编队卫星SAR回波模型及分布式MIMO信道建模研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成孔径雷达(Synthetic Aperture Radar, SAR)是利用被测目标和雷达平台之间的相对运动,在一定的积累时间(合成孔径时间)内,将在雷达不同空间位置上接收到的回波信号进行相干处理,合成一个比雷达真实天线孔径大得多的合成阵列天线。而编队卫星合成孔径雷达就是将合成孔径雷达作为有效载荷安装在编队卫星群中。编队卫星合成孔径雷达天线波束照射范围非常大,有更好的灵活性和抗干扰能力,更能容忍单点故障,降低任务失败风险。因此编队卫星合成孔径雷达有很好的发展前景。
     成像精度是编队卫星合成孔径雷达系统的重要性能参数,回波信号模拟的精确程度直接影响到成像的精度。精确的回波信号模型以及先进的回波信号的处理方法能够提高系统的性能,已经成为了研究热点。另外,合成孔径雷达成像数据量很大,将数据传到地面做处理是恰当的选择。
     本文针对不同编队构型下合成孔径雷达回波信号模型、回波信号叠加处理方法、星地链路分布式MIMO信道建模进行研究,并在第二、第三、第四章做了详细的阐述。
     第二章研究直线型编队卫星合成孔径雷达回波信号模型,针对相位中心到目标点的距离与实际卫星到目标点距离有差异,提出一种相位补偿的直线型编队卫星合成孔径雷达回波信号模型,该模型比起原模型有更好的方位向分辨率。第三章研究圆型编队卫星合成孔径雷达回波信号模型,针对卫星的两种不同位置关系,相位中心到目标点的距离与实际卫星到目标点距离有差异,利用距离分解,分别提出一种相位补偿的圆型编队卫星合成孔径雷达回波信号模型。该模型比起原模型有更好的方位向分辨率。
     第四章研究星地分布式MIMO信道建模,借鉴3GPP的方法,并结合编队卫星SAR的特点,提出一种适合于卫星通信的分布式MIMO信道模型。该分布式MIMO模型有着很好的信道容量,很小的空间相关性。
Synthetic Aperture Radar (SAR) uses the relative motion between the measured targets and the radar platform during a certain period of time (aperture time),then it performs coherent processing on the echo signals. The signals are received by radars located in different spatial locations and synthesize an aperture of radar antenna which is much bigger than the real aperture. SAR is located in each of formation satellites as payload. SAR in formation satellites has a large antenna beam range, has better flexibility and anti-jamming capability, and reduces risk of mission failure. Therefore, SAR in formation satellites has good prospects of development.
     The key performance parameter of formation-flying satellites SAR is the imaging accuracy, and the accuracy of echo signal affects imaging accuracy directly. An accurate echo signal model and the advanced method of echo signal processing can improve the system performance which has and became a hot topic. In addition, SAR imaging data is very large, it is a good choice to pass the data into the ground station for processing. It is necessary to do some researches on distributed MIMO system in formation flying satellites.
     We analyze SAR echo signal models with different formation configuration, propose the superposition processing methods of echo signals, and construct distributed MIMO channel model for satellite-ground link. The main contents of the dissertation are described in detail in chapter 2, 3, 4.
     In chapter 2, we analyze SAR echo signal model of linear formation-flying satellite SAR. Because of the differences between phase center to the target point and the actual satellite to the target point, we propose a phase compensation echo model, which is used in linear formation satellites. This model has a better azimuth resolution than that of the traditional model.
     In chapter 3, we analyze SAR echo signal model of circle formation-flying satellite SAR. Considering the differences between phase center to the target point and the actual satellite to the target point,, we propose two phase-compensated echo models based on two particular locations with distance decomposition in circle formation satellite SAR systems. These two models have better azimuth resolution than the traditional one.
     In chapter 4, we study distributed MIMO channel model for satellite-ground link. Based on the channel modeling method in 3GPP, we propose a distributed MIMO channel model for formation satellite systems. The capacity of the distributed MIMO channel model is much larger and the spatial correlation is much smaller.
引文
[1]张澄波.综合孔径雷达原理、系统分析及应用.北京:科学出版社,1989
    [2]刘永坦.雷达成像技术.哈尔滨:哈尔滨工业大学出版社.2001.1 ISBN 7-5603-1441-4/TN.50
    [3] L.J. Cutrona, et al. A High Resolution Radar Combat-surveillance System. IRE Trans. On Military Electronics, Vol. MIL-5, No.2, April 1961, 127-131
    [4] John C. Curlander, Robert N. Mcdonough. Synthetic Aperture Radar: Systems and Signal Processing.北京:电子工业出版社,2006
    [5] L. J. Cutrona, et al. A Comparison of Techniques for Achieving Fine Azimuth Resolution. IRE Trans. On Military Electronics, Vol. MIL-5, No.2, April 1961, 119-121
    [6] D. A. Ausherman, A. Kozma, J. L. Walker et al. Developments in Radar Imaging. IEEE Trans. on Aerospace and Electronic Systems Vol. AES-20, No.4, July 1984, 363-400
    [7] LaHaie, I, Dias, A, Darling, G ; Digital processing considerations for extraction of ocean wave image spectra from raw synthetic aperture radar data. Volume: 9, 1984, 114-120
    [8]毛志杰.干涉合成孔径雷达信号处理方法研究[D].西安电子科技大学,2009
    [9] Y. Nemoto, H. Nishino et al, Japanese Earth Resources Satellite-1 Synthetic Aperture Radar, Proc. of IEEE, Vol.79, No. 6, June 1991, 800-809
    [10]姚静,谷德峰,易东云,朱炬波.编队卫星空间状态与星间基线的建模与分析.中国空间科学技术. 2008,12(6):21-28
    [11]袁孝康.星载合成孔径雷达导论.北京:国防工业出版社,2003
    [12]岳海霞,合成孔径雷达回波信号模拟研究,中国科学院电子学研究所博士学位论文,2005
    [13]赵志钦,王建国,黄顺吉.合成孔径雷达的点目标研究.电子科技大学学报,1999,28(5):471-475
    [14]文竹,周荫清,陈杰,星载SAR回波信号仿真系统及关键技术研究,电子与信息学报, 2004,第26卷增刊
    [15]李真芳,邢孟道,王彤,保铮.分布式小卫星SAR实现全孔径分辨率的信号处理[J].电子学报, 2003,(12) .
    [16] Novak L M , Halversen S D , Owirka G J , et al .Effect s of Polarization and Resolution on SAR ATR [J] .IEEE Trans on Aerospace and Electronic Systems , 1997 ,33 (1) :102-116.
    [17] Ravid R, Leanon N. Maximum Likelihood CFAR for Weibull Background [J]. Radar and SignalProcessing, IEE , 1992 , 139 (3) :256-264.
    [18]王泉祥等,星载合成孔径雷达回波信号的仿真,雷达科学与技术,2005.4第2期,98~100
    [19]张宁波.分布式MIMO系统关键技术研究[D].北京邮电大学. 2010
    [20]李纪,无线MIMO信道建模与仿真技术研究及考虑互耦效应的信道特性分析[D].国防科学技术大学,2009
    [21] OZCELIK H, HERDIN M, WEICHSELBERGER W. Deficiencies of‘Kronecker’MIMO radio channel model[J]. Electronics Letters, 2003, 39(16):1209-1210
    [22] Currie A and Brown M A. Wide-swath SAR. IEE Proceeding-f. 1992,139(2):122-135
    [23]李海英,杨汝良.步进频率信号的合成孔径雷达处理.电子学报,2003,31(3):349-352
    [24]黄平平,邓云凯,祈海明.多发多收星载SAR回波处理方法研究.电子与信息学报,2010,32(5):1056-1060
    [25] Krirger G, Gebert N, and Moreira A. Digital beamforming and multidimensional waveform encoding for spaceborne radar remote sensing [C]. Proceeding of the 4 th European Radar Conference, Munich, Germany, 2007:43-46
    [26] Krirger G, Gebert N, and Moreira A. Multidimensional waveform encoding: A new digital beamforming technique for synthetic aperture radar remote sensing [J]. IEEE Transactions on Geoscience and Remote Sensing(S0196-2892),2008,46(1):31-46
    [27] WU X, Liu W, Zhao L, and Fu Jeffrey. Chaotic phase code for radar pulse compression [C]. IEEE National Radar Conference Proceedings, Atlanta, GA. USA, IEEE, 2001:279-283
    [28]宋岳鹏,杨汝良.应用多收发孔径实现高分辨率宽测绘带的合成孔径雷达研究.电子与信息学报,2007,29(9):2110-2113
    [29]井伟,武其松,邢孟道,保铮.多子带并发的MIMO-SAR高分辨率大测绘带成像.系统仿真学报. 2008,20(16):4373-4378
    [30] Suess M, Gebert N, and Zahn R. A novel high resolution, Wide Swath SAR System[C]. IGARSS’2001, Vol.3:1013-1015
    [31] Ossowska A, Kim Jung-hyo, and Wiesbeck W. Modeling of nonidealities in receive front-end for simulation of multistatic SAR System[C]. Proceeding of the 4 th European Radar Conference, Munich, Germany, 2007:13-17
    [32] Bing Han. A new method for stepped-frequency SAR imaging-Proceedings of EUSAR, Dresden Germany, May 2006, Vol.1:1-4
    [33] S.D.Madsen. Estimating the Doppler centroid of SAR data. IEEE Trans. On AES, 1989.25(2):134-140
    [34] J.Dall. A new frequency domain autofocus algorithm for SAR. IGARSS’91
    [35] J.Dall, J.H.J, E.L.C, S.N.Madsen. Real-time processor for the Danish airborne SAR. IEE Proceeding-F, Vol.139, No.2, pp115-121, 1992
    [36] Luding M, buck C H, et al. Impact of new technologies on future spaceborne radar design .International Geoscience and remote Sensing Symposium(IGARSS). 2003, Vol. 3 :2137-2139 .
    [37]毛志杰.干涉合成孔径雷达信号处理方法研究[D].西安电子科技大学,2009
    [38]李海.干涉合成孔径雷达信号处理若干关键问题研究[D].西安电子科技大学,2008
    [39]马仑.分布式小卫星SAR宽域、高分辨率成像方法研究[D].西安电子科技大学,2008
    [40]闫鸿慧,王岩飞.利用频谱合成实现分布式卫星SAR高距离分辨力成像.电子与信息学报, 2005,(06)
    [41]保铮,邢孟道,王彤.雷达成像技术[M].北京:电子工业出版社,2005
    [42]左艳军.分布式小卫星合成孔径雷达高分辨率成像算法研究[D].中国科学院研究生院(电子学研究所),2007
    [43]. FANG SHU, LI LI-HUA, ZHANG PING. Stochastic Spatial MIMO Channel Model. Journal of University of Electronic Science and Technology of China, Jan.2008, Vol.37, No.1
    [44]. Dall'Anese, E.; Assalini, A.; Pupolin, S On the Effect of Imperfect Channel Estimation upon the Capacity of Correlated MIMO Fading Channels. Vehicular Technology Conference, 2009. VTC Spring 2009. IEEE 69th , pp.1-5
    [45].“Spatial Channel Model for Multiple Input Multiple Output (MIMO) Simulations”,3GPP, vol.TR25.996, v6.1.0, Sep.2003
    [46]. Albert Algans, Klaus Ingemann Pedersen. Experimental Analysis of the Joint Statistical Properties of Azimuth Spread, Delay Spread, and Shadow Fading, IEEE Journal of Selected areas in Communications, Volume 20, No.3,pp. 523-531, April 2002
    [47]. M.Shafi, M.Zhang and A.L.Moustakas. Polarized MIMO Channels in 3D: Models, Measurements and Mutual Information. IEEE Journal of Selected areas in Communications, Volume 24, Issue 3, pp.514-527, March 2006
    [48]. L.Greenstein, V.Erceg, Y.S.Yeh, M.V.Clark. A New Path-Gain/Delay-spread Propagation Model for Digital Cellular Channels. IEEE Transactions on Vehucular Technology, VOL.46, NO.2, May 1997,pp.477-485.
    [49]. Heunchul Lee; Inkyu Lee. Channel Capacity of BLAST based on the Zero-Forcing criterion. Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd , VOL.4.pp.1615-1619
    [50]. Schwarz, R.T; Knopp, A; Lankl, B; Ogermann, D; Hofmann, C.A. Optimum-Capacity MIMO Satellite Broadcast System: Conceptual Design for LOS Channels Advanced Satellite Mobile Systems, 2008. ASMS 2008. 4th pp.66-71
    [51]. Xing Li, Youjian Liu; A 3-D Channel Model for Distributed MIMO Satellite Systems. 2010. IEEE Global Telecommunications Conference. pp.1-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700