2004, 51(8):1612-1622
    [30] Hakan Johansson, Per Lowenborg. Reconstruction of Nonuniformly Sampled Bandlimited Signals by Means of Digital Fractional Delay Filters. IEEE Transactions on Signal Processing. 2002, 50(11):2757-2767
    [31]齐维孔,禹卫东.基于滤波器组的星域SAR DPC-MAB技术方位向非均匀采样信号的重构.系统工程与电子技术,2008,30(7):1218-1222
    [32] Ran Tao, B. Deng, Y. Wang, Research progress of the fractional Fourier transform in signal processing. Sci, in china. 2006, 49(1):1-25
    [33] L. Qi, R. Tao, S. Zhou, Y. Wang, Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. in China. 2004, 47(2):184-198
    [34] H. M. Ozaktas, Z. Zalevsky, M. A. Kutay. The Fractional Fourier Transform with Applications in Optics and Signal Processing. New York: Wiley, 2001.
    [35]何子述,夏威.现代数字信号处理及其应用.北京:清华大学出版社.2009
    [36]井伟,关于星域合成孔径雷达距离和方位模糊的研究:[硕士学位论文].西安:西安电子科技大学,2005
    [37]皮亦鸣,杨建宇,付毓,杨晓波.合成孔径雷达成像原理.成都:电子科技大学出版社,2007
    [38] G. W. DAVIDSON, I. G. CUMMING, M. R. ITO. A Chirp Scaling Approach for Processing Squint Mode SAR Data. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. 1996, 32(1):121-133
    [39]保铮,邢孟道,王彤.雷达成像技术.北京:电子工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700