偏置相位中心多子带HRWS SAR技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代对地观测任务对星载合成孔径雷达(SAR)的高分辨率宽测绘带(HRWS)成像能力提出了越来越高的要求,而传统SAR模式如条带式(Stripmap)、扫描式(ScanSAR)和聚束式(Spotlight)等均不能同时满足高分辨和宽测绘带的要求。偏置相位中心方位多波束(DPCMAB)模式为一发多收模式,能够解决高分辨率和宽测绘带要求之间的矛盾从而实现连续高分大测绘带成像。SAR距离分辨率依赖于信号带宽,而目前星载SAR系统在超大带宽(如X波段2GHz带宽)信号的产生、接收等方面存在很大的困难。步进调频信号带宽合成技术通过多子带信号的数据融合实现距离向超高分辨,显著降低了系统实现超高距离分辨率的难度。
     将偏置相位中心方位多波束和子带步进调频信号同时发射的信号收发体制相结合,形成多发多收(MIMO)SAR,可以实现二维超高分辨率的宽测绘带星载SAR系统,本文就这种新体制SAR的相关问题展开研究。第二章阐述了DPCMAB原理与方法,对关键误差进行了建模、仿真与分析,对基于特显点的阵列误差估计方法和联合迭代自校正方法进行了分析、比较。第三章分析了DPCMAB系统参数对信号重构性能的影响,提出了基于有源相控阵雷达灵活波束形成能力的自适应阵列配置方法以优化系统性能。第四章研究了子带并发体制的原理以及信号处理方法,分析了子带信号的非完全正交对成像带来的影响,针对虚像问题提出利用正负调频步进频信号对虚像的峰值电平进行抑制,提出了基于特显点的误差补偿方法。第五章阐述了基于DPCMAB与子带并发技术的MIMO HRWS SAR体制,基于这一体制开展了回波模拟、数据融合以及成像处理研究,验证了这种新体制SAR的二维高分辨成像能力。
Modern earth observation missions put forward higher and higher request on the capability of high resolution and wide swath (HRWS) imaging for spaceborne synthetic aperture radar (SAR). Conventional SAR systems such as Stripmap SAR, ScanSAR and Spotlight SAR systems are not capable of fulfilling the increasing demands for improved spatial resolution and wider swath coverage. As a single-output multiple-input SAR system, displaced phase centers multiple-azimuth-beam (DPCMAB) system solving the inherent conflict between azimuth resolution and swath width, thus realizes continuous earth observation with excellent HRWS imaging capability. Range resolution depends on signal bandwidth, but spaceborne SAR systems still encounter great difficulties in generation, transmitting and other aspects of signal with so wide bandwidth. Synthetic bandwidth technology of stepped chirp signal achieves high range resolution by fusing the sub-band signal with smaller bandwidth, can reduce system burden remarkably.
     Forming a multiple-input multiple-output (MIMO) SAR system by combining DPCMAB and concurrent-sub-band of stepped chirp signal, wide swath as well as high resolution on the two dimension can be achieved simultaneously. This thesis focuses on such problems of this system as systematical principal, performance analysis, signal processing ,error analysis and so on. The principal and signal processing theory of DPCMAB system is interpreted in Chapter 2, after simulation and analysis to critical errors, dominant scatter based algorithm and joint iterative self-tuning algorithm used to estimation of array errors are simulated and analyzed. Influence of systematic parameters on signal reconstruction performance is analyzed in Chapter 3, based on the flexible beam forming capability of active phased array antenna, adaptive array configuration approach used to optimizing signal reconstruction performance is expatiated. The principal and signal processing theory of concurrent-sub-band system is studied in chapter 4, the influence of incomplete orthodoxy of sub-band signal is analyzed, up and down chirp modulated stepped chirp signal is used to suppress the peak level of the unwanted virtual image and it’s validity and limitation is presented,dominant scatter based error compensation approach is interpreted too. In the last Chapter, a kind of MIMO HRWS SAR combining DPCMAB and concurrent-sub-band modes is introduced, research work such as echo data generation, data fusing and SAR imaging are implemented, simulation work demonstrates the excellent capability of 2D high resolution imaging of the new SAR system.
引文
[1] F. Li and W. T. K. Johnson, Ambiguities in spaceborne synthetic aperture radar systems[J]. IEEE Trans. Aerosp. Electron. Syst., 1983, 19(3): 389-397.
    [2] W.Carrara, R.Goodman and R.Majewski, Spotlight Synthetic Aperture Radar: Signal Processing Agorithm[M]. Boston: Artech House,1995.
    [3] R.K.Moore, J.P.Claassen and Lin Y H, Scanning spaceborne synthetic aperture radar with integrated radiometer[J]. IEEE Trans on Aerospce and Electronic System. AES-17(1981), 410-421.
    [4] Francesco De Zan and Andrea Monti Guarnieri. TOPSAR: Terrain Observation by Progressive Scans[J]. IEEE Trans on Geoscience and remote sensing, 2006, 44(9): 2352-2360.
    [5] Ury Naftaly and Ronit Levy-Nathansohn. Overview of the TECSAR Satellite Hardware and Mosaic Mode[J]. IEEE Geoscience and remote sensing letters, 2008, 5(3): 423-426.
    [6] Mittermayer Jisef, Lord Richard and Borner Elke. Sliding spotlight SAR processing for TerraSAR-X using a new formulation of the extended chirp scaling algorithm[C]. Proceedings of IGARSS Toulouse France, 2003, 1462-1464.
    [7] J.P.Claassen and J.Echerman, A system for wide swath constant incident angle coverage[C]. Proceedings of Synthetic Aperture Radar Technology Conference, Las Cruces, NM, 1978.
    [8] A.Currie and M.A.Brown,Wide-swath SAR[C]. IEE Proc. Inst. Elect. Eng. F., 1992, 139(2): 122-135,.
    [9] G.D.Callaghan and I.D.Longstaff, Wide swath spaceborne SAR using a quad element array[C]. IEE Proceedings—Radar Sonar and Navigation, 1992, 139(2): 122-135.
    [10] Gerhard Krieger, Nicolas Gebert, Marwan Younis, Alberto Moreira. Advanced Synthetic Aperture Radar Based on Digital Beamforming and Waveform Diversity[C]. 2008, IEEE prcoceeding, 767-772.
    [11] G.Krieger, N.Gebert, M.Younis, F.Bordoni, A. Patyuchenko, A. Moreira.Advanced Concepts for Ultra-Wide-Swath SAR Imaging.
    [12] Marwan Younis, Federica Bordoni, Nicolas Gebert, and Gerhard Krieger. Smart Multi-Aperture Radar Techniques for Spaceborne Remote Sensing[C]. IGARSS'08, Vol.3: 278-281.
    [13] M.Younis, C.Fischer and W.Wiesbeck, Digital beamforming in SAR systems[J]. IEEE Trans on GRS, 2003, 41(7): 1735-1739.
    [14]李世强,杨汝良.天线相位中心偏移方位多波束合成孔径雷达的误差分析[J].电子学报, 2004, 32(9): 1436-1440.
    [15]马晓岩,吴顺华,向家彬,速度与PRF失配对MPCSAR成像的影响及补偿方法研究[J],电子学报,2005, 33(12).
    [16]郭振永,袁新哲,张平.一种多通道SAR高分辨率宽测绘带成像算法[J].电子与信息学报, 2008, 30(2): 310-313.
    [17] N.Goodman, D.Rajakrishna and J.Stiles, Wide swath, high resolution SAR using multiple receive apertures[C]. IGARSS’99 : 1767-1769.
    [18] N.Goodman, Lin S, D.Rajakrishna and J.Stiles, Processing of multiple-receiver spaceborne arrays for wide area SAR[J]. IEEE Trans on GRS, 2002,40(4): 841-852.
    [19] Zhenfang Li,Hongyang Wang,Tao Su and Zheng Bao, Generation of Wide-Swath and High-Resolution SAR Images From Multichannel Small Spaceborne SAR Systems[J]. IEEE Geoscience and Remote Sensing Letters[J]. 2005, 2(1):82-86.
    [20]杨凤风,王敏,梁甸农.基于非均匀采样的小卫星多通道SAR无模糊成像.电子学报. Sep. 2007, 35(9): 1754-1756
    [21]范强,吕晓德,张平,许猛.星载SAR DPC MAB技术的方位向非均匀采样研究.电子与信息学报,2006, 28(1): 32-35
    [22] J.L.Yen. On nonuniform sampling of bandwidth-limited signals[J].IRETrans Circuit Theory,1956,CT-3: 251-257
    [23] Yuan-Pei Lin, P.P.Vaidyanathan.Periodically Nonuniform Sampling of Bandpass Signals[J]. IEEE Transactions on Circuits and Systerms,1995, 45(3): 340-351
    [24] G.Krieger, N.Gebert and A.Moreira. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE GRS letters, 2004, 1(4): 260-264.
    [25] T.Wang and Z.Bao. Improving the image quality of spaceborne mulitple-aperture SAR under minimization of sidelobe clutter and noise[J]. IEEE Geoscience and remote sensing letters, 2006, 3(3): 387-301.
    [26]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报, 2003, 31(12): 1800-1803.
    [27]马仑,李真芳,寥桂生.一种稳健的利用分布式小卫星获取宽域、高分辨SAR图像的方法[J].航空学报, 2007, 28(5): 1190-1194.
    [28] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela. MIMO Radar: An Idea Whose Time Has Come[C], Proc.IEEE Radar Conference, April. 2004: 71-78.
    [29]武其松,井伟,邢孟道,保铮.多维波形编码信号大测绘带成像[J].西安电子科技大学学报(自然科学版).2009, 36(5): 801-806
    [30] Gerhard Krieger, Nicolas Gebert, Alberto Moreira. Digital Beamforming And Multidimensional Waveform Encoding for Spaceborne Radar Remote Sensing[C] 2007, Proceedings of the 4th European Radar Conference, 43-46.
    [31]井伟,武其松,邢孟道,保铮.多子带并发的MIMOSAR高分辨大测绘带成像[J].系统仿真学报, 2008, 20(16): 4373-4378.
    [32] A.J.Wilkinson, R.T.Lord and M.R.Inggs. Stepped-frequency processing by reconstruction of target reflectivity spectrum[A]. 1998 South African Symposium On Communication and Signal Processing,COMSIG’98[C].Cape Town,South Afican: IEEE, 1998.101-104.
    [33] Capon.J. High resolution frequency-wavenumber spectrum analysis[C]. Proceeding of IEEE , 1969, 57 (8) : 1408 - 1418.
    [34]马仑,廖桂生,李真芳.多通道SAR误差估计与补偿方法及其实测数据验证[J].电子与信息学报, 2009, 31(6): 1305-1309.
    [35]郗晓宁,王威.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [36]刘颖,王洪洋,廖桂生,李真芳.分布式小卫星雷达系统误差估计的新方法[J].宇航学报,2007,28(1): 233-237.
    [37]李真芳,王洪洋,保铮.廖桂生.分布式小卫星雷达阵列误差估计与校正方法[J].系统工程与电子技术,2004,26(9): 1159-1161.
    [38] Weiss A J, Friedlander B. Eignstructure methodsfor direction finding with sensor gain and phase uncertainties. Circuits, Syst. Signal processing, 1990, 9(3): 271-300
    [39] Friedlander B , Weiss A J . Direction finding in the presence of mutual coupling[J] . IEEE Trans. AP , 1991 , 39 (3) :273 - 284
    [40] N.Gebert,G.Krieger,A.Moreira .Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging[J].IEEE Transactions on Aerospace and Electronic Systerms, 2009, Vol.45, No.2, 564-592
    [41]李真芳.分布式小卫星SAR-InSAR-GMTI的处理方法[D].西安电子科技大学博士学位论文,2006.
    [42] Nicolas Gebert, Gerhard Krieger. Azimuth Phase Center Adaptation on Transmit for High-Resolution Wide-Swath SAR Imaging[J]. IEEE Groscience and Remote Sensing Letters, 2009, 6(4): 782-785.
    [43]李海英.超宽带信号波形及其合成孔径雷达成像研究[D].中科院电子所博士学位论文,2002.
    [44] J.H.Ender,A.R.Brerner.PAMIR - a wide- band phased array SAR/MTI system [J] IEE,Proceedings-Radar,Sonar and Navi gation. 2003,150(3):165-172
    [45] H. Cantalloube and P. Dubois-Fernandez. Airborne X-band SAR imaging with 10 cm resolution:technical challenge and preliminary results. IEE Proc. Radar Sonar Navig., 2006, 153(2): 163-176.
    [46] Josef Mittermayer ,Jose Marquez Mart- inez. Analysis of Range Ambiguity Supp- ression in SAR by Up and Down Chirp Modulation for Point and Distributed Targets [C]. IEEE , 2003,4077- 4079
    [47]井伟,邢孟道,保铮.双星同中心频率多发多收的方位解模糊[J].电子与信息学报,2007, 29(5):1078-1082
    [48] Gerhard Krieger, Nicolas Gebert, and Alberto Moreira, Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing, IEEE Trans. on GRS, Vol. 46, No. 1, January 2008, pp: 31-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700