Coronin 6调控神经肌肉接头乙酰胆碱受体簇集机制研究中国汉族人群系统性红斑狼疮易感基因筛查
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本毕业论文分为两部分:
     1. Coronin6调控神经肌肉接头乙酰胆碱受体簇集机制研究
     神经肌肉接头(NMJ)是一类联系神经与肌肉之间的特化突触,负责将运动神经元产生的动作电位传递到肌肉,引起肌肉收缩。乙酰胆碱受体(AChR)簇集于突触后膜,是NMJ发育成熟的最主要标志。现有研究发现,Actin细胞骨架重构对于AChR簇集的形成与维持非常关键。Coronin家族蛋白是一类保守的F-actin结合蛋白,调控actin细胞骨架网络动态变化。本部分研究发现一个新的Coronin蛋白家族成员,Coronin6在NMJ发育过程中参与调控AChR簇集的形成与维持。Coronin6主要表达于成熟骨骼肌,并高度富集于NMJ。在C2C12肌管中,敲减Coronin6抑制agrin诱导AChR簇集形成,并减弱AChR簇集的稳定性。进一步探索Coronin6调控AChR簇集机制,我们发现agrin能诱导Coronin6与AChR-actin细胞骨架形成复合物。这一复合物的形成依赖于Coronin6的Coiled-coil结构域。敲减Coronin6导致AChR簇集与突触后膜细胞骨架关联减弱。此外,Coronin6还能结合于actin,并与F-actin形成共沉淀。缺失UCC结构域(Unique region、Coiled-coil)的Coronin6丧失actin结合能力,并抑制agrin诱导AChR簇集,提示Coronin6介导AChR与actin细胞骨架关联是agrin诱导AChR簇集所必需。综上所述,Coronin6可能通过介导AChR与actin细胞骨架交联而参与调控agrin诱导AChR簇集的形成与维持,在NMJ发育过程中扮演重要角色。
     2.中国汉族人群系统性红斑狼疮易感基因筛查
     系统性红斑狼疮(SLE)是一种累及全身多个组织器官、慢性复杂的自身免疫性疾病。遗传因素和环境因素共同决定SLE的发生发展。本部分研究采用非标记探针高分辨率熔解曲线的方法鉴定并筛查中国南方汉族人群SLE易感基因(包括BLK、NCF2、PXK、MMDC1、IL-12B以及TNIP1)。最终发现位于BLK基因上的SNPrs13277113、rs4840568以及位于IL-12B基因上的SNP rs6887695与汉族人群SLE的发病风险具有显著性相关。
Two projects are included in this thesis.
     Project I: Coronin6regulates AChR clustering at the neuromuscular junction
     Neuromuscular junction (NMJ) is a type of chemical synapse between motor neuronand skeletal muscle. Acetylcholine receptors (AChR) clustering at postsynaptic membraneis the predominant feature of mature NMJ. Re-organization of postsynaptic cytoskeletonsystem is critical for formation and maintenance of AChR clusters. Coronins, a proteinfamily with high F-actin binding activity, regulates actin dynamics in many types of cells.In present work, we identify Coronin6, a novel member of Coronin family, regulates AChRclustering at postsynaptic membrane. Coronin6is predominately expressed in skeletalmuscle and highly concentrated at the NMJ. Knockdown of Coronin6not only inhibitsagrin-induced AChR clustering but also accelerates the dispersal of AChR clusters afteragrin withdrawal. To explore the underlying mechanism on how Coronin6regulates AChRclustering, we find that Coronin6is associated with Actin-AChR complex upon agrinstimulus. Coiled-coil domain of Coronin6is required for this association. Knockdown ofCoronin6reduces the linkage between AChR clusters and cytoskeleton system asindicating by reduction of p-Try-AChRβ level and loss of the AChR extractibility inCoronin6silenced-myotubes. Moreover, Coronin6is able to bind with F-actin. The uniqueregion and coiled-coil domain (UCC) of Coronin6are required for its actin binding activity.Overexpression of Coronin6with UCC domain deletion inhibits agrin-induced AChRclustering, suggesting that actin binding activity of Coronin6is required for agrin-inducedAChR clustering. Taken together, our work indicates that Coronin6regulates postsynapticAChR clustering via mediating the linkage between AChR cluster and actin cytoskeletonsystem.
     Project II: Identification of SLE susceptive genes in Chinese Han population
     Systemic lupus erythematosus (SLE) is a chronic autoimmune disease affectingmultiple organs. Both genetic factors and environmental influences are contributed to thedevelopment and progression of SLE. In this work, we screened several SLE susceptive genes including BLK, NCF2, PXK, MAMDC1, IL-12B and TNIP1in Chinese Hanpopulation by high resolution melting curve with unlabeled probe and finally find that bothSNPs (rs13277113and rs4840568) on the BLK gene and SNP rs6887695on IL-12B geneare associated with the disease risks of SLE in Chinese Han population, respectively.
引文
[1] J.R. Sanes, J.W. Lichtman, Development of the vertebrate neuromuscular junction,Annu Rev Neurosci.1999,22:389-442.
    [2] W. Hoch, J. McConville, S. Helms, J. Newsom-Davis, A. Melms, A. Vincent, Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myastheniagravis without acetylcholine receptor antibodies, Nat Med.2001,7:365-368.
    [3] A.G. Engel, X.M. Shen, D. Selcen, S.M. Sine, What have we learned from thecongenital myasthenic syndromes, J Mol Neurosci.2010,40:143-153.
    [4] W. Lin, R.W. Burgess, B. Dominguez, S.L. Pfaff, J.R. Sanes, K.F. Lee, Distinct rolesof nerve and muscle in postsynaptic differentiation of the neuromuscular synapse,Nature.2001,410:1057-1064.
    [5] X. Yang, S. Arber, C. William, L. Li, Y. Tanabe, T.M. Jessell, et al., Patterning ofmuscle acetylcholine receptor gene expression in the absence of motor innervation,Neuron.2001,30:399-410.
    [6] V.M. Vock, O.N. Ponomareva, M. Rimer, Evidence for muscle-dependentneuromuscular synaptic site determination in mammals, J Neurosci.2008,28:3123-3130.
    [7] L. Jing, J.L. Lefebvre, L.R. Gordon, M. Granato, Wnt signals organize synapticprepattern and axon guidance through the zebrafish unplugged/MuSK receptor,Neuron.2009,61:721-733.
    [8] J. Zhang, J.L. Lefebvre, S. Zhao, M. Granato, Zebrafish unplugged reveals a role formuscle-specific kinase homologs in axonal pathway choice, Nat Neurosci.2004,7:1303-1309.
    [9] S. Lin, L. Landmann, M.A. Ruegg, H.R. Brenner, The role of nerve-versus muscle-derived factors in mammalian neuromuscular junction formation, J Neurosci.2008,28:3333-3340.
    [10] J.W. Lichtman, H. Colman, Synapse elimination and indelible memory, Neuron.2000,25:269-278.
    [11] L. Shi, B. Butt, F.C. Ip, Y. Dai, L. Jiang, W.H. Yung, et al., Ephexin1is required forstructural maturation and neurotransmission at the neuromuscular junction,Neuron.2010,65:204-216.
    [12] H. Wu, W.C. Xiong, L. Mei, To build a synapse: signaling pathways inneuromuscular junction assembly, Development.2010,137:1017-1033.
    [13] M. Gesemann, A.J. Denzer, M.A. Ruegg, Acetylcholine receptor-aggregating activityof agrin isoforms and mapping of the active site, J Cell Biol.1995,128:625-636.
    [14] M. Gautam, P.G. Noakes, L. Moscoso, F. Rupp, R.H. Scheller, J.P. Merlie, et al.,Defective neuromuscular synaptogenesis in agrin-deficient mutant mice, Cell.1996,85:525-535.
    [15] D.J. Glass, D.C. Bowen, T.N. Stitt, C. Radziejewski, J. Bruno, T.E. Ryan, et al.,Agrin acts via a MuSK receptor complex, Cell.1996,85:513-523.
    [16] N. Kim, A.L. Stiegler, T.O. Cameron, P.T. Hallock, A.M. Gomez, J.H. Huang, et al.,Lrp4is a receptor for Agrin and forms a complex with MuSK, Cell.2008,135:334-342.
    [17] B. Zhang, S. Luo, Q. Wang, T. Suzuki, W.C. Xiong, L. Mei, LRP4serves as acoreceptor of agrin, Neuron.2008,60:285-297.
    [18] C.G. Jennings, S.M. Dyer, S.J. Burden, Muscle-specific trk-related receptor with akringle domain defines a distinct class of receptor tyrosine kinases, Proc Natl AcadSci U S A.1993,90:2895-2899.
    [19] D.M. Valenzuela, T.N. Stitt, P.S. DiStefano, E. Rojas, K. Mattsson, D.L. Compton, etal., Receptor tyrosine kinase specific for the skeletal muscle lineage: expression inembryonic muscle, at the neuromuscular junction, and after injury, Neuron.1995,15:573-584.
    [20] T.M. DeChiara, D.C. Bowen, D.M. Valenzuela, M.V. Simmons, W.T. Poueymirou, S.Thomas, et al., The receptor tyrosine kinase MuSK is required for neuromuscularjunction formation in vivo, Cell.1996,85:501-512.
    [21] R. Herbst, S.J. Burden, The juxtamembrane region of MuSK has a critical role inagrin-mediated signaling, EMBO J.2000,19:67-77.
    [22] N. Kim, S.J. Burden, MuSK controls where motor axons grow and form synapses,Nat Neurosci.2008,11:19-27.
    [23] K. Okada, A. Inoue, M. Okada, Y. Murata, S. Kakuta, T. Jigami, et al., The muscleprotein Dok-7is essential for neuromuscular synaptogenesis, Science.2006,312:1802-1805.
    [24] J. Linnoila, Y. Wang, Y. Yao, Z.Z. Wang, A mammalian homolog of Drosophilatumorous imaginal discs, Tid1, mediates agrin signaling at the neuromuscularjunction, Neuron.2008,60:625-641.
    [25] A.J. Finn, G. Feng, A.M. Pendergast, Postsynaptic requirement for Abl kinases inassembly of the neuromuscular junction, Nat Neurosci.2003,6:717-723.
    [26] G. Sadasivam, R. Willmann, S. Lin, S. Erb-Vogtli, X.C. Kong, M.A. Ruegg, et al.,Src-family kinases stabilize the neuromuscular synapse in vivo via proteininteractions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors,J Neurosci.2005,25:10479-10493.
    [27] M.M. Salpeter, D.L. Cooper, T. Levitt-Gilmour, Degradation rates of acetylcholinereceptors can be modified in the postjunctional plasma membrane of the vertebrateneuromuscular junction, J Cell Biol.1986,103:1399-1403.
    [28] E.P. Brandon, W. Lin, K.A. D'Amour, D.P. Pizzo, B. Dominguez, Y. Sugiura, et al.,Aberrant patterning of neuromuscular synapses in choline acetyltransferase-deficient mice, J Neurosci.2003,23:539-549.
    [29] T. Misgeld, R.W. Burgess, R.M. Lewis, J.M. Cunningham, J.W. Lichtman, J.R. Sanes,Roles of neurotransmitter in synapse formation: development of neuromuscularjunctions lacking choline acetyltransferase, Neuron.2002,36:635-648.
    [30] W. Lin, B. Dominguez, J. Yang, P. Aryal, E.P. Brandon, F.H. Gage, et al.,Neurotransmitter acetylcholine negatively regulates neuromuscular synapseformation by a Cdk5-dependent mechanism, Neuron.2005,46:569-579.
    [31] A.K. Fu, F.C. Ip, W.Y. Fu, J. Cheung, J.H. Wang, W.H. Yung, et al., Aberrant motoraxon projection, acetylcholine receptor clustering, and neurotransmission incyclin-dependent kinase5null mice, Proc Natl Acad Sci U S A.2005,102:15224-15229.
    [32] J. Yang, B. Dominguez, F. de Winter, T.W. Gould, J.E. Eriksson, K.F. Lee, Nestinnegatively regulates postsynaptic differentiation of the neuromuscular synapse,Nat Neurosci.2011,14:324-330.
    [33] D.L. Falls, K.M. Rosen, G. Corfas, W.S. Lane, G.D. Fischbach, ARIA, a protein thatstimulates acetylcholine receptor synthesis, is a member of the neu ligand family,Cell.1993,72:801-815.
    [34] M.G. Tansey, G.C. Chu, J.P. Merlie, ARIA/HRG regulates AChR epsilon subunit geneexpression at the neuromuscular synapse via activation of phosphatidylinositol3-kinase and Ras/MAPK pathway, J Cell Biol.1996,134:465-476.
    [35] N. Altiok, S. Altiok, J.P. Changeux, Heregulin-stimulated acetylcholine receptor geneexpression in muscle: requirement for MAP kinase and evidence for a parallelinhibitory pathway independent of electrical activity, EMBO J.1997,16:717-725.
    [36] J. Si, Z. Luo, L. Mei, Induction of acetylcholine receptor gene expression by ARIArequires activation of mitogen-activated protein kinase, J Biol Chem.1996,271:19752-19759.
    [37] J. Si, Q. Wang, L. Mei, Essential roles of c-JUN and c-JUN N-terminal kinase (JNK)in neuregulin-increased expression of the acetylcholine receptor epsilon-subunit, JNeurosci.1999,19:8498-8508.
    [38] L. Schaeffer, N. Duclert, M. Huchet-Dymanus, J.P. Changeux, Implication of amultisubunit Ets-related transcription factor in synaptic expression of the nicotinicacetylcholine receptor, EMBO J.1998,17:3078-3090.
    [39] A. Briguet, M.A. Ruegg, The Ets transcription factor GABP is required forpostsynaptic differentiation in vivo, J Neurosci.2000,20:5989-5996.
    [40] A. Jaworski, S.J. Burden, Neuromuscular synapse formation in mice lacking motorneuron-and skeletal muscle-derived Neuregulin-1, J Neurosci.2006,26:655-661.
    [41] P. Escher, E. Lacazette, M. Courtet, A. Blindenbacher, L. Landmann, G. Bezakova, etal., Synapses form in skeletal muscles lacking neuregulin receptors, Science.2005,308:1920-1923.
    [42] J.C. Trinidad, J.B. Cohen, Neuregulin inhibits acetylcholine receptor aggregation inmyotubes, J Biol Chem.2004,279:31622-31628.
    [43] O.N. Ponomareva, H. Ma, V.M. Vock, E.L. Ellerton, S.E. Moody, R. Dakour, et al.,Defective neuromuscular synaptogenesis in mice expressing constitutively activeErbB2in skeletal muscle fibers, Mol Cell Neurosci.2006,31:334-345.
    [44] N. Schmidt, M. Akaaboune, N. Gajendran, I. Martinez-Pena y Valenzuela, S.Wakefield, R. Thurnheer, et al., Neuregulin/ErbB regulate neuromuscular junctiondevelopment by phosphorylation of alpha-dystrobrevin, J Cell Biol.2011,195:1171-1184.
    [45] S.T. Ngo, C. Balke, W.D. Phillips, P.G. Noakes, Neuregulin potentiates agrin-inducedacetylcholine receptor clustering in myotubes, Neuroreport.2004,15:2501-2505.
    [46] S.T. Ngo, R.N. Cole, N. Sunn, W.D. Phillips, P.G. Noakes, Neuregulin-1PotentiatesAgrin-Induced Acetylcholine Receptor Clustering via Muscle Specific KinasePhosphorylation, J Cell Sci.2012.
    [47] C. Korkut, V. Budnik, WNTs tune up the neuromuscular junction, Nat Rev Neurosci.2009,10:627-634.
    [48] Z.G. Luo, Q. Wang, J.Z. Zhou, J. Wang, Z. Luo, M. Liu, et al., Regulation of AChRclustering by Dishevelled interacting with MuSK and PAK1, Neuron.2002,35:489-505.
    [49] J.P. Henriquez, A. Webb, M. Bence, H. Bildsoe, M. Sahores, S.M. Hughes, et al.,Wnt signaling promotes AChR aggregation at the neuromuscular synapse incollaboration with agrin, Proc Natl Acad Sci U S A.2008,105:18812-18817.
    [50] J. Wang, Z. Jing, L. Zhang, G. Zhou, J. Braun, Y. Yao, et al., Regulation ofacetylcholine receptor clustering by the tumor suppressor APC, Nat Neurosci.2003,6:1017-1018.
    [51] J. Wang, N.J. Ruan, L. Qian, W.L. Lei, F. Chen, Z.G. Luo, Wnt/beta-catenin signalingsuppresses Rapsyn expression and inhibits acetylcholine receptor clustering at theneuromuscular junction, J Biol Chem.2008,283:21668-21675.
    [52] X.M. Li, X.P. Dong, S.W. Luo, B. Zhang, D.H. Lee, A.K. Ting, et al., Retrograderegulation of motoneuron differentiation by muscle beta-catenin, Nat Neurosci.2008,11:262-268.
    [53] J. Wang, Z.G. Luo, The role of Wnt/beta-catenin signaling in postsynapticdifferentiation, Commun Integr Biol.2008,1:158-160.
    [54] B. Zhang, S. Luo, X.P. Dong, X. Zhang, C. Liu, Z. Luo, et al., Beta-catenin regulatesacetylcholine receptor clustering in muscle cells through interaction with rapsyn, JNeurosci.2007,27:3968-3973.
    [55] L. Strochlic, J. Falk, E. Goillot, S. Sigoillot, F. Bourgeois, P. Delers, et al., Wnt4participates in the formation of vertebrate neuromuscular junction, PLoS One.2012,7: e29976.
    [56] B. Zhang, C. Liang, R. Bates, Y. Yin, W.C. Xiong, L. Mei, Wnt proteins regulateacetylcholine receptor clustering in muscle cells, Mol Brain.2012,5:7.
    [57] M. Packard, E.S. Koo, M. Gorczyca, J. Sharpe, S. Cumberledge, V. Budnik, TheDrosophila Wnt, wingless, provides an essential signal for pre-and postsynapticdifferentiation, Cell.2002,111:319-330.
    [58] M.P. Klassen, K. Shen, Wnt signaling positions neuromuscular connectivity byinhibiting synapse formation in C. elegans, Cell.2007,130:704-716.
    [59] J. Prives, A.B. Fulton, S. Penman, M.P. Daniels, C.N. Christian, Interaction of thecytoskeletal framework with acetylcholine receptor on th surface of embryonicmuscle cells in culture, J Cell Biol.1982,92:231-236.
    [60] H.B. Peng, K.A. Phelan, Early cytoplasmic specialization at the presumptiveacetylcholine receptor cluster: a meshwork of thin filaments, J Cell Biol.1984,99:344-349.
    [61] R.J. Bloch, Actin at receptor-rich domains of isolated acetylcholine receptor clusters,J Cell Biol.1986,102:1447-1458.
    [62] J.A. Connolly, Role of the cytoskeleton in the formation, stabilization, and removalof acetylcholine receptor clusters in cultured muscle cells, J Cell Biol.1984,99:148-154.
    [63] M.K. Ramarao, J.B. Cohen, Mechanism of nicotinic acetylcholine receptor clusterformation by rapsyn, Proc Natl Acad Sci U S A.1998,95:4007-4012.
    [64] M. Moransard, L.S. Borges, R. Willmann, P.A. Marangi, H.R. Brenner, M.J. Ferns, etal., Agrin regulates rapsyn interaction with surface acetylcholine receptors, andthis underlies cytoskeletal anchoring and clustering, J Biol Chem.2003,278:7350-7359.
    [65] M. Gautam, P.G. Noakes, J. Mudd, M. Nichol, G.C. Chu, J.R. Sanes, et al., Failure ofpostsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice, Nature.1995,377:232-236.
    [66] S.J. Burden, R.L. DePalma, G.S. Gottesman, Crosslinking of proteins inacetylcholine receptor-rich membranes: association between the beta-subunit andthe43kd subsynaptic protein, Cell.1983,35:687-692.
    [67] G.C. Dobbins, S. Luo, Z. Yang, W.C. Xiong, L. Mei, alpha-Actinin interacts withrapsyn in agrin-stimulated AChR clustering, Mol Brain.2008,1:18.
    [68] C. Antolik, D.H. Catino, A.M. O'Neill, W.G. Resneck, J.A. Ursitti, R.J. Bloch, Theactin binding domain of ACF7binds directly to the tetratricopeptide repeatdomains of rapsyn, Neuroscience.2007,145:56-65.
    [69] W.D. Phillips, P.G. Noakes, S.L. Roberds, K.P. Campbell, J.P. Merlie, Clustering andimmobilization of acetylcholine receptors by the43-kD protein: a possible role fordystrophin-related protein, J Cell Biol.1993,123:729-740.
    [70] S. Luo, B. Zhang, X.P. Dong, Y. Tao, A. Ting, Z. Zhou, et al., HSP90beta regulatesrapsyn turnover and subsequent AChR cluster formation and maintenance, Neuron.2008,60:97-110.
    [71] S.J. Park, S. Suetsugu, H. Sagara, T. Takenawa, HSP90cross-links branched actinfilaments induced by N-WASP and the Arp2/3complex, Genes Cells.2007,12:611-622.
    [72] J.B. Moseley, F. Bartolini, K. Okada, Y. Wen, G.G. Gundersen, B.L. Goode,Regulated binding of adenomatous polyposis coli protein to actin, J Biol Chem.2007,282:12661-12668.
    [73] Z. Dai, X. Luo, H. Xie, H.B. Peng, The actin-driven movement and formation ofacetylcholine receptor clusters, J Cell Biol.2000,150:1321-1334.
    [74] H.B. Peng, H. Xie, Z. Dai, Association of cortactin with developing neuromuscularspecializations, J Neurocytol.1997,26:637-650.
    [75] C.W. Lee, J. Han, J.R. Bamburg, L. Han, R. Lynn, J.Q. Zheng, Regulation ofacetylcholine receptor clustering by ADF/cofilin-directed vesicular trafficking, NatNeurosci.2009,12:848-856.
    [76] R. Madhavan, Z.L. Gong, J.J. Ma, A.W. Chan, H.B. Peng, The function of cortactinin the clustering of acetylcholine receptors at the vertebrate neuromuscularjunction, PLoS One.2009,4: e8478.
    [77] C. Weston, B. Yee, E. Hod, J. Prives, Agrin-induced acetylcholine receptor clusteringis mediated by the small guanosine triphosphatases Rac and Cdc42, J Cell Biol.2000,150:205-212.
    [78] A. Cartaud, F. Stetzkowski-Marden, A. Maoui, J. Cartaud, Agrin triggers theclustering of raft-associated acetylcholine receptors through actin cytoskeletonreorganization, Biol Cell.2011,103:287-301.
    [79] P. Mittaud, P.A. Marangi, S. Erb-Vogtli, C. Fuhrer, Agrin-induced activation ofacetylcholine receptor-bound Src family kinases requires Rapsyn and correlateswith acetylcholine receptor clustering, J Biol Chem.2001,276:14505-14513.
    [80] E.L. de Hostos, B. Bradtke, F. Lottspeich, R. Guggenheim, G. Gerisch, Coronin, anactin binding protein of Dictyostelium discoideum localized to cell surfaceprojections, has sequence similarities to G protein beta subunits, EMBO J.1991,10:4097-4104.
    [81] C.S. Clemen, V. Rybakin, L. Eichinger, The coronin family of proteins, SubcellBiochem.2008,48:1-5.
    [82] K.T. Chan, S.J. Creed, J.E. Bear, Unraveling the enigma: progress towardsunderstanding the coronin family of actin regulators, Trends Cell Biol.2011,21:481-488.
    [83] E.L. de Hostos, The coronin family of actin-associated proteins, Trends Cell Biol.1999,9:345-350.
    [84] L. van der Voorn, H.L. Ploegh, The WD-40repeat, FEBS Lett.1992,307:131-134.
    [85] C.U. Stirnimann, E. Petsalaki, R.B. Russell, C.W. Muller, WD40proteins propelcellular networks, Trends Biochem Sci.2010,35:565-574.
    [86] B.A. Appleton, P. Wu, C. Wiesmann, The crystal structure of murine coronin-1: aregulator of actin cytoskeletal dynamics in lymphocytes, Structure.2006,14:87-96.
    [87] B.L. Goode, J.J. Wong, A.C. Butty, M. Peter, A.L. McCormack, J.R. Yates, et al.,Coronin promotes the rapid assembly and cross-linking of actin filaments and maylink the actin and microtubule cytoskeletons in yeast, J Cell Biol.1999,144:83-98.
    [88] L. Cai, A.M. Makhov, J.E. Bear, F-actin binding is essential for coronin1B functionin vivo, J Cell Sci.2007,120:1779-1790.
    [89] M.E. Rothenberg, S.L. Rogers, R.D. Vale, L.Y. Jan, Y.N. Jan, Drosophila pod-1crosslinks both actin and microtubules and controls the targeting of axons, Neuron.2003,39:779-791.
    [90] Z. Spoerl, M. Stumpf, A.A. Noegel, A. Hasse, Oligomerization, F-actin interaction,and membrane association of the ubiquitous mammalian coronin3are mediatedby its carboxyl terminus, J Biol Chem.2002,277:48858-48867.
    [91] T. Oku, S. Itoh, R. Ishii, K. Suzuki, W.M. Nauseef, S. Toyoshima, et al., Homotypicdimerization of the actin-binding protein p57/coronin-1mediated by a leucinezipper motif in the C-terminal region, Biochem J.2005,387:325-331.
    [92] J. Gatfield, I. Albrecht, B. Zanolari, M.O. Steinmetz, J. Pieters, Association of theleukocyte plasma membrane with the actin cytoskeleton through coiled coil-mediated trimeric coronin1molecules, Mol Biol Cell.2005,16:2786-2798.
    [93] E.L. de Hostos, C. Rehfuess, B. Bradtke, D.R. Waddell, R. Albrecht, J. Murphy, et al.,Dictyostelium mutants lacking the cytoskeletal protein coronin are defective incytokinesis and cell motility, J Cell Biol.1993,120:163-173.
    [94] R. Rauchenberger, U. Hacker, J. Murphy, J. Niewohner, M. Maniak, Coronin andvacuolin identify consecutive stages of a late, actin-coated endocytic compartmentin Dictyostelium, Curr Biol.1997,7:215-218.
    [95] M. Gandhi, M. Jangi, B.L. Goode, Functional surfaces on the actin-binding proteincoronin revealed by systematic mutagenesis, J Biol Chem.2010,285:34899-34908.
    [96] K. Tsujita, T. Itoh, A. Kondo, M. Oyama, H. Kozuka-Hata, Y. Irino, et al., Proteomeof acidic phospholipid-binding proteins: spatial and temporal regulation ofCoronin1A by phosphoinositides, J Biol Chem.2010,285:6781-6789.
    [97] T. Kimura, S. Taniguchi, I. Niki, Actin assembly controlled by GDP-Rab27a isessential for endocytosis of the insulin secretory membrane, Arch BiochemBiophys.2010,496:33-37.
    [98] M. Gandhi, V. Achard, L. Blanchoin, B.L. Goode, Coronin switches roles in actindisassembly depending on the nucleotide state of actin, Mol Cell.2009,34:364-374.
    [99] L.M. Machesky, E. Reeves, F. Wientjes, F.J. Mattheyse, A. Grogan, N.F. Totty, et al.,Mammalian actin-related protein2/3complex localizes to regions of lamellipodialprotrusion and is composed of evolutionarily conserved proteins, Biochem J.1997,328(Pt1):105-112.
    [100] C.L. Humphries, H.I. Balcer, J.L. D'Agostino, B. Winsor, D.G. Drubin, G. Barnes, etal., Direct regulation of Arp2/3complex activity and function by the actin bindingprotein coronin, J Cell Biol.2002,159:993-1004.
    [101] L. Cai, N. Holoweckyj, M.D. Schaller, J.E. Bear, Phosphorylation of coronin1B byprotein kinase C regulates interaction with Arp2/3and cell motility, J Biol Chem.2005,280:31913-31923.
    [102] L. Cai, T.W. Marshall, A.C. Uetrecht, D.A. Schafer, J.E. Bear, Coronin1Bcoordinates Arp2/3complex and cofilin activities at the leading edge, Cell.2007,128:915-929.
    [103] S.L. Liu, K.M. Needham, J.R. May, B.J. Nolen, Mechanism of a concentration-dependent switch between activation and inhibition of Arp2/3complex by coronin,J Biol Chem.2011,286:17039-17046.
    [104] A.M. Weaver, A.V. Karginov, A.W. Kinley, S.A. Weed, Y. Li, J.T. Parsons, et al.,Cortactin promotes and stabilizes Arp2/3-induced actin filament networkformation, Curr Biol.2001,11:370-374.
    [105] L. Cai, A.M. Makhov, D.A. Schafer, J.E. Bear, Coronin1B antagonizes cortactinand remodels Arp2/3-containing actin branches in lamellipodia, Cell.2008,134:828-842.
    [106] W.M. Brieher, H.Y. Kueh, B.A. Ballif, T.J. Mitchison, Rapid actin monomer-insensitive depolymerization of Listeria actin comet tails by cofilin, coronin, andAip1, J Cell Biol.2006,175:315-324.
    [107] N. Foger, L. Rangell, D.M. Danilenko, A.C. Chan, Requirement for coronin1in Tlymphocyte trafficking and cellular homeostasis, Science.2006,313:839-842.
    [108] A. Grogan, E. Reeves, N. Keep, F. Wientjes, N.F. Totty, A.L. Burlingame, et al.,Cytosolic phox proteins interact with and regulate the assembly of coronin inneutrophils, J Cell Sci.1997,110(Pt24):3071-3081.
    [109] R. Jayachandran, V. Sundaramurthy, B. Combaluzier, P. Mueller, H. Korf, K.Huygen, et al., Survival of mycobacteria in macrophages is mediated by coronin1-dependent activation of calcineurin, Cell.2007,130:37-50.
    [110] G. Ferrari, H. Langen, M. Naito, J. Pieters, A coat protein on phagosomes involvedin the intracellular survival of mycobacteria, Cell.1999,97:435-447.
    [111] S. Moriceau, C. Kantari, J. Mocek, N. Davezac, J. Gabillet, I.C. Guerrera, et al.,Coronin-1is associated with neutrophil survival and is cleaved during apoptosis:potential implication in neutrophils from cystic fibrosis patients, J Immunol.2009,182:7254-7263.
    [112] A. Rosentreter, A. Hofmann, C.P. Xavier, M. Stumpf, A.A. Noegel, C.S. Clemen,Coronin3involvement in F-actin-dependent processes at the cell cortex, Exp CellRes.2007,313:878-895.
    [113] T. Kimura, Y. Kaneko, S. Yamada, H. Ishihara, T. Senda, A. Iwamatsu, et al., TheGDP-dependent Rab27a effector coronin3controls endocytosis of secretorymembrane in insulin-secreting cell lines, J Cell Sci.2008,121:3092-3098.
    [114] D. Thal, C.P. Xavier, A. Rosentreter, S. Linder, B. Friedrichs, A. Waha, et al.,Expression of coronin-3(coronin-1C) in diffuse gliomas is related to malignancy,J Pathol.2008,214:415-424.
    [115] L. Wu, C.W. Peng, J.X. Hou, Y.H. Zhang, C. Chen, L.D. Chen, et al., Coronin-1C isa novel biomarker for hepatocellular carcinoma invasive progression identified byproteomics analysis and clinical validation, J Exp Clin Cancer Res.2010,29:17.
    [116] W. Huang, S. Ghisletti, K. Saijo, M. Gandhi, M. Aouadi, G.J. Tesz, et al., Coronin2A mediates actin-dependent de-repression of inflammatory response genes,Nature.2011,470:414-418.
    [117] T. Nakamura, K. Takeuchi, S. Muraoka, H. Takezoe, N. Takahashi, N. Mori, Aneurally enriched coronin-like protein, ClipinC, is a novel candidate for an actincytoskeleton-cortical membrane-linking protein, J Biol Chem.1999,274:13322-13327.
    [118] M.C. Shina, C. Unal, L. Eichinger, A. Muller-Taubenberger, M. Schleicher, M.Steinert, et al., A Coronin7homolog with functions in actin-driven processes, JBiol Chem.2010,285:9249-9261.
    [119] V. Rybakin, R.H. Rastetter, M. Stumpf, A.C. Uetrecht, J.E. Bear, A.A. Noegel, et al.,Molecular mechanism underlying the association of Coronin-7with Golgimembranes, Cell Mol Life Sci.2008,65:2419-2430.
    [120] F.C. Ip, A.K. Fu, K.W. Tsim, N.Y. Ip, Differential expression of ciliary neurotrophicfactor receptor in skeletal muscle of chick and rat after nerve injury, J Neurochem.1996,67:1607-1612.
    [121] T.T. Kummer, T. Misgeld, J.W. Lichtman, J.R. Sanes, Nerve-independent formationof a topologically complex postsynaptic apparatus, J Cell Biol.2004,164:1077-1087.
    [122] L.S. Borges, M. Ferns, Agrin-induced phosphorylation of the acetylcholine receptorregulates cytoskeletal anchoring and clustering, J Cell Biol.2001,153:1-12.
    [123] G.C. Dobbins, B. Zhang, W.C. Xiong, L. Mei, The role of the cytoskeleton inneuromuscular junction formation, J Mol Neurosci.2006,30:115-118.
    [124] T.J. Proszynski, J. Gingras, G. Valdez, K. Krzewski, J.R. Sanes, Podosomes arepresent in a postsynaptic apparatus and participate in its maturation, Proc NatlAcad Sci U S A.2009,106:18373-18378.
    [125] G.J. Pons-Estel, G.S. Alarcon, L. Scofield, L. Reinlib, G.S. Cooper, Understandingthe epidemiology and progression of systemic lupus erythematosus, SeminArthritis Rheum.2010,39:257-268.
    [126] M. Gaubitz, Epidemiology of connective tissue disorders, Rheumatology (Oxford).2006,45Suppl3: iii3-4.
    [127] R. Li, J. Sun, L.M. Ren, H.Y. Wang, W.H. Liu, X.W. Zhang, et al., Epidemiology ofeight common rheumatic diseases in China: a large-scale cross-sectional survey inBeijing, Rheumatology (Oxford).2011.
    [128] C.J. Edwards, C. Cooper, Early environmental exposure and the development oflupus, Lupus.2006,15:814-819.
    [129] S.R. Block, J.B. Winfield, M.D. Lockshin, W.A. D'Angelo, C.L. Christian, Studiesof twins with systemic lupus erythematosus. A review of the literature andpresentation of12additional sets, Am J Med.1975,59:533-552.
    [130] J.B. Harley, M.E. Alarcon-Riquelme, L.A. Criswell, C.O. Jacob, R.P. Kimberly, K.L.Moser, et al., Genome-wide association scan in women with systemic lupuserythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542andother loci, Nat Genet.2008,40:204-210.
    [131] G. Hom, R.R. Graham, B. Modrek, K.E. Taylor, W. Ortmann, S. Garnier, et al.,Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX, N Engl J Med.2008,358:900-909.
    [132] R.R. Graham, C. Cotsapas, L. Davies, R. Hackett, C.J. Lessard, J.M. Leon, et al.,Genetic variants near TNFAIP3on6q23are associated with systemic lupuserythematosus, Nat Genet.2008,40:1059-1061.
    [133] S.V. Kozyrev, A.K. Abelson, J. Wojcik, A. Zaghlool, M.V. Linga Reddy, E. Sanchez,et al., Functional variants in the B-cell gene BANK1are associated with systemiclupus erythematosus, Nat Genet.2008,40:211-216.
    [134] J.W. Han, H.F. Zheng, Y. Cui, L.D. Sun, D.Q. Ye, Z. Hu, et al., Genome-wideassociation study in a Chinese Han population identifies nine new susceptibilityloci for systemic lupus erythematosus, Nat Genet.2009,41:1234-1237.
    [135] V. Gateva, J.K. Sandling, G. Hom, K.E. Taylor, S.A. Chung, X. Sun, et al., A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1and IL10as risk loci for systemic lupus erythematosus, Nat Genet.2009,41:1228-1233.
    [136] W. Yang, N. Shen, D.Q. Ye, Q. Liu, Y. Zhang, X.X. Qian, et al., Genome-wideassociation study in Asian populations identifies variants in ETS1and WDFY4associated with systemic lupus erythematosus, PLoS Genet.2010,6: e1000841.
    [137] Y. Aoki, Y.T. Kim, R. Stillwell, T.J. Kim, S. Pillai, The SH2domains of Src familykinases associate with Syk, J Biol Chem.1995,270:15658-15663.
    [138] T. Tretter, A.E. Ross, D.I. Dordai, S. Desiderio, Mimicry of pre-B cell receptorsignaling by activation of the tyrosine kinase Blk, J Exp Med.2003,198:1863-1873.
    [139] I. Ito, A. Kawasaki, S. Ito, T. Hayashi, D. Goto, I. Matsumoto, et al., Replication ofthe association between the C8orf13-BLK region and systemic lupuserythematosus in a Japanese population, Arthritis Rheum.2009,60:553-558.
    [140] W. Yang, P. Ng, M. Zhao, N. Hirankarn, C.S. Lau, C.C. Mok, et al., Populationdifferences in SLE susceptibility genes: STAT4and BLK, but not PXK, areassociated with systemic lupus erythematosus in Hong Kong Chinese, GenesImmun.2009,10:219-226.
    [141] A.L. Dixon, L. Liang, M.F. Moffatt, W. Chen, S. Heath, K.C. Wong, et al., Agenome-wide association study of global gene expression, Nat Genet.2007,39:1202-1207.
    [142] J. El-Benna, P.M. Dang, M.A. Gougerot-Pocidalo, C. Elbim, Phagocyte NADPHoxidase: a multicomponent enzyme essential for host defenses, Arch ImmunolTher Exp (Warsz).2005,53:199-206.
    [143] K. Mizuki, R. Takeya, F. Kuribayashi, I. Nobuhisa, D. Kohda, H. Nunoi, et al., Aregion C-terminal to the proline-rich core of p47phox regulates activation of thephagocyte NADPH oxidase by interacting with the C-terminal SH3domain ofp67phox, Arch Biochem Biophys.2005,444:185-194.
    [144] K. Honbou, R. Minakami, S. Yuzawa, R. Takeya, N.N. Suzuki, S. Kamakura, et al.,Full-length p40phox structure suggests a basis for regulation mechanism of itsmembrane binding, EMBO J.2007,26:1176-1186.
    [145] K. Lapouge, S.J. Smith, P.A. Walker, S.J. Gamblin, S.J. Smerdon, K. Rittinger,Structure of the TPR domain of p67phox in complex with Rac.GTP, Mol Cell.2000,6:899-907.
    [146] Y. Nisimoto, S. Motalebi, C.H. Han, J.D. Lambeth, The p67(phox) activationdomain regulates electron flow from NADPH to flavin in flavocytochrome b(558),J Biol Chem.1999,274:22999-23005.
    [147] D. Roos, D.B. Kuhns, A. Maddalena, J. Bustamante, C. Kannengiesser, M. de Boer,et al., Hematologically important mutations: the autosomal recessive forms ofchronic granulomatous disease (second update), Blood Cells Mol Dis.2010,44:291-299.
    [148] G. Trinchieri, Interleukin-12and the regulation of innate resistance and adaptiveimmunity, Nat Rev Immunol.2003,3:133-146.
    [149] G. Trinchieri, Interleukin-12: a cytokine produced by antigen-presenting cells withimmunoregulatory functions in the generation of T-helper cells type1andcytotoxic lymphocytes, Blood.1994,84:4008-4027.
    [150] J. Chehimi, G. Trinchieri, Interleukin-12: a bridge between innate resistance andadaptive immunity with a role in infection and acquired immunodeficiency, J ClinImmunol.1994,14:149-161.
    [151] E. Bettelli, M. Oukka, V.K. Kuchroo, T(H)-17cells in the circle of immunity andautoimmunity, Nat Immunol.2007,8:345-350.
    [152] J. Varade, J. Ramon Lamas, L. Rodriguez, M. Fernandez-Arquero, E. Loza-Santamaria, J.A. Jover, et al., IL23R and IL12B genes: susceptibility analysis inrheumatoid arthritis, Ann Rheum Dis.2009,68:1230-1232.
    [153] Y.T. Chang, C.T. Chou, C.W. Yu, M.W. Lin, Y.M. Shiao, C.C. Chen, et al., Cytokinegene polymorphisms in Chinese patients with psoriasis, Br J Dermatol.2007,156:899-905.
    [154] J.M. Yang, S. Nagasaka, T. Yatagai, T. Nakamura, I. Kusaka, S.E. Ishikawa, et al.,Interleukin-12p40gene (IL-12B) polymorphism and Type1diabetes mellitus inJapanese: possible role in subjects without having high-risk HLA haplotypes,Diabetes Res Clin Pract.2006,71:164-169.
    [155] H. Takeuchi, T. Takeuchi, J. Gao, L.C. Cantley, M. Hirata, Characterization of PXKas a protein involved in epidermal growth factor receptor trafficking, Mol CellBiol.2010,30:1689-1702.
    [156] L. Verstrepen, I. Carpentier, K. Verhelst, R. Beyaert, ABINs: A20binding inhibitorsof NF-kappa B and apoptosis signaling, Biochem Pharmacol.2009,78:105-114.
    [157] S. Cohen, A. Ciechanover, Y. Kravtsova-Ivantsiv, D. Lapid, S. Lahav-Baratz, ABIN-1negatively regulates NF-kappaB by inhibiting processing of the p105precursor,Biochem Biophys Res Commun.2009,389:205-210.
    [158] J.T. Elder, Genome-wide association scan yields new insights into theimmunopathogenesis of psoriasis, Genes Immun.2009,10:201-209.
    [159] C.F. He, Y.S. Liu, Y.L. Cheng, J.P. Gao, T.M. Pan, J.W. Han, et al., TNIP1,SLC15A4, ETS1, RasGRP3and IKZF1are associated with clinical features ofsystemic lupus erythematosus in a Chinese Han population, Lupus.2010,19:1181-1186.
    [160] E.D. Litwack, R. Babey, R. Buser, M. Gesemann, D.D. O'Leary, Identification andcharacterization of two novel brain-derived immunoglobulin superfamily memberswith a unique structural organization, Mol Cell Neurosci.2004,25:263-274.
    [161] M. Bucan, B.S. Abrahams, K. Wang, J.T. Glessner, E.I. Herman, L.I. Sonnenblick,et al., Genome-wide analyses of exonic copy number variants in a family-basedstudy point to novel autism susceptibility genes, PLoS Genet.2009,5: e1000536.
    [162] J.M. Hettema, E.J. van den Oord, S.S. An, K.S. Kendler, X. Chen, Follow-upassociation study of novel neuroticism gene MAMDC1, Psychiatr Genet.2009,19:213-214.
    [163] C.T. Wittwer, G.H. Reed, C.N. Gundry, J.G. Vandersteen, R.J. Pryor, High-resolution genotyping by amplicon melting analysis using LCGreen, Clin Chem.2003,49:853-860.
    [164] Y. Chen, Q. Wu, Y. Shao, J. Zhang, M. Guan, J. Wan, et al., Identify the associationbetween polymorphisms of BLK and systemic lupus erythematosus throughunlabelled probe-based high-resolution melting analysis, Int J Immunogenet.2012.
    [165] Q. Wu, B. Yu, Y. Chen, Y. Shao, J. Zhang, Q. Zhong, et al., Single-nucleotidepolymorphisms of MAMDC1are associated with rash and photosensitivity, butnot disease risk, of systemic lupus erythematosus in Chinese mainland population,Clin Rheumatol.2011,30:1373-1378.
    [166] B. Yu, Q. Wu, Y. Chen, P. Li, Y. Shao, J. Zhang, et al., Polymorphisms of PXK areassociated with autoantibody production, but not disease risk, of systemic lupuserythematosus in Chinese mainland population, Lupus.2011,20:23-27.
    [167] B. Yu, Y. Chen, Q. Wu, P. Li, Y. Shao, J. Zhang, et al., The association betweensingle-nucleotide polymorphisms of NCF2and systemic lupus erythematosus inChinese mainland population, Clin Rheumatol.2011,30:521-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700