被动毫米波高分辨率成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
被动毫米波(Passive Millimeter-wave, PMMW)成像技术具有全天时、全天候的工作能力,并且因为不发射电磁波,具有很高的隐蔽性和抗干扰性,对人体很安全,在军用和民用的许多领域都具有广阔的应用前景,但是早期采用单波束结合机械扫描成像的体制使得它的成像实时性和灵敏度相对较低。近年来,PMMW多波束阵列成像技术发展很快,一定程度上解决了上述问题,其中又分为基于相干探测方法和非相干探测方法的两个主要发展方向。
     论文首先全面介绍了PMMW成像的国内外发展现状,然后详细阐述了作为实孔径成像理论基础的毫米波辐射计成像原理。在此基础上重点分析了PMMW焦平面成像的空间采样频率要求以及多波束天线原理,再对毫米波干涉测量进行分析,推导出复相关输出与场景亮温分布的关系式。最后通过对PMMW焦平面阵列中相邻馈源波束存在的重叠区域,采用相关的方法加以利用获得新的像素信息,提出了一种融合干涉测量的焦平面成像方法。该方法将相干和非相干技术进行有效融合,能增加PMMW多波束成像像素,提高成像分辨率。对提出的方法进行了具体的理论分析,并通过仿真实验进行了验证。
Passive Millimeter-wave(PMMW) imaging can work in all kinds of weather conditions in whole day. Without any active emission of Hertzian signal from the system, PMMW imaging has strong abilities of concealment and anti-jamming, as well as it is harmless to human body, so it is hoped to be widely used in both civil applications and military applications. In the beginning, by mechanically scanning with single beam, PMMW imaging had low sensitivity and must take a long time to generate a image. Since recent years, multi-beam array imaging has been developed quickly, which solves the problems above in a certain extent, and according to coherent and incoherent measurements, it has two major branches.
     Firstly, we represent the state-of-the-art of PMMW imaging technology, then explain the principles of millimeter-wave radiometer imaging which is the basis of real aperture imaging theories. After that, we focus on analyzing the spatial sampling frequency and multi-beam theory of PMMW focal plane imaging. Then we analyse the principles of millimeter-wave interferometry, and explore the relationship between complex correlation output and brightness temperature of the scene. In the end, by introducing interferometric measurements for the overlap between the beams of adjacent feeds in PMMW focal plane array , a method is proposed to generate more image pixels than the conventional focal plane imaging methods ever did. Combining coherent technology with incoherent technology, the method can increase the number of image pixels, and therefore improve the spatial resolution of PMMW multi-beam imaging. Theoretical analysis and simulation results both demonstrate the effectiveness of the method.
引文
[1]阮颖铮.雷达截面与隐身技术.北京:国防工业出版社, 1998
    [2] Jason Hall, Martin L. Harman. Radiometric millimetric imaging at Roke Manor Research. Proc. SPIE, 2004, 5619: 27-37
    [3] P. E. Racette, J. R. Wang. Passive millimeter and sub-millimeter-wave imaging for atmospheric research. Proc. SPIE, 1998, 3378: 115-123
    [4] S. E. Clark, J. A. Loveberg, C. A. Martin, et al. Passive millimeter-wave imaging for airborne and security applications. Proc. SPIE, 2003, 5077:16-21
    [5] Minkyoo Joung, Yusuke Suzuki, Terukazu Tanaka, et al. Development of passive millimeter-wave imaging system and its applications to medical and bioobjects imaging. Proc. SPIE, 2004, 5411: 99-102
    [6] Alan Lettington, Qi He Hong, Andrew Dean. An overview of recent advances in passive millimeter wave imaging in the UK. Proc. SPIE, 1996, 2744: 146-153
    [7]王华力,李兴国,彭树生.被动毫米波成像技术.红外与毫米波学报, 1997, 16(4): 297-302
    [8] C. A. Martin, S. E. Clark, J. A. Lovberg, J. Galliano. Real-time wide field of view passive millimeter-wave imaging. Proc. SPIE, 2002, 4719: 341-349
    [9] L . Yujiri, H. Agravante, S. Fornaca, et al. Passive millimeter-wave video camera. Proc. SPIE, 1998, 3378: 14-19
    [10] R. T. Kuroda. Large-scale W-band focal plane array developments for passive millimeter-wave imaging. Proc. SPIE 1998, 3378: 57-62
    [11] Lockheed Martin Corporation. Focal plane array-based millimeter-wave imaging radiometer. Final Technical Report, 2003
    [12] Millivision Fact-sheet, VELA125, 2002. www.millivision.com
    [13]钱嵩松,李兴国.微带-缝隙馈电的渐变缝隙天线及其阵列应用.现代防御技术, 2007, 35(6): 119-121
    [14]章勇,李兴国,李跃华. 7元线列并扫毫米波焦平面成像系统的研究.红外与毫米波学报, 1999, 18(4): 157-162
    [15]窦文斌,孙忠良.用于毫米波焦平面阵成像的小F数透镜焦区矢量衍射分析.红外与毫米波学报, 2002, 21(2): 109-113
    [16] Guo Wei, Li Futang, Zhang Zuyin. One 8mm microwave radiation imaging system. Int. J. Infrared & millimeter Waves, 1999, 20(6): 1129-1135
    [17]张光锋,张祖荫,郭伟. 3mm波段辐射成像研究.红外与毫米波学报, 2005, 24(6): 422-426
    [18]李良超,杨建宇,姜正茂等. 3mm辐射成像研究.红外与毫米波学报, 2009, 28(1): 11-15
    [19]吴季,刘浩,孙伟英,姜景山.综合孔径微波辐射计的技术发展及其应用展望.遥感技术与应用, 2005, 20(1):24-29
    [20] D. M. Le Vine, A. J. Griffis, C. T. Swift, et al. ESTAR: A synthetic aperture microwave radiometer for remote sensing applications. Proc. IEEE, 1994, 82(12): 1787-1801
    [21] D. M. Le Vine, C. T. Swift, M. Haken. Development of the synthetic aperture microwave radiometer, ESTAR. IEEE Trans. GRS., 2001,39(1): 199-202
    [22] D. M. Le Vine, T. J. Jackson, C. T. Swift, et al. ESTAR measurements during the southern great plains experiment(SGP99). IEEE Trans GRS., 2001, 39(8): 1680-1685
    [23] M. Martin-Neira, Y. Menard, J. M. Goutoule, U. Kraft. MIRAS, a two-dimensional aperture synthesis radiometer. Proc. of IGARSS, 1994, 3:1323-1325
    [24] J. M. A. De Matey, H. Palacios, et al. Large 2-D thinned array for the microwave imaging radiometer with synthetic aperture(MIRAS). IEEE International Symposium, 1999, 3:1540-1543
    [25] S. Ribo, M. Martin-Neira, I. Cabeza, S. Tauriainen, N. Duffo. MIRAS airborne demonstrator. IEEE MicroRad Proceedings, 2006: 45-59
    [26] D. M. Le Vine, K. Carver, C. T. Swift, et al. Development of a two dimensional synthetic aperture radiometer at L-band. Proc. of IGARSS, 2000, 7: 2994-2996
    [27] D. M. Le Vine, M. Haken, C. T. Swift. Development of the synthetic aperture radiometer ESTAR and the next generation. Proc. of IGARSS, 2004, 2: 1260-1263
    [28] D. M. Le Vine. Synthetic aperture radiometer systems. IEEE Trans. MTT., 1999, 47(12): 2228-2236
    [29] A. B. Tanner, W. J. Wilson, P. P. Kangaslahti, et al. Prototype development of a geostationary synthetic thinned aperture radiometer, GeoSTAR. Proc. of IGARSS, 2001, 11: 1256-1259
    [30] A. B. Tanner, T. C. Gaier, B. H. Lambrigtsen. GeoSTAR performance demonstration. IEEE Aerospace Conference Proceedings, Big Sky, MT, US, 2008: 1-6
    [31] K. Rautiainen, R. Butora, et al. Development of airborne aperture synthetic radiometer (HUT-2D). Proc. of IGARSS, 2003, 2: 1232-1234
    [32] A. W. England, H. Pham, R. De Roo, et al. Performance of STAR-light receivers during CLPX. Proc. of IGARSS, 2003, 2:1235-1237
    [33] Xiaolong Dong, Ji Wu, Suyun Zhu, et al. The design and implementation of CAS C-band interferometric synthetic aperture radiometer. Proc. of IGARSS, 2000, 2: 866-868
    [34] Hao Liu, Ji Wu, et al. The CAS airborne X-band synthetic aperture radiometer: system configuration and experiment results. Proc. of IGARSS, 2004, 3: 2230-2233
    [35] Qingxia Li, Ke Chen, Wei Guo, et al. An Aperture Synthesis Radiometer at Millimeter Wave Band. Proc. IEEE International Conference on Microwave and Millimeter Wave Technology(ICMMT 2008), Nanjin, China, April, 2008, 4: 1699–1701
    [36] Nanzer J A, Rogers R L. Human presence detection using millimeter-wave radiometry. IEEE Trans. Microwave Theory Tech., 2007, 55(12): 2727-2733
    [37] Nanzer J A, Rogers R L. Applying millimeter-wave correlation radiometry to the detection of self-luminous objects at close range. IEEE Trans. Microwave Theory Tech., 2008, 56(9): 2054-2061
    [38] F. T.乌拉比, R. K.穆尔著,冯健超译.微波遥感(第一卷).北京:科学出版社, 1988
    [39]肖俊.毫米波目标探测技术.电子科技大学硕士论文, 2006, 1
    [40]杨精一.微波辐射计定标方程研究.长春光学精密机械学院学报, 2001, 24(3): 21-24
    [41]梁瑞生,吕晓旭.信息光学.北京:电子工业出版社, 2008
    [42]钱嵩松,李兴国.用于隐匿武器检测的PMMW焦平面成像系统设计.探测与控制学报, 2004, 26(3): 58-61
    [43]任冬梅.多波束点聚焦透镜天线.电子科技大学硕士论文, 2005, 4
    [44]刘克成,宋学城.天线原理.长沙:国防科技大学出版社, 1989
    [45]康行健.天线原理与设计.北京:国防工业出版社, 1995
    [46]张成.干涉式成像微波辐射计遥感图像的模拟与成像分析.中国科学院研究生院博士论文, 2007, 5
    [47]刘浩,吴季,吴琼.综合孔径微波辐射计信道误差分析与标定.电子学报, 2005, 33(3): 402-406

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700